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A B S T R A C T   

Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have 
leveraged Electroencephalogram (EEG) technology to gauge an individual’s mental state or level of depression. 
This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for con-
ducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then 
a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Sub-
sequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression 
level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). 
The authors conducted numerous experiments to validate the performance of the proposed method under 
different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one- 
channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). 
The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive 
value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior per-
formance of the proposed method compared to other ensemble learning techniques. This method not only proves 
effective but also holds the potential to significantly enhance the accuracy of depression assessment.   

1. Introduction 

Depression is categorized as a mental disorder characterized by a 
persistent low mood, behavioral alterations, negative thoughts, and 
decreased motivation, leading to challenges in carrying out daily ac-
tivities. A study conducted by Brown University and Boston University 
revealed that depression among American adults persisted and wors-
ened during the early stages of the COVID-19 outbreak. A supplemen-
tary report [1] further confirmed this trend, indicating that the 
prevalence of severe depression symptoms among American adults rose 
from 27.8% in 2020 to 32.8% in 2021. 

Earlier studies [2–5] have addressed this issue by examining the 
detection of biofeedback using biological signals, without employing 
objective measurements, Electroencephalography (EEG) has been 
identified in recent research studies [6–8] as a potential tool to measure 
emotional state or depression. The device was utilized in various studies 

[9–11] to explore medical subjects and verify their accuracy in detecting 
the brainwave signals [12]. 

In the field of Deep Learning applications, various network model 
architectures have been developed earlier [13], such as RNN (Recurrent 
Neural Network), CNN (Convolutional Neural Network), LSTM (Long 
Short-Term Memory), etc. These models, especially for EEG-related 
applications, are widely applied in classification and prediction pro-
cesses in different fields. The researchers conducted several studies 
using Deep Learning (DL) methods to train EEG signals and build pre-
dictive models [11,14–16]. EEG signal is characterized as a time series 
wave, where each EEG frequency band implies a certain feature. The 
signals are typically presented in 5-dimensional EEG such as delta wave, 
theta wave, alpha wave, beta, and gamma wave. Each one has its own 
characteristics regarding emotional or mental state [17,18]. Therefore, 
it may be insufficient to assess an individual’s mental state based solely 
on a specific frequency band. 
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Ensemble learning is a well-known and commonly used method in 
machine learning. It involves integrating multiple weak learners into a 
strong learner in order to improve classification accuracy [19,20]. It has 
been used in various machine learning (ML) and deep learning tech-
niques to integrate different types of models. Previous literature [21–24] 
introduced ensemble methods as a means to incorporate multiple fea-
tures into machine learning models. The results achieved in these studies 
confirmed that the prediction accuracy can be enhanced significantly. 

In the current study, a multi-tier ensemble learning technology is 
proposed to integrate multiple EEG bands and assess the mental state or 
depression of an individual. In this study, the EEG is subdivided into 8 
distinct sub-bands, with each sub-band showcasing unique characteris-
tics related to emotion and mental state. Therefore, we train the model 
using an LSTM network, and subsequently employ ensemble learning to 
integrate models across equivalent numbers of sub-bands, ranging from 
1 to 8 bands, for enhanced accuracy. These combinations may also be 
relevant to the mental state and emotion. The results of these models are 
ensemble together, representing the outcome of initial tier ensemble 
learning. Finally, the results of these multiple same sub-band models are 
integrated using ensemble learning to form second-tier ensemble 
learning. 

The major goal of this research is to determine ways for interpreting 
EEG data using a neural network and determining whether the outcomes 
indicate depression in an individual. In order to achieve the objectives, 
the EEG frequency bands are collected as per the literature [23]. The 
EEG signals are participated into eight sub-bands such as delta, theta, 
low-alpha, high-alpha, low-beta, high-beta, low-gamma, and 
high-gamma respectively. Afterwards, the frequency domain is arranged 
in an increasing order and the signals are subsequently categorized into 
1-band signal, 2-bands signal, …, and 8-bands signal. These signals are 
used to combine N adjacent sub-bands into N-bands signals. Following 
that, the model is trained individually for each band using a LSTM-based 
Deep Neural Network (DNN). Multiple Linear Regression (MLR)-based 
two-tiers’ ensemble learning technology is utilized herewith to integrate 
the multi-bands’ EEG frequency models and assist in the evaluation of 
mental state or depression. The primary objective is to combine LSTM 
models representing a range of bands (1–8 bands) in the first tier, fol-
lowed by integrating the results obtained from the first tier in the second 
tier. 

To demonstrate the effectiveness of the proposed method, the au-
thors conducted the experiments and used different measures to validate 
the outcomes. In this study, various ensemble learning methods are used 
for comparison purposes. These include simple average approach, ACC 
weight method, MAE weight method, and hard voting priority method. The 
results revealed that the proposed method outperformed other ensemble 
learning methods. 

The contributions of the current study are as follows.  

1. A multi-band and multi-featured Deep Learning model is proposed 
for the evaluation of mental status or depression. 

2. A multi-tier ensemble learning method is applied to integrate a va-
riety of feature-associated Deep Learning models.  

3. Based on the comparison among different ensemble learning 
methods, it can be concluded that the proposed multiple learning 
regression method is superior to other techniques. 

The organization of the rest of the paper is as follows. Section II 
presents the background and the works related to the domain. In section 
III, the information on how to collect and process the EEG signals such as 
splitting, combining, and preprocessing is presented. Section IV explains 
the design of N-Band LSTM-based base classifiers. Section V depicts the 
architectural design of two-tier ensemble learning. The experimental 
procedures and the key findings of the research are presented in section 
VI. In section VII, the concluding remarks and the scope for future work 
are discussed. 

2. Background and related work 

In this section, we will first present some background knowledge. It 
consists of the EEG frequency band relevant to emotional mental status 
and the concept of ensemble learning. Subsequently, we will conduct a 
comprehensive review of prior research related to the proposed study. 

2.1. EEG frequency band relevant to emotional and mental status 

In the field of psychiatry, it is important to determine the mental 
state of an individual before initiating treatment. Several studies [21,25, 
53] suggested methods to measure the emotional state using EEG waves. 
In previous literature [26], the authors provided a thorough explanation 
of the methodology for calculating the scores that instantaneously 
evaluate the mental state of an individual using a simple EEG headband. 
In [27], the authors used features such as intra-channel information and 
inter-channel information for the classification of different workloads 
based on electroencephalogram signals. 

It is widely recognized that EEG measurements obtain five different 
kinds of frequency bands such as delta, theta, alpha, beta, and gamma. The 
signals of these frequency bands usually correspond to certain emotional 
characteristics. For instance, theta signal [28] is associated with the in-
hibition of elicited responses whereas a high range of beta signal is 
associated with anxiety [29]. In the previous study [30], the authors 
investigated the impaired functional connectivity at alpha and theta 
frequency bands of EEG during a major depression episode. The analysis 
results confirmed the study hypothesis, indicating an observe in brain 
functional connectivity during a major depression. The authors [18] 
revealed that the mean percent delta power/min is associated with 
reduced anxiety and hostility, and increased energy. In literature [31], 
the authors found that the patients who suffer from Generalized Anxiety 
Disorder (GAD) express highly negative emotions when they are 
worried. In such instances, EEG gamma band is helpful in monitoring the 
fluctuations in pathological worry that are expected to follow a suc-
cessful treatment. 

According to the authors [32], the baseline gamma power is signifi-
cantly associated with a change in depression severity, whereas the 
gamma power can be utilized as a potential biomarker to predict anti-
depressant response. In literature [33], the authors established that the 
global EEG coherence of patients with depression was significantly 
higher than that of the healthy controls in both gamma bands, especially 
in high gamma band. Therefore, it can be concluded that these frequency 
bands have varying degrees of relationship with mental state or 
depression. 

