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A quantitative approach 
to the spread of variance 
in translational research using 
Monte Carlo simulation
Feyza Cukurova1, Britta P. Gustavson1, Andres G. Griborio‑Guzman1 & Leonard A. Levin1,2,3*

The translation of promising preclinical research into successful trials often fails. One contributing 
factor is the “Princess and the Pea” problem, which refers to how an initially significant effect size 
dissipates as research transitions to more complex systems. This work aimed to quantify the effects of 
spreading variability on sample size requirements. Sample size estimates were performed by Monte 
Carlo simulation. To simulate the process of progressing from preclinical to clinical studies, nested 
sigmoidal dose–response transformations with modifiable input parameter variability were used. The 
results demonstrated that adding variabilty to the dose–response parameters substantially increases 
sample size requirements compared to standared calculations. Increasing the number of consecutive 
studies further increases the sample size. These results quantitatively demonstrate how the spread of 
variability in translational research, which is not typically accounted for, can result in drastic increases 
in the sample size required to maintain a desired study power.

The translation of preclinical studies of a novel therapeutic into successful phase 2 and 3 trials is a process that 
frequently fails, despite high-quality basic research and well-conducted clinical studies. The literature is replete 
with examples of such translational failures, including attempts to bring drugs for septic shock to the market, the 
development of neuroprotective therapies for stroke and glaucoma, and vaccines for human immunodeficiency 
virus (HIV).

We previously outlined three structural reasons to explain this Lost in Translation  phenomenon1. The first, 
the Butterfly Effect, refers to how minute differences between preclinical models can result in significantly dif-
ferent results. For instance, two different methods of increasing intraocular pressure in rat models of glaucoma 
can result in significant differences in the ability of the same neuroprotective agent to protect the optic  nerve2,3. 
If minor “input” differences between relatively homogenous animal models produce such vast “output” effects, 
it is unsurprising that translating preclinical animal work into human studies frequently fails. Using ensembles 
of animal models was proposed as a strategy to combat the chaos inherent in biological systems and thereby 
increase the likelihood of a successful bridge between preclinical and clinical  studies4.

The second factor contributing to failed translation is the concept of the Two Cultures. This concept highlights 
the differences in how experiments are designed, analyzed, and executed in the setting of preclinical research, 
compared to that of clinical trials. One solution for the Two Cultures problem is to establish harmonization and 
communication of the experimental process among preclinical and clinical  researchers4.

The third factor, and the central focus of the current study, is the Princess and the Pea  problem1. In the epony-
mous Hans Christian Andersen tale, a weatherworn princess proves her nobility by having trouble sleeping due 
to of a pea at the bottom of a stack of mattresses. In the real world of scientific research, a pea-sized biological 
effect is effectively null after a series of sequential experiments; this is in large part due to variability. The Princess 
and the Pea problem specifically refers to the accumulation of variability as research is carried out along the 
developmental pathway comprising the molecular, receptor, intracellular messaging, tissue, animal, and eventu-
ally clinical trial levels. As variability accumulates, the effect size of the intervention gradually becomes lost in 
the noise, akin to how the bump from a pea (or even a rock) becomes lost in the padding of a pile of mattresses. 
The critical issue underlying the Princess and the Pea problem is that it is so intrinsic to the translational research 
process, particularly that of drug discovery, that quantifying its effect and proposing a solution has been elusive.
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There are several reasons why variability increases as research transitions from molecular to animal to human 
studies. For example, a novel therapeutic agent can be first shown to bind its receptor under highly controlled 
chemical reaction conditions. Variability is here at its lowest. The move to cell culture, where conditions remain 
tightly controlled, introduces more variability as a reflection of the many ongoing metabolic reactions occurring 
within a living cell. Animal studies carry even higher levels of variability. Despite the standard of comparing 
inbred animals of the same sex and age, there are many factors that add variability to animal studies. Genetic 
variability has been shown to persist even in inbred  animals5, experimental animals demonstrate epigenetic 
 differences6,7, and the impact of husbandry, housing, interactions with experimenters, pheromones, and the 
animal’s microbiome all contribute to the variability of animal  models8,9.

As the drug development process moves to humans, researchers encounter even more variability. Human 
subjects are rarely genetically identical, and epigenetic differences between humans are effectively impossible to 
avoid. Moreover, clinical trial participants vary in the time they take to become symptomatic for a given con-
dition, when they seek treatment, their compliance with the treatment, the degree of placebo effect, and their 
previous medical  history1.