To summarize the aforementioned points, different frequency bands 
characterize different psychiatric disorders. In such a case, if only one 
frequency band is used for the assessment of mental status or depression, 
it may prove insufficient and insignificant. 

Additionally, the bandwidths of the five frequency bands differ from 
each other. As depicted in Table 1, the frequency range of the delta wave 
is 0.1–3 Hz, while the gamma wave has a frequency range of 25–60 Hz. 
In the current study, certain bands, including alpha, beta, and gamma 
bands, are characterized by a wide range. Consequently, to mitigate the 
impact of this wide range of waves, some of these bands have been 

Table 1 
The 8-bands EEG frequency domain.  

Notation of Brain Waves Band Frequency (Hz) 

δ delta 0.1 ~ 3 Hz 
θ theta 4 ~ 7 Hz 
Low-α Low-alpha 8 ~ 9 Hz 
High-α High-alpha 12 ~ 14 Hz 
Low-β Low-beta 12.5 ~ 16 Hz 
High-β High-beta 20.5 ~ 28 Hz 
Low-γ Low-gamma 25 ~40 Hz 
Mid- γ Mid-gamma 40~ 60 Hz  
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divided into two sub-bands. It is assumed in this study that the frequency 
bands of adjacent EEGs have a certain relationship with each other, 
thereby increasing the selection of training features. In literature [53], 
the authors collected the EEG signals with five bands, whereas in the 
current study, the signals were collected and split into eight bands as 
given; delta wave, theta wave, low-α wave, high-α wave, low-β wave, 
high-β wave, low-γ wave, and mid-γ wave, as shown in Table 1. 

2.2. Ensemble learning 

Ensemble learning occurs when different types of independent 
models are integrated together to enhance the prediction accuracy. The 
fundamental premise of ensemble learning is that multiple learners tend 
to learn with high efficiency compared to a single learner [31]. The 
following is an overview of some of the frequently employed techniques 
in this domain. 

Simple Average, otherwise known as ‘Soft Voting’ [32], is used to 
aggregate the outcomes of multiple ML classifiers and add the proba-
bilities of multiple prediction outcomes in order to select the probability 
and the largest category after learning. Though Hard Voting [33,34] is 
similar to soft voting, it is decided mainly based on majority voting with 
equal weights for every classifier. The result can be obtained if a major 
number of certain objects are present. The MAE (Mean Absolute Error) 
weighted method is another indicator that is employed to evaluate the 
results [35]. MAE refers to the average value between the predicted 
value and the actual value. The definition of MAE involves the selection 
of weighting components in ensemble learning weighting formulas to 
achieve an error-minimizing solution. The model with high accuracy is 
given higher weight to optimize the overall model. The ACC (Accuracy) 
weighted method is an alternative approach, akin to the MAE weighted 
method The ACC weighted method is learned from the SWE (Self--
Weighted Ensemble) method [36] which is based on the F1-score to 
calculate the performance. The aim of the ACC weighted method is to 
reduce the weight of inaccurate learners and boost the 
reasonably-accurate weak learners so as to increase the recognition rate 
of the overall model. Therefore, the accuracy of the weak learner is 
evaluated to assign the desired amount of weight. 

2.3. Related work 

In literature [21], the authors proposed an Ensemble Learning (EL) 
technique to integrate multi-featured Deep Learning (DL) models to 
predict air pollution. In the study conducted earlier [22], an ensemble 
learning-like model was utilized to combine the air quality prediction 
models with spatiotemporal features of three different regions. The 
studies mentioned above used ensemble learning techniques to predict 
the air quality. 

In literature [37], the author employed three traditional ML algo-
rithms to construct the base classifier for EEG signals. Subsequently, 
these classifiers were combined using ensemble learning techniques, 
resulting in excellent model performance. This study utilized traditional 
ML models in mental imagery tasks. In their research [38], the authors 
first analyzed various features and employed various traditional ML 
methods such as SVM and KNN to construct classification models. They 
then utilized F-test and ReliefF methods, followed by comparing accu-
racy values with various conventional ML methods. 

In a previous study [39], two modalities, namely EEG signals and 
sound, were used as features to detect depression. Each modality pro-
vided training to six classifiers, and these classifiers were combined 
using fusion technology, showing potential for improving recognition 
accuracy. In literature [40], the authors proposed a new Deep Learning 
network architecture called FLDNet, which initially designed three 
networks and integrated them later with an ensemble layer. This 
network can automatically learn to perform emotion recognition with 
high-level features. 

In another study [41], the authors proposed a multi-domain 

ensemble CNN called ensCNN-MD to enhance the accuracy of fatigue 
recognition. This work utilized a combination of seven different fea-
tures, and the classification models of these CNNs were integrated using 
the bootstrap aggregation technique. Additionally, the authors [42] 
proposed a hybrid model for recognizing human emotions using CNN 
and LSTM networks. In this model, five frequency bands of EEG were fed 
into three developed models initially, and the outcomes of these base 
models were integrated using an ensemble model. 

Following existing work, all are utilizing EEG signals to construct 
depression prediction models. In the work [43], authors adopted CNN as 
the technique to train the depression prediction model. The EEG data set 
was 4348 records collected from 15 normal and 15 depressed patients. 
In the literature [44], the authors did not exploit deep learning tech-
niques for model training. Instead, they employed spectral asymmetry 
index and nonlinear, detrended fluctuation analysis to differentiate the 
depressed and healthy subjects. The EGG data set was collected from 17 
depressed patients and 17 control subjects. The work [45] utilized CNN 
and 1DCNN+LSTM network model to train the depression prediction 
model. The EEG data were collected from 33 depressed and 30 healthy 
subjects. In the literature [54], the authors exploited CNN to train the 
model for depression discrimination, named HybridEEGNet. This model 
consists of two parallel lines designed to learn the synchronous and 
regional EEG features. In the work [46], the authors combined CNN and 
LSTM for depression detection, named DepHNN, in which CNN is used 
for temporal learning while LSTM is used for the sequence learning 
process. The EEG signals were obtained from 45 subjects. The work [47] 
proposed a CNN based depression detection model. The EEG signals are 
mainly 4 frequency bands using 19 electrodes from 46 normal and 46 
depressed subjects. In the literature [48], a CNN-based SparNet 
depression discrimination model was proposed to learn EEG 
space-frequency domain characteristics. The study involved the collec-
tion of EEG signals from 48 subjects, with 24 normal and 24 depressed 
subjects. The work [49], a CNN-based depression detection model, 
named DeprNet, was proposed. The EEG signals were collected from 33 
subjects with 19 electrodes. In the literature [50], the authors proposed 
a CNN-based Inception Time model for depression detection via 
19-channel raw EEG signals. The EEG signals were collected from 30 
healthy and 34 depressed subjects. 

In the literature [23], the authors proposed MSFBEL (Multi-Scale 
Frequency Bands Ensemble Learning) method to identify four types of 
emotions such as happy, normal, sad, and fear from EEG signals. At first, 
five frequency bands of the EEG signals were divided into multiple data 
sets after which it was rearranged using multiple scales. Then, a basic 
classifier was constructed for each scale to recognize the emotions. The 
output of all the classifiers were combined using simple majority 
voting-based ensemble learning in order to integrate the classifiers. 

As stated in the earlier research, a few common problems have been 
identified: (1) some studies utilize traditional machine learning methods 
to build EEG classifier instead of utilizing Deep Learning neural network; 
(2) some researchers used ML techniques to identify different types of 
emotional states rather than assess the level of depression; (3) and some 
investigations did not exploit ensemble learning method to integrate 
multiple classifiers; and (4) some studies used ensemble learning though 
not for assessing the depression levels. In light of the research gap, the 
current study proposes a multi-tier ensemble learning method that in-
volves the integration of multiple LSTM-based base classifiers, for 
training various N-bands EEG signals and assessing depression. 

3. System flow and signal preprocessing 

This section describes the system flow and shows the signal pre-
processing employed, including the splitting, combining and pre- 
processing of EEG frequency bands. 
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3.1. System flow 

The step-by-step operations is shown in Fig. 1 and is explained in the 
following.  

1. First, we use a single-channel EEG to collect the patient’s brain 
waves, and transmit the EEG to the back-end server through the APP. 
The collection of EEG by this APP can be explained in Section 6.1.  

2. The backend server will process the collected data using the 
following steps:  
a. Receive signals.  
b. Outlier detection and missing value padding. Details please refer 

to Section 3.2.  
c. Signals splitting and combining. Details please refer to Section 

3.3.  
d. Store signals into the backend database.  

3. Training all N-bands LSTM classifier models using LSTM neural 
network. The network architecture of LSTM will be explained in 
Section 4.1, and training all N-bands models, the details are pre-
sented in Section 4.2. 

4. Training first-tier ensemble learning models using various tech-
niques. Please refer to Section 5.1.1 for these detailed operations. 

5. Training second-tier ensemble learning models using various tech-
niques. Details please refer to Section 5.1.2.  

6. Evaluating the performance of models. Please refer to Section 5.2 for 
various evaluation indicators and results. 

3.2. Data pre-processing 

Data processing is an important step to collect the signals from EEG 
devices. It deals with how to feed the processed data into a neural 
network. 

The data collected by the front-end device is then stored in the 
database. It has a total of 600 s of raw data under 8 bands. 

The outliers of the observed target may come from sensor noise, 
static human body, communication interference and other factors that 
cannot be grasped. In the current work, the well-known statistical 
method, i.e., IQR (interquartile range) [52] is exploited. To replace the 
value of the outlier, a linear interpolation method is used. 

The EEG signal obtained using the general EEG sensor demonstrates 
a considerable amount of noise. The aim of this work is to propose an 
ensemble multi-tiers multi-featured EEG-bands deep learning models for 
depression assessment. To effectively get the research results, a 
commercially available EEG sensor (NeuroSky, Mindwave Mobile 2 
headset) was acquired. 

It also offers an API (Application Program Interface) to developers to 
retrieve raw data of sensed brainwave bands directly. It is likely that the 

commercial device can effectively reduce most of the noise. However, in 
this study, steps were taken to minimize the issue arising from any 
remaining noise. These noises are regarded as outliers. The outliers of 
the observed target may come from sensor noise, static human body, 
communication interference and other factors that cannot be grasped.  
Fig. 3(a) shows the collected signals without outlier detection and pro-
cessing. It is obviously that there are some outliers are appeared in the 
collected signals. In the current work, the well-known statistical 
method, i.e., IQR (interquartile range) [52] is exploited. To replace the 
value of the outlier, a linear interpolation method is used. The research 
[56] made a comparison between IQR and Local Outlier Factor (LOF), 
and result revealed that both methods have identical performance in 
terms of accuracy, precision, recall, and f1-score. 

The interquartile range (IQR) method has been proved that it is a 
simple and robust technique for detecting outliers with following 
advantages:  

1. Simplicity: Grasping and employing the IQR method is 
uncomplicated.  

2. Non-parametric: It applies to distributions, whether skewed or 
symmetric, rendering it adaptable to diverse dataset types.  

3. Robustness: It is less influenced by extreme values or outliers 
compared to other statistical measures like the mean and standard 
deviation.  

4. Flexibility: The outlier detection threshold can be customized to suit 
the specific analysis requirements.  

But it also has some limitations as follows:  

1. Insensitivity: Despite its robustness against extreme values, the IQR 
method may struggle to effectively identify mild outliers.  

2. Threshold Dependence: The efficacy of the IQR method heavily relies 
on the choice of the threshold multiplier. 

3. Disregarding Data Distribution: The IQR method disregards the un-
derlying data distribution beyond quartile boundaries. Conse-
quently, in datasets with intricate distributions, this approach might 
inaccurately flag outliers.  

4. Information Loss: By focusing solely on the central 50% of the data, 
the IQR method risks overlooking valuable insights from extreme 
values. 

In this method, the IQR is calculated as the difference between the 
third quartile (Q3) and the first quartile (Q1) of the entire sample. The 
multiplier for determining the maximum and minimum values is set at 
1.5, yielding the following formulas:  

Maximum = Q3 + 1⋅5 * IQR                                                                   

Fig. 1. System Flow.  
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Minimum = Q1 - 1⋅5 * IQR                                                                    

This adjustment aims to mitigate the issue of Threshold Dependence. 
Additionally, our method samples data at a frequency of once per sec-
ond, which helps minimize the impact of disregarding data distribution. 
Fig. 3(b) depicts the processed signals using the IQR method. The results 
demonstrate that signals filtered through IQR exhibit reduced extreme 
values and are less susceptible to various environmental noises, thereby 
enhancing signal integrity. In addition, given that the EEG signal is a 
time series data, errors in the field within the deep learning network 
might adversely impact the construction of prediction models and sub-
sequent analysis results. Consequently, upon detecting outliers, we 
employ statistical techniques such as linear interpolation to substitute 
these outliers. This approach aims to mitigate the influence of outliers on 
the analysis. 

In essence, the interquartile range method provides a straightfor-
ward and resilient means of identifying outliers, especially in datasets 
featuring skewed distributions or outliers. Nevertheless, it is not exempt 
from limitations and warrants careful application, taking into account 
the unique attributes of the data and the analytical objectives. We are 
optimistic that mitigating the impact of certain noise-related issues is 
achievable. 

3.3. Frequency band splitting and combining 

As discussed earlier, brain wave bands may correspond to distinct 
features of mental state. Although the EEG signal is divided into eight 
sub-bands, it is not possible to correlate the influence of every in-
dividual’s EEG signal on emotion. So, it is assumed that the adjacent 
bands are still relevant. In this regard, as per the literature [21], the 
separated frequency bands are combined into a 1-band set, two adjacent 
bands are combined into a 2-bands set, …, 7 adjacent bands are com-
bined into a 7-bands set and all 8 bands are combined into a set of 
8-bands as shown in Fig. 2. For example, in a 2-bands set, there exists 
((δ, θ), (θ, low-α), (low-α, high-α), (high- α, low-β), (low-β, high-β), (high-β, 
low-γ), (low-γ, mid-γ)). 

4. N-Band LSTM-based classifiers for depression assessment 

This section is to present the proposed method for assessing 
depression. In Section 4.1 depicts the LSTM model, which is suitable for 
the time series data. Subsequently, we will demonstrate the procedure 
for constructing the N-bands LSTM classifiers. This classifier is the base 
of the multi-featured models. 

4.1. LSTM model for time series data 

LSTM is an appropriate and a suitable method for time series data 

classification or prediction tasks (Chang et al., 2020). Being a kind of 
RNN model, LSTM is widely applied in different fields, especially Deep 
Learning network architectures, to build the classification and predic-
tion models. In order to ensure the entirety for the article, the network 
model of LSTM and the function of each gate are briefed in this section. 