The vast majority of translational studies rely on determining if the mean difference between groups, divided 
by some measure of variability, produces a value that is statistically significant. The observed spread of variance 
as more complex chemical and biological systems are studied causes this ratio to decrease, essentially reducing 
the effect relative to the variability. Even if the effect size stays the same, an increased variance makes it increas-
ingly challenging to detect differences between experimental groups. If one adds distributions that have specific 
variances, the variance of the sum will increase. The variance of the sum or difference of independent random 
variables is equal to the sum of its variances, i.e., variation will increase with addition or subtraction of these 
distributions. In other words, the effects of progressive experiments, from simple reactions to more complex 
biological systems, each with its own variability, will increase the overall variability of a study. This is at the heart 
of the Princess and the Pea problem.

To quantify the effects of the Princess and the Pea problem in the biomedical arena we performed a series 
of Monte Carlo simulations. Sigmoidal dose–response curves were selected as example transfer functions, each 
adding variability based on their parameters, and used to calculate study sample size requirements. This approach 
was used to quantify the impact of introducing different amounts of variability on a single experiment and series 
of experiments, making possible the ability to use the effect size in an animal model to an estimated size for a 
clinical trial. In some cases, a realistic degree of variability in a series of simulated experiments could result in 
a situation where a clinical trial is impossible because of an impractically large study size needed to detect a 
significant difference between groups.

Results
The following results quantify the impact of simulating consecutive experiments (Fig. 1) and/or adding variability 
to the parameters of each experiment on sample size requirements and, correspondingly, study feasibility. Each 
Level, described below, represents a study along the pathway from pre-clinical work to late-phase clinical trials.

The simulated experiments are based on nested dose–response transformations, where each level repre-
sents an additional dose response transformation. The following terminology has been used: Level 0: no dose 
response transformation; Level 1: one dose–response transformation (i.e. one study); Level 2: two consecutive 
dose–response transformations (i.e. one study building on the work of a previous study); Level 3: three consecu-
tive dose–response transformations; Level 4: four consecutive dose–response transformations. For the consecu-
tive dose–response transformations, the response output from one transformation was used as the dose input 
data for the subsequent transformation, as outlined in Fig. 1.

Power to detect differences in two normal distributions transformed with a dose–response 
curve. We first established the validity of the Monte Carlo simulation for comparison of two samples by 
assessing the power calculations from the simulation versus those calculated by standard methods based on 
the non-central t distribution. To do this, two vectors of n normally distributed values differing in their means 
were generated, simulating a single experiment. An unpaired equal-variance t-test was performed between the 
two vectors, and the trial was recorded as significant if the p value was less than the predetermined alpha (0.05). 
This process was repeated 10,000 times, based on initial simulations demonstrating significantly more vari-
able responses with 1000 runs but low variability at 10,000 or 100,000 runs. The n required to obtain a specific 
power (i.e. proportion of trials that showed a significant difference) for the predetermined difference of means 
was determined by adjusting n and repeating the simulation. Finally, the simulated power was compared to the 
power calculated using the MATLAB sampsizepwr function for a t-test. The results of these comparisons dem-
onstrated that the simulation replicated the same relationship among study power, sample size, and group mean 
difference as with MATLAB functions.

The process of transforming data through dose–response functions, even without additional variability in the 
parameters, can be shown to increase the noisiness or spread of the data (Fig. 2). When an arbitrary, normally-
distributed drug dose concentration is run through 1, 2, 3, or 4 dose–response transformations, there is a gradual 
widening of the initially normal distribution.

On the basis of this observation, a dose–response curve transformation was added to the simulation and the 
effect on power and sample size assessed. This constituted Level 1 (equivalent to the blue distribution in Fig. 2). 
To do this, two new vectors for comparison of groups were produced by transforming the dose parameter input 
vectors (equivalent to “doses”), each drawn from normal distributions differing in means, and applying a Hill 
dose–response function. The simulations were run as above, again using various parameters to assess for their 
effect on power. For example, in Fig. 3A the difference of means was set to 0.1, the SD of the input distribution 
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(sigma) to 0.2,  EC50 to 0.5, slope to 1, maximal response to 1, and minimal response to 0. Using these parameters, 
there was minimal difference between the power analysis based on the transformed (dose response) data and 
that based on the untransformed data. For all data, theoretical power and theoretical sample size refer to values 
calculated using standard MATLAB methods, as opposed to using the Monte Carlo simulation. The largest dis-
crepancy for those simulations was where n ranged from 38 to 67. At an n of 100 the simulation power closely 
approximated the theoretical power, with both power estimates keeping with a desired study power (power 
of 0.933 vs. 0.941, respectively). These data demonstrate that the simulation replicates MATLAB t-test power 
calculations when the input data are transformed by the dose–response relationship (Level 1). Above an n of 
67, the greater the sample size, the closer the simulation is to providing the same power estimates as a standard 
MATLAB power function.