Fig. 4 shows the LSTM network and its internal gate. The LSTM cell 
has three gates, such as the forget gate, input gate, and the output gate. 
Among the three, the forget gate is the first gate, which is determined 
using the Eq. (1) to identify the information that needs to be discarded. 
Here, ht− 1 denotes the output at the previous time unit (t-1) and Xt 
corresponds to the input of the current time unit. 

ft = σ
(
Wf •

[
ht− 1, xt

]
+ bf

)
(1)  

S(t) =
1

1 + e− t (2)  

Where Wf and bf are two parameters in which Wf denotes the weight 
matrix and bf is the bias vector These two parameters are learned at the 
time of training. And σ is the S(t) that adapts the Sigmoid function in 
current work. 

The second gate is the input gate, which is used to determine the 
information that should be remembered for every cell state. There are 
three operations in this gate as shown in the Eqs. (3)–(5). Here, Ct is the 
output to the next cell. 

it = σ(Wi • [ht− 1, xt] + bi) (3)  

C̃t = tanh
(

WC •
[
ht− 1, xt

]
+ bC

)
(4)  

Ct = ft ∗ Ct− 1 + it ∗ C̃t (5) 

In these equations, Wi, Wc, bi, and bc correspond to the same value 
with forget gate and are learnt at the time of training. 

The third gate is the output gate. It is used to determine which in-
formation will be output in the cell state. In the gate, the ot and the ht 
functions are obtained using the Eqs. (6) and (7). 

ot = σ(Wo • [ht− 1, xt] + bo) (6)  

ht = ot ∗ tanh(Ct) (7)  

where Wo, and bo are also the same with forget gate and are learnt at the 
time of training. 

4.2. N-bands LSTM classifiers 

The LSTM network model is exploited to design the LSTM classifiers 
for each N-band set. As shown in Fig. 4, the classification model is 

Fig. 2. EEG band splitting and combining.  
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Fig. 3. The EEG signals before and after outlier processing.  
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trained with an LSTM for each N-band set in which N is obtained from 1 
to 8. After preprocessing, the data set is divided into 70% for training, 
20% for validation, and 10% for testing. The architecture of the 1-band 
LSTM classifier is shown in Fig. 5 whereas the 2-band LSTM classifier is 
shown in Fig. 6. The following section provides a simple description for 
the designed LSTM classifier. The input layer uses Dense with RELU 
activation function. The second layer of the LSTM uses tanh activation 
function, and the third layer is connected to the Dropout layer. The rate is 
set at 0.5 i.e., 50% of the data is randomly filtered. Then, 32, 16 and 8 
nodes of the dense layer are used for the RELU excitation function. 

The number of output nodes is the same as the number of classifi-
cations. Softmax function (normalized exponential function) is used to 
fix the probability value of the output range of the node, between 0 and 
1, as shown in Eq. (8). When the input is X, the predicted category of the 
probability of j, is P whereas wj represents the probability of category, j. 
The sum of the probabilities of all the categories is calculated using 
softmax whereas the result is finally achieved and portrayed using the 
output layer. 

P(X) =
ewj

∑K
k=1ewk

(8) 

Algorithm 1 shows the complete algorithm of N-bands LSTM classi-
fier. In this algorithm, the signals of N-bands are regarded as input data, 
and the LSTM model of all N-bands will be output. Here N ranges from 
1–8. When N = 1, one signal is input into the LSTM network to train the 
model. As depicted in Fig. 5, a total of eight 1-band LSTM models will be 
acquired at this time. When N = 2, two adjacent 2-bands signals will be 
input into the LSTM network to train the model. Similarly, as shown in 
Fig. 6, there are 7 LSTM models obtained. 

The LSTM network starts with 10 nodes dense layer (Line 2), followed 
by the addition of an LSTM layer with 32 nodes (line 3). Subsequently, a 
dropout layer is incorporated, and then followed by 4 dense layers with 
32, 16, 8, 2 nodes (Line 5–8), respectively. The practical implementation 
of this algorithm can be found in the Supplementary section. Apart from 
code explanations, it provides detailed descriptions of parameters. It’s 
worth noting that variations in LSTM network designs may influence 
parameter configurations and subsequently affect the outcomes. 

Algorithm 1. The procedure for N-bands LSTM Classifier.  

5. Two-tiers ensemble learning for integrating multiple EEG 
bands 

The ensemble learning approach, for integrating various EEG bands, 
is presented in this section. A two-tier ensemble learning technique is 
proposed to integrate all the classifiers of EEG bands. 

5.1. Architecture design 

A two-tier ensemble learning method is proposed to integrate all the 
EEG bands. The first-tier ensemble learning is to integrate all the LSTM 
classifiers of each N-band set. For example, Fig. 5 shows the 1-band 
classification model of first tier ensemble learning. Here, each LSTM 
classifier classifies and identifies the target initially, according to the 
input of adjacent two-band brain waves. Once the 2-band LSTM classi-
fiers have produced the results, these outcomes are sent to the first-tier 
ensemble learning module. After all the N-band ensemble modules of the 
first tier have undergone the ensemble learning approach, the results 
from each module are sent to the ensemble module of the second-tier 
ensemble module in order to consolidate the whole results. The 
following section provides an overview of the architecture and the 
method of two-tier ensemble learning method. 

5.1.1. First tier ensemble learning 
As shown in Fig. 6, a 2-band ensemble learning module is used to 

integrate seven 2-band LSTM classifiers. Similarly, other N-band 
ensemble learning modules are used in the first-tier ensemble learning to 
integrate eight N-band LSTM classifiers based on N adjacent bands. The 
ensemble learning module for N-band LSTM classifiers is called the N- 
band ensemble. Therefore, the first-tier ensemble learning module 
consists of eight N-band ensembles. 

As mentioned in Section 2.2, various ensemble learning methods are 
in practice such as (i) simple average method, (ii) ACC weight method, (iii) 
MAE weight method, and (iv) hard voting priority method. Multiple linear 
regression methods are exploited here to calculate the intercept and 
weight of all the models. The results are obtained after the models are 
substituted in multiple linear regression. 

It is evident that the 1-band ensemble integrates eight 1-band LSTM 
modules, the 2-band ensemble integrates seven 2-band LSTM modules, 
and the 8-band ensemble integrates one 8-band LSTM module. There-
fore, a total of 36 LSTM classifiers are integrated in the first-tier 
ensemble. 

5.1.2. Second tier ensemble learning 
After the first-tier ensemble, eight outputs are obtained from the N- 

band ensemble. Consequently, the second-tier ensemble should be 
designed to integrate all the outputs. The second-tier ensemble learning 

Fig. 4. The internal gates of LSTM.  

Fig. 5. The 1-band LSTM classifiers.  
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module adopts five methods, discussed earlier, to integrate multiple N- 
band ensembles. Therefore, this module is designated as the multi-bands 
ensemble and is shown in Fig. 7. 

5.2. Multiple linear regression method 

In current research work, the Multiple Linear Regression (MLR) 
method is applied for ensemble learning. Assume that a set of n data is 
considered with an independent variable and a dependent variable. The 
formulae for multiple linear regression are denoted in Eqs. (9), (10) and 
(11) which are organized as Eq. (12). For example, there are seven 
classifiers, and each classifier predicts the values, such as [x(1)

1 ,x(1)
2 ,x(1)

3 ,

x(1)
4 ,x(1)

5 ,x(1)
6 ,x(1)

7 ]. The actual value is [y1], according to the formula y1 =

β0 + β1x(1)
1 + β2x(1)

2 + β3x(1)
3 + β4x(1)

4 + β5x(1)
5 + β6x(1)

6 + β7x(1)
7 . Then 

calculate [β0,β1,β2,β3,β4,β5,β6,β7]according to Y, [β1,β2,β3,β4,β5,β6,β7]. 
Here, β0 represents the intercept of multiple regression while [β1,β2,β3,

β4, β5, β6,β7]is [x
(1)
1 , x(1)

2 , x(1)
3 , x(1)

4 , x(1)
5 , x(1)

6 , x(1)
7 ] of the slope denoting the 

weight. After calculating the above values, the predicted values calcu-
lated by seven classifiers are fed into the calculated Y. 

(xi, yi), xi ∈ Rd+1,∀i = 1,…, n, xi =
[
1x(1)i ⋮x(d)i

]
(9)  

Yn∗1 = β(d+1)∗1Xn∗(d+1) (10)  

Y = [y1 y2⋮yn ]n∗1, β = [β0 β1⋮βd ](d+1)∗1,

X =
[
xT

1 xT
2 ⋮xT

n

]
=

[
1x(1)1 ⋯x(d)1 1x(1)2 ⋯x(d)2 ⋮⋮⋱⋮1x(1)n ⋯x(d)n

]

n∗(d+1)
(11)  

yi = βT xi = [β0 β1⋮βd ]
T
[
1x(i)1 ⋮x(i)d

]
= β0 + β1x(1)1 +⋯+ βdx(i)d (12) 

Algorithm 2 shows the steps involved in MLR to calculate the target 
using the first- and the second-tier ensemble modules. In this algorithm, 
all first-tier output is treated as the input that are used to calculate all βd 

and the weights of x(i)
d . Finally, the algorithm will return all βd. The 

practical implementation of this algorithm also can be found in the 
Supplementary section. Apart from code explanations, it provides 
detailed descriptions of parameters. 

In order to clearly understand the proposed architecture of the work, 
we merge two tiers of ensemble learning and show the overall archi-
tecture, as shown in Fig. 8. Initially, we measure and preprocess the 8 
brainwave sub-bands using the EEG sensor. These sub-bands can be 
combined into N-sub-bands for further training using the LSTM model. 
After training individual band models (totally 36 LSTM models), we can 
merge N-bands LSTM models using the MLR method, namely 1st-tier 
ensemble. Lastly, we merge all 1st-tier MLR ensembles into 2nd-tier 
MLR ensembles. 

Algorithm 2. The procedure for multiple linear regression method. 

Fig. 6. 2-Band LSTM classification model with first tier ensemble learning.  

Fig. 7. The Second-Tier Ensemble Architecture.  
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5.3. Performance metrics 

The current section discusses two methods, such as confusion matrix 
and ROC (AUC) which are used in the performance evaluation of the 
proposed work. 

5.3.1. Confusion matrix 
Confusion matrix is a common method used in the evaluation of a 

model’s quality. In the confusion matrix, the predicted class is catego-
rized as positive and the actual class is categorized as negative. In the 
current research work, positive represents depressed individuals and 
negative represents normal individuals. After classification, the 
following four situations are considered.  

• True Positive (TP): Predicts positive, while the subject is positive.  
• False Positive (FP): Predicts positive, while the subject is negative  
• False Negative (FN): Predicts negative, while the subject is positive.  

• True Negative (TN): Predicts negative, while the subject is negative. 

To evaluate the validity of the proposed method, various measure-
ments are used in data science analytical applications, such as Precision, 
Recall, Sensitivity, Specificity, Accuracy and F1 score. The definitions are 
as follows: 

(i) Positive Predictive Value (also called Precision) 

PPV(Precision) =
∑

TP
∑

(TP + FP)
(13) 

(ii) Negative Predictive Value (NPV) 

NPV =

∑
TN

∑
(FN + TN)

(14) 

(iii) Sensitivity (also called Recall) 

Fig. 8. Overall Architecture.  
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Recall =
∑

TP
∑

(TP + TN)
(15) 

(iv) Specificity 

Specificity =

∑
TN

∑
FP + TN

(16) 

(v) Accuracy 

Accuracy =

∑
(TP + TN)

∑
(TP + FP + FN + TN)

(17) 

(vi) F1 Score: This value is calculated combining Precision and Recall. 

F1score =
2 × Precision × Recall

Precision + Recall
(18)  

5.3.2. Receiver Operator Characteristic (ROC) curve and Area Under the 
Curve (AUC) 

ROC curve and AUC [51] are comprehensive indicators in perfor-
mance evaluation procedure. ROC is drawn as a curve for the compar-
ison of true positive ratios (TPR) among all the samples. The true 
positive and the ratio of false positives (FPR), among all the samples, are 
actually negative. FPR can be determined based on the inclusion of both 
true value and the predicted value of all the positive and negative 
samples. These values are calculated as a coordinate point (FPR, TPR) 
and are mapped on the graph. Theoretically, the AUC of a model follows 
four cases: (i) AUC = 1, a perfect classifier or a perfect prediction result. 
(ii) 0.5 < AUC < 1, the outcome is better than random guessing and has 
a good prediction value. (iii) AUC = 0.5 denotes that the model has no 
predictive value and mimics random guessing. (iv) and AUC < 0.5 
which is worse than random guessing. 

6. Experiments, results, and performance evaluation 

This study provides a comprehensive description of the experimental 
environment technology that was employed. The brain wave sensor 
(Mindwave Mobile 2 headset) uses a brain-computer interface (Brain- 
computer Interface, NeuroSky). 

6.1. Data collection 

In current study, 8 sub-bands of the EEG brainwaves were adopted to 
train the LSTM models. However, these models are irrelevant and there 
are no useful EEG signals available. EEG signals were collected from 
both individuals diagnose with depressed and individuals without any 
mental health conditions. For this research work, all the EEG signals 
were gathered under IRBs permit from Taipei Medical University Hos-
pital and En Chu Kong Hospital. Table 2 contains the relevant details of 
the dataset. The authors gathered 142 EEG recordings from depressed 
people and 72 EEG recordings from healthy participants, which repre-
sent different frequency bands of the EEG signal. For each participant, 
600 s of eight sub-band EEG signals were collected. 

We have implemented an APP and a web to collect the data from the 
NeuroSky device, as shown in Fig. 9. Fig. 9(a) shows the APP interface 
and it receives the 8 sub-band of EEG data from the NeuroSky device, 

such as hAlpha, lAlpha, hBeta, lBeta, mGamma, lGamma, Delta and Theta. 
Fig. 9(b) shows the login interface1 of the web site. After entering the 
system, user can choose a de-identified user name, as shown in the (1) 
bottom of Fig. 9(c), and a specified daytime record, as shown in the (2) 
bottom of Fig. 9(c). And then by dragging down the web page, users will 
be able to see the original raw data of specified de-identified user and 
daytime, as shown in Fig. 9(d). In Fig. 9(d), block (1) represents the 
results identified by the model, while block (2) represents the results of 
clinical diagnosis by doctors. We are sorry that other information may 
not be provided due to research ethics regulations. 

This study was conducted by the IRBs of two hospitals, and patients 
were asked about their willingness to participate in the admissions 
during outpatient visits. Each admission lasted about 10 min. Since the 
patients were outpatients, every participating patient could move freely. 
Therefore, the patients involved in this study exhibited either moderate 
or mild depression. The procedure of the data collection as described 
follows. Depressed subjects for collecting data were assigned by psy-
chiatrists. All subjects are still in treatment when the psychiatrist obtains 
the patient’s consent to collect data during the patient’s return visit. The 
severity of symptoms may vary, but they indeed all be in treatment. In 
addition, the data collection procedure was discussed with the physi-
cians. These steps are described as follows: First of all, the patient should 
be exposed to soft music for approximately 5 min to induce emotional 
relaxation prior to data collection to ensure the patient’s state is in a 
resting state. Second, with the assistance of trained personnel, the pa-
tient wears a commercial EEG sensor (NeuroSky, Mindwave Mobile 2 
headset) and then connects with our implemented APP. Upon reaching 
the 10-minute mark, data collection is initiated with the interval being 
discussed with a psychiatrist. Each subject can collect 600 EEG signal 
records. Table 3 shows a sample of the investigated dataset. 