Third, the effect of a second level of dose–response transformation was simulated, i.e., the output of one 
dose–response transformation was used as input for a second transformation (Fig. 1, Level 2). As with Level 
1, there was no substantial change in power and sample size calculations for Level 2 when compared to power 
and sample size calculated by sampsizepwr in MATLAB when no variability was added to the dose–response 
parameters. For example, at a group mean difference of 0.11, a SD of 0.1 and a slope variance of 0, the simulated 
sample size and the theoretical sample size are both 15 (Table 1; Fig. 3B, varSlope = 0 curve). Only when the 
group mean difference is very small (e.g., 0.01) does stepping up a Level (adding an additional dose–response 
transformation) without adding variability result in an appreciable difference between the two estimates, with a 
simulated sample size of 1643 and a theoretical sample size of 1571 (Table 1).

Adding variability to Level 2 dose–response curve parameters reduces power and increases 
the required sample size. The above simulations took into account the variability of the input distribu-
tions for each parameter but did not add variability to the actual transformations. It is therefore not surprising 
that a fixed transformation based on dose–response curves might not greatly affect power because the inputs 
still map directly to the outputs and it is well-known that the t-test is robust to several types on non-normal 

Figure 1.  Modeling the sequence of drug effect with series of dose–response transformations. Level 0 models a 
linear relationship between drug dose and response. Level 1 transforms dose parameter vectors by the sigmoidal 
Hill dose–response function. Level 2 transforms Level 1 response outcomes by a second sigmoidal dose–
response function. Level 3 uses three consecutive dose–response functions, using the response output from one 
level as the dose input for the next. Level 4 uses four consecutive dose–response functions.
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 distributions10. However, the rationale for this study is that translational research proceeds through a series 
of experiments, each adding variability. We hypothesized that power calculations based on the non-central t 
distribution that are typically used to guide investigators in sample size selection do not adequately account 
for the variability added by each of a sequence of experimental studies. To test this hypothesis, we performed 
simulations where variability was added to the transformations by introducing variability to the parameters of 
the dose–response curve.

Slope in dose–response curves. The slope parameter was varied by adding values from a normal distribution 
centered on 0 with a SD of 0.1, multiplied by the slope variability parameter. Introducing a small degree of vari-
ability to the slope parameter (e.g. 0.1) to the Level 2 simulation resulted in little appreciable change to the curve 
as compared to the baseline curve without any variability (Table 1). At a small effect size (difference between 
group means of 0.01 and sigma of 0.1), adding the variability of 0.1 to the slope parameter only increases the 
required sample size from 1571 to 1666, a 1.06x increase. Adding a variability of 0.5 to the slope parameter also at 
a group mean difference of 0.01 increases the sample size from 1571 to 2298, a 1.46x increase. Further increasing 
the slope variability to 1.0 changes the required sample size to 5743, a 3.65x increase. Similarly, when the group 
mean difference is increased to 0.11, a slope variability of 0.5 resulted in a 1.46x increase in sample size from 15 
to 22, while a slope variability of 1.0 resulted in a 4.4x increase in sample size to 66.

These results demonstrate that as variability is added to the slope parameter of the dose–response function 
the sample size requirements increase, at a given power, alpha, group mean difference, and sigma. Changing 
sigma has a similar but reciprocal impact on sample size, as compared to changing the group mean difference 
(Fig. 3C), because the effect size is determined by the ratio of the two. At a sigma of 0.11, a slope variability of 1 
increases the required sample size from 21 to 87, a 4.14x increase. With broader distributions in the simulated 
groups, e.g., sigma of 0.51, a slope variability of increases the sample size from 411 to 604, and a slope variability 
of 1 increases the sample size to 1838, a 4.47x increase. Increases in either slope variability or population sigma 
result in increased sample size requirements, and the larger the slope variability, the more apparent the effect of 
changing sigma on sample size.

EC50 in dose–response curves. When variability was added to the  EC50 parameter in the Level 2 simulation, 
there was a similar relationship as when variability was added to the slope parameter (Table 1; Fig. 4A). That 
is, the smaller the difference between group means (e.g. 0.01), the more substantial the increase in the required 
sample size as a result of adding variability to the dose–response relationship. Of the four parameters, increas-
ing  EC50 variability had the largest impact on sample size, with more than double the theoretical sample size 
required at a variability of 0.1 and > 10,000 at a variability of 0.5 or greater (Table 1).