In addition, in a clinical setting, in order to reduce the pressure 
during subject data collection, and following the consent of the psy-
chiatrist, a one-channel EEG sensor the NeuroSky, Mindwave Mobile 2 
headset EEG sensor was employed, positioned at FP1 position. The 
rationale behind this is that the sensor remains visible to the patient 
during data collection, thereby reducing the likelihood of complications. 

6.2. Experimental results and discussion 

The current study authors conducted some experiments to evaluate 
the proposed method (Multiple Linear Regression method) and compared 
the output from the proposed method with that of four other ensemble 
learning approaches such as simple average method, Accuracy (ACC) 
weight method, MAE weight method, and (HV) hard voting priority method. 
At first, a comparison was conducted among different ensemble 
methods, in terms of accuracy of N-band LSTM and first-tier ensemble 
results. Then, the values of different indicators were compared among 
different ensemble learning approaches. Finally, ROC and AUC values 
were exploited to evaluate the ensemble learning method. The results 
achieved from these comparisons confirmed the superiority of the pro-
posed method than other ensemble methods. 

6.2.1. Accuracy comparison of various first tier ensemble 
This subsection firstly employs a Simple Average (SA) method, in the 

first tier, to ensemble all the N (where N is 1–8) band LSTM classifiers. In 
1 band, each part is a band whereas it contains 8 parts such as delta, 
theta, …, mid-gamma. In 2 bands, each part is a combination of two 
bands (such as (delta, theta), (theta, low-alpha), …, (low-gamma, mid- 
gamma) with a total of 7 parts. 

In the case of 8 bands, there is no need for an ensemble module, since 
all the bands are combined into a wave and fed as input to the LSTM 
classifier. Fig. 10(a) reveals that the SA method achieved the least 
output for all N band ensembles. In this result, the accuracy of 3-band 

Table 2 
Subjects Data.  

Parameters Depressed subjects Control group 

Average age 38.96 ± 14.02 24.66 ± 0.88 
Age range 19–70 23–28 
Average age (male) 40.73 ± 14.38 25 ± 0.76 
Average age (female) 37.31 ± 13.26 24 ± 0.5 
Gender (male/female) (18/31) (14/4) 
Data collection duration 10 min 10 min 
No. of EEG records 142 72  

1 http://120.126.151.151:5002/ 
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classifiers was better than others. So, the result of the ensemble was also 
better. However, with a value of only 0.76, it remains insufficient. 

The purpose of the second ensemble approach is to exploit the ACC 
weight approach and the results are shown in Fig. 10(b). The figure 
infers that the result of the ACC weight method was slightly better than 
the SA method. This is attributed to the fact that SA uses only a simple 
average of weights, whereas ACC weight method achieved a high ac-
curacy and provided a high weight. Though both are weighting 
methods, ACC weight was better. Further, the results also infer that the 
improvement of ensembles, in 1-band and 2-band, was better than the 
ensemble of 6-band and 7-band. Since the number of classifier outputs 
was high, more ACC weights got added to the ensemble module, which 
produced better results. 

In this stage, the MAE weighting approach applies to the first-tier 
ensemble and the results are shown in Fig. 10(c). In comparison with 

the first two methods, the MAE weighting method performed better. 
Especially with the regard to the 6-band, the accuracy of the ensemble 
was higher than the rest of the parts. The maximum result, i.e., 0.77 
among all the ensembles, was achieved in 3-band, whereas the rest of the 
results are still not good enough. The next step is to adopt the Hard 
Voting (HV) priority technique to the first-tier ensemble learning and 
the results are shown in Fig. 10(d). From the results, it can be inferred 
that the performance obtained in this approach was worse than the other 
three techniques. In this case, the best ensemble result was still in 3-band 
which stood at 0.74. 

Finally, the authors evaluated the performance of the proposed 
approach, i.e., Multiple Learning Regression (MLR) approach and the 
results are shown in Fig. 10(e). The results infer that multiple linear 
regression can enhance the accuracy of most LSTM classification models 
when first-tier ensemble learning is employed. Obviously, the 

Fig. 9. Data collection interface of APP and Web.  
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Fig. 9. (continued). 

Table 3 
A sample of the investigated dataset.  
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Fig. 10. First tier Accuracy Comparison of various ensemble methodsIn addition to using the above methods, traditional machine learning also has other ensemble 
learning methods, such as Adaboost and Random Forest (RF), which are used to combine some weak learners to form a strong learner. Here we also conducted 
experiments to evaluate the performance and make a comparison. In the experiments, first we exploit LSTM as the baseline models for the combination of various 
numbers of bands, and use the Adaboost to combine the LSTM models. In addition, we also utilize RF (ensemble multiple Decision Trees) to conduct the experiment 
and make a comparison. As shown in Fig. 12 the performance of Adaboost or RF is also superior to other methods in the combination of 1 to 8 bands. We also utilize 
the second-tier ensemble to integrate the results of the first-tier and compare the accuracy, as shown in Fig. 11. The results reveal that the results of Adaboost and RF 
are almost as close as MLR, and the accuracy of RF is 0.873, while Adaboost is 0.866. 
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performance outcomes of 1-band (about 0.78), 2-band (about 0.82) and 
3-band (about 0.84) were significantly better than the input LSTM 
classification model. These outcomes demonstrate the superiority of the 
proposed multiple linear regression model. This may be attributed to the 
fact that MLR autonomously acquired the weight of each variable (part) 
based on the variable outcomes. Then, its offset is adjusted, as shown in 
Eq. (12). 

A summary of the performance of five ensemble methods, in all N- 
bands, is shown in Fig. 11. From this result, it can be inferred that the 
results of MLR are indeed better than the other four methods in the first- 
tier ensemble method, except with 6-band. From 1-band to 5-band, the 
MLR exhibited significant improvement in terms of accuracy. However, 
no better improvement was found in 6-band and 7-band. On the other 
hand, only the MLR method achieved an accuracy of more than 0.8 in 2- 
band and 3-band. After MLR, MAE weighting was found to be the next 
best method. 

From the results, two major findings are discussed herewith. First, 
with the exception of the MLR ensemble modules using 2-band and 3- 

band modules, the highest level of accuracy was attained in part 1 and 
part 2, regardless of whether first-tier ensemble learning occurred or 
not. Most of the modules achieved an accuracy in the range of 0.7 and 
0.8. However, 2-band and 3-band of MLR exceeded 0.8. Second, the 
implementation of ensemble learning of MLR resulted in a substantial 
increase in accuracy, particularly in the 1-band, 2-band, and 3-band 
segments. 

Fig. 5 shows that the ensemble module of the first-tier of each band 
generated an ensemble result. Then, another ensemble module was 
exploited to integrate all the eight results together. These five methods 
can also be used in a second-tier ensemble learning method to combine 
the results of the eight first-tier ensemble modules. The above five 
methods were exploited to design the second-tier ensemble module and 
were validated through some experiments to evaluate the accuracy of 
these methods. When the output of the N-band ensemble flowed through 
the multi-band ensemble, the final forecast of the entire model was 
determined for which the results are shown in Fig. 12. From this result, it 
can be inferred that after using the above five methods like the second- 
tier ensemble module, the final result of the two-tier ensemble learning 
module, in terms of accuracy, is in the order of MLR > MAE > ACC > SA 
> HV. 

6.2.2. Various indicators comparison of second tier ensemble learning 
Multiple types of confusion matrix-related indicators are used in this 

study as an evaluation index. These indicators only present the final 
results of the second-tier ensemble, instead of intermediate results 
achieved from the first-tier ensemble. First, the confusion matrix was 
obtained after the experiments. The results obtained from the SA 
approach (TP=126, FP=28, FN=16, TN=44) were slightly lesser 
compared to that of the ACC weight method (TP=125, FP=25, FN=17, 
TN=47). It is also slightly lesser than that of the MAE weight method 
(TP=128; FP=21, FN=14, TN=51). On the contrary, the Hard Voting 
(HV) priority approach achieved the worst result (TP=126, FP=35, 

Fig. 11. Five methods of first-tier N-band ensemble learning.  

Fig. 12. Comparison of learning accuracy of the second-tier multi- 
bands ensemble. 
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FN=16, TN=37). Finally, the Multiple Linear Regression (MLR) method 
(TP=129, FP=9, FN=13, TN=63) was found to be the best model since it 
significantly reduced the FP in comparison with other techniques. 

Based on the confusion matrix, some well-known indicators can be 
calculated for which the results are shown in Table 4. Multiple Linear 
Regression approaches achieved the highest accuracy (0.897), followed 
by other methods such as MAE-weighted method (0.836), ACC-weighted 
method (0.803) and SA method (0.794). The HV priority method ach-
ieved an outcome of 0.761. Other indicators also confirmed that the 
MLR method is superior to MAE, ACC, SA, and HV, in terms of F1-score 
being 0.921, precision being 0.935, recall being 0.908 and the specificity 
being 0.875. From these results, it can be inferred that among various 
indicators of effectiveness, MLR obtained the maximum performance. In 
addition, we evaluated and compared MLR, Adaboost, and RF. Based on 
the findings presented in Table 4, MLR demonstrates favorable levels of 
Accuracy, Precision, and F1-Score. In contrast, the NPV and Sensitively 
of LSTM + Adaboost are relatively high, while the Specificity of RF is 
relatively high. 

6.2.3. Summary of the evaluation 
Next, we further analyze the relationship between this metrics and 

actual results shown in Table 4. According to the definition of Precision 
(Positive Predictive Value) in Eq. (13), the higher the Precision, the 
higher the true positive, which means the higher the accuracy of the 
prediction of depressed subjects. In this study, our precision reaches 
0.935, representing a remarkably high accuracy in assessing depressed 
subjects. On the contrary, based on the definition of NPV (Negative 
Predictive Value) in Eq. (14), it can be found that the NPV is relatively 
low, as shown in Table 4. This implies a decrease in the accuracy of true 
negatives, indicating that our method is less accurate when assessing the 
health of subjects. From these two indicators, it means that the proposed 
method is suitable to evaluate depressed subjects. 

In addition, according to the Accuracy definition of Eq. (17), this 
represents the overall assessment accuracy of whether it is depressed 
subjects or healthy subjects. The higher the Accuracy, the more accurate 
the depression assessment is. Among all methods in Table 4, our accu-
racy is nearly 0.9, which means that our evaluation accuracy is the 
highest among the methods, and is also higher than the two baseline 
methods of LSTM+Adaboost and Random Forest. 

The definition of Sensitivity (Recall) in Eq. (15) is the number of 
correctly identified positive results divided by the number of all samples 
that should be identified as positive. Our result in recall is higher than 
0.9. It means that the method can correctly identify the depressed sub-
jects. Additionally, it is important to analyze the F1-Score. As defined by 
Eq. (18), F1-Score is the correct prediction percentage in classification 
applications. In this study, our MLR method reached the highest correct 
classification percentage of 0.921, which is higher than all methods. It 
revealed that our method can obtain the highest in the categories of 
depressed subjects and healthy subjects. It is better than other ensemble 
methods and two baseline methodologies (LSTM+Adaboost and 
Random Forest). It reveals that the proposed method can classify 
depressed subjects and healthy subjects more accurately. 

6.2.4. ROC and AUC comparison 
AUC (Area under the ROC (Receiver Operating characteristic Curve) 

Curve) is another useful and effective performance evaluation indicator 
[51]. In the current study, the authors evaluated the AUC values for the 
last results of five ensemble learning methods after performing two-tier 
ensemble learning. The results are shown in Fig. 13. The results show the 
AUC values of different ensemble learning methods are in the order of 
MLR (0.8917) > MAE (0.8049) > ACC (0.7665) > SA (0.7492) > HV 
(0.7006). The indicator also shows that MLR ensemble learning ach-
ieved the highest value, whereas the worst output was achieved by HV. 
This result is consistent with other previous performance indicators. The 
evaluation outcomes achieved above are summarized and presented in 
simple terms. Regardless of the results and irrespective of the processing 
techniques such as no ensemble learning, one-tier (only first-tier), or 
multi-tiers (two-tier), the proposed MLR ensemble learning method 
achieved superior outcomes in terms of all the indicators. Further, the 
results are consistent and can be trusted. 

6.3. Discussion 

6.3.1. The advantage and disadvantage using one-channel EEG 
In this section, we will explain the advantages and disadvantages of 

using one-channel EEG to assess depression. The advantages are: 
1). Easy to use. The utilization of multiple channel EEG sensors can 

be inconvenient due to the complexities involved in wearing and oper-
ating the devices. 

2). One-channel equipment is relatively inexpensive, the user’s price 
burden will be lighter. 

3). In the collection of EEG signals, users can easily operate and 
collect signals at home without the help of professionals. After the model 
is trained, the signals can be retrieved remotely and then inferred. 

4). Reduce the patient’s psychological pressure when collecting data 
and reduce the user’s fear of operations. 

5). The sensor nodes of EEG must be aligned with the position to be 
sensed to reduce variability during data collection. One-channel sensors 
are relatively simple in sensor settings and will not cause variability 
during data collection. 

In addition, the disadvantages of using a single channel are as 
follows: 

1). The data collected is less and may be less accurate than multi- 
channel research. 

2). A more complex recognition model is required to achieve higher 
accuracy. 

The main purpose of this study is to use advanced models that can 
increase the convenience of use, reduce prices, allow future users to 
operate by themselves, and reduce operational stress to achieve 
acceptable identification accuracy. This paper mainly proposes multi- 
featured EEG bands ensemble deep learning models. From the results 
shown in the above section, we can see that the method we proposed can 
increase the accuracy of assessment. It is believed that this method can 
also improve the accuracy of the overall system if used on multi- 
channels EEG sensors. 

Table 4 
Multi-tiers five ensemble learning methods evaluation indicators.  

Various evaluation indicators 

Index Positive Predictive Value (Precision) Negative Predictive Value Sensitivity (Recall) Specificity Accuracy F1 Score 

SA[32]  0.818  0.733  0.887  0.611  0.794  0.851 
ACC (modified from[55])  0.833  0.734  0.88  0.653  0.803  0.856 
MAE [35]  0.859  0.785  0.901  0.708  0.837  0.88 
HV[34]  0.783  0.698  0.887  0.514  0.761  0.832 
LSTM þ Adaboost  0.863  0.875  0.95  0.7  0.866  0.904 
Random Forest  0.886  0.86  0.866  0.881  0.873  0.876 
MLR  0.935  0.829  0.908  0.875  0.897  0.921 

Note: Simple Average (SA)、Accuracy Weight (ACC)、MAE Weight (MAE)、Hard Voting priority (HV)、Multiple Linear Regression (MLR) 
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6.3.2. Extension to N-channels input 
In this current study, we solely utilize a single-channel EEG device to 

collect brainwave signals for training the model. Despite its advantages 
outlined in the previous section, this approach also imposes limitations, 
particularly in its restriction to single-channel data. Should future 

applications necessitate multi-channel EEG utilization, adjustments to 
the system architecture may be required. 