Figure 2.  Multiple spreads of variance. Sequential sigmoidal dose–response transformations of a normally 
distributed dataset (blue) increase the spread of variance among experimental data for an arbitrary dose–
response simulation of consecutive sigmoidal dose–response functions, with greater spread with each number of 
transformation (dark blue = no dose–response transformation/Level 0, red = level 1, green = level 2, purple = level 
3, turquoise = level 4).
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Maximal and minimal responses in dose–response curves. The effect on sample size of adding variance to the 
minimal response and maximal response parameters yielded largely the same results. As with the  EC50 param-
eter, at a small group mean difference (0.01), the n required to detect an effect was > 10,000 with a maximal or 
minimal response variability of 0.5 or greater (Table 1; Fig. 4B).

Increasing the number of dose–response transformations from Level 1 to Level 3 amplifies 
the effect of variability on the relationship between power and sample size. Adding a third 
dose–response transformation (Level 3) further increases the required sample size for a given power (Table 1). 
Figure 4C depicts the effects of adding variability to the maximal response parameter, but similar results were 
found with all four dose–response curve parameters, again with the EC50 parameter having the largest impact 
on sample size requirements.

Maximal response in dose–response curves. At a group mean difference of 0.01 and a SD of 0.1, increasing maxi-
mal response variability by a factor of 0.1 to all dose–response functions included in Level 3 resulted in a 1.38x 
increase in the sample size calculations from 1571 to 2181 (Fig. 4C). When the difference between group means 
is increased to 0.11, changing the maximal response parameter variability to 0.1, 0.5, or 1 resulted in sample 

Theoretical n

Theoretical n

group mean difference

Simulation n

Theoretical n

Figure 3.  (A) Effect of sigmoidal dose–response transformation on power for various sample sizes. The 
simulation power analysis based on transformed dose–response data (simulation power) is slightly less than 
the power analysis based on MATLAB calculations using the sampsizepwr function (theoretical power). 
The theoretical power analysis does not take into account a dose–response transformation. Group mean 
difference = 0.1, sigma = 0.2,  EC50 = 0.5, slope = 1, MaxResp = 1, MinResp = 0, alpha = 0.05, nSimulations = 10,000. 
(B) Effect of slope variability [varSlope; Formula (2)] on sample size for Level 2 simulations at various group 
mean differences. The difference between the simulation sample size estimates and the theoretical sample size 
increases at a given group mean difference when greater variability is added to the slope parameter by increasing 
the varSlope value, with alpha and power held constant. Note that the curves for “Theoretical n,” “varSlope = 0,” 
and “varSlope = 0.1” are virtually identical and are indicated together. (C) Similar to (B) but for various sigma 
values.
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sizes of 23, 267, and 2159, respectively (Table 1). This corresponds to sample sizes that are 1.5x, 18x, and 144x 
greater than the theoretical n of 15. Compared to the level 2 simulation, the most notable increase in sample size 
requirements at level 3 are seen when comparing n at the maximum single parameter variability of 1 (Table 1; 
varMaxResp = 1, Fig. 3B,C).

Introducing variability to multiple dose–response curve parameters for Levels 1 through 4 
leads to considerably higher sample size requirements. The final step in the simulation was to 
assess the combined effects of adding variability to all four parameters for Levels 1, 2, 3, and 4 (Fig. 5A). When 
minor (e.g., 0.1) variability is added to all four parameters for the dose–response transformations included in 
Level 4, the effects on sample size are comparable to adding a ten-fold higher degree of variability (e.g., 1.0) to a 
single curve parameter over fewer transformations (Levels 1–3). For example, for Level 4 at a group mean differ-
ence of 0.19 and adding a variability of 0.1 to all of the parameters, the required sample size changes from 7 to 
32. In comparison, for the same group mean difference (0.19) but at Level 2, the variability of the slope parameter 
must be set 10 x higher, to 1.0, for the sample size to increase from 7 to 37 (Fig. 3B). These data support the previ-
ous conclusion that as dose–response transformations are added to the simulation, the sample size requirements 
increase to maintain the same power and alpha. At a group mean difference of 0.11 the theoretical sample size 
is 15. As the simulation complexity increases progressively from Level 1 to Level 2 to Level 3 to Level 4, with a 
variability