This section elaborates on extending the current architecture to 
accommodate multi-channel data. Given that our architecture employs 
an LSTM model to predict each sub-band, we draw inspiration from a 

Fig. 13. Ensemble learning method ROC curve and AUC.  
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study by [22], where an integrated LSTM model successfully predicted 
air quality. In this model, a merge layer combined three LSTM models 
into one, yielding favorable results. We propose extending this merge 
layer to integrate N LSTM models. Additionally, leveraging the fusion 
module proposed in [57], each sub-band signal can be inputted into the 
fusion module, where the inputs from N signals are fused into a single 
output. This output is then fed into the LSTM model within our archi-
tecture. Regardless of the above two methods, our system architecture 
can be easily applied to multi-channel EEG devices. 

6.3.3. Comparison with other works 
The comparison between existing work relevant with deep learning 

networks for depression assessment is shown in Table 5. It is widely 
recognized that the size of the training dataset has a great influence on 
the Deep Neural Network model. The larger the size of the training 
dataset, the better the prediction accuracy has. In addition, we use the 
basic network architecture of LSTM to recognize the pattern and to do 
the assessment. This is due to our belief that each signal is easily 
recognized as a 600-second time series data. The LSTM model is proven 
to outperform other kinds of DNN in the time series data. 

Although the deep learning models and data sets used differ from 
existing studies which use multi-channels EEG to obtain more data, the 
work only uses one-channel EEG to collect and assess. With limited data 
sets, we retrieve the sub-bands of various features of EEG signals, 
combine the adjacent signals of features, and then integrate the results 
through ensemble learning. In the case of limited numbers of data using 
one-channel EEG, it can achieve performance similar to that of multi- 
channels. We believe that if we adopt multi-channels to do the work, 
it will have better results than the current performance. However, as 
listed in Section 6.2.1, one-channel EEG has some advantages. With 
more data sets in the future, this method will have good results. 

To elaborate further on the aforementioned findings: 
In reference [44], by employing 14 features and integrating SASI 

(spectral asymmetry index) and DFA (detrended fluctuation analysis) 
methods, an accuracy of 91.2% is achieved. However, when used indi-
vidually, both methods yield accuracies below 80%. 

In reference [47], three different methods were utilized, namely the 
CNN models ResNet-50, MobileNet, and Inception-v3, along with data 
from four EEG main frequency bands collected from 19 electrodes. It 
was observed that the delta frequency band outperforms others, 
achieving a predictive accuracy of 90.22% and an AUC value of 0.9 for 
the ResNet-50 architecture. 

In reference [50], employing an InceptionTime-based CNN model 
with 19-channel raw EEG signals, a channel-selection strategy achieves 
an accuracy of 91.67%. However, when reducing the number of chan-
nels, the accuracy decreases to 87.5%. 

In reference [54], a convolutional neural network named Hybrid-
EEGNet was employed. Six surface electrodes (Fp1, Fp2, F3, F4, P3, and 

P4) were placed on the scalp, and two parallel lines were used to learn 
synchronous and regional EEG features. The results demonstrate that 
HybridEEGNet achieves an accuracy of 79.08% in three-category 
classification. 

Based on the findings from Table 5 and the preceding analysis, we 
can summarize as follows: 

Classification technology: Most studies, except for [44], which 
employs a combination of SASI and DFA, utilize DNN-based models due 
to their proven success. DNNs eliminate the need for signal feature 
extraction, although they require a substantial amount of data for model 
training. This study also employs DNN technology. 

Network model: Among the aforementioned studies employing 
DNNs, most utilize the CNN network model. They convert EEG fre-
quency bands into images and then employ CNNs to recognize the 
spectrogram. Unlike [47], which examines the performance of four 
different frequencies, other studies do not analyze the impact of 
depression across various frequencies. In contrast, this study directly 
inputs raw data from different frequency bands with distinct mood 
characteristics into LSTM for model training. This approach bypasses the 
need to convert raw data into a spectrogram for image recognition. 

Number of electrodes: With the exception of [54], most systems use 
19 electrodes to capture brainwave signals. The results suggest that 
using more electrodes leads to improved accuracy. Since this study 
employs only one electrode for signal collection and model training, its 
performance is comparable to these methods. However, we believe that 
utilizing a more sophisticated EEG device with a greater number of 
electrodes would significantly enhance accuracy. 

7. Conclusion and future work 

In the current study, a multi-tier ensemble learning model was pro-
posed to integrate various N-band LSTM classification models. These 
models are used in the classification of combined data of N-band EEG 
signals. The main purpose of the study is to evaluate how accurate the 
depression assessment is. In this work, at first, the signal collected by the 
EEG sensor is split into eight sub-bands. Then, the adjacent N sub-bands 
are combined into a set of N-band EEG signals. The LSTM network is 
exploited to train the model so as to evaluate the depression. Then, a 
two-tier ensemble learning module integrates all the LSTM models. 
When implementing the ensemble module, the Multiple Linear Regres-
sion method is utilized. 

The research adopts the simplest EEG sensor, commercialized one 
channel EEG sensor, and the position of the sensor is placed at FP1 
position to collect data with 57 subjects (49 depressed and 18 healthy 
subjects). The results are as follows, accuracy being 0.897, F1-score 
being 0.921, precision being 0.935, negative predictive value being 
0.829, recall being 0.908, specificity being 0.875, and AUC being 
0.8917, respectively. The performance of the proposed method was 
compared with four different ensemble learning methods, such as Sim-
ple Average (SA) method, Accuracy (ACC) weight method, MAE weight 
and Hard Voting (HV) priority method. These results revealed that 
irrespective of whether first tier or complete two-tier ensemble modules, 
the classification accuracy, achieved by MLR in case of depression 
assessment, was excellent compared to other four methods. In addition, 
we also evaluated and compared MLR, Adaboost, and RF. From Table 4, 
we can find that the Accuracy, Precision, and F1-Score of MLR are 
relatively high, while the NPV and Sensitively of LSTM + Adaboost are 
relatively high, and the Specificity of RF is relatively high. Therefore, it 
can be inferred that the proposed method is effective and can improve 
the accuracy of depression assessment. 

Although the current study results showed good accuracy, the model 
did not classify the patients of different ages and different types of 
mental disorders. This is an important phenomenon to accurately clas-
sify and enhance the efficiency of the assessment process. In subsequent 
studies, it is suggested to incorporate a broader sample population, 
targeting different ages and mental disorders. Thus, accurate 

Table 5 
Summary and comparison of existing work relevant with deep learning network 
for depression assessment.   

No. of Subjects No. of 
Electrodes. 

Baseline Model Accuracy 

Bachmann 
et al.,[44] 

34(17 normal, 
17 depressed 
subject) 

19(18 +1) spectral asymmetry 
index, and 
nonlinear, 
detrended 
fluctuation analysis  

91.2% 

Rafiei et al., 
[50] 

64(30 normal, 
34 depressed) 

19 Convolution-based 
Inception  

91.67% 

Wan et al., 
[54] 

35 (12 normal, 
23 depressed) 

6 CNN  79.08% 

Uyulan 
et al.,[47] 

92(46 normal, 
46 depressed) 

19 CNN * 3  90.22% 

Proposed 
work 

67(18 normal, 
49 depressed) 

1 LSTM    
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classification can be achieved which in turn helps the psychiatrists to 
make knowledge-based decisions for precise treatment. Besides, if 
similar features are extracted from each band and then exploits the 
proposed multi-tier ensemble learning method, potentially better results 
can be obtained. In the future, we aim to extract features from each 
band. Alternatively, we could utilize the attention mechanism to eval-
uate specific features. In addition, in order to make this system archi-
tecture suitable for multi-channel EEG devices, we also consider using 
integrated method or fusion module to integrate multi-channel signals 
into our system. 
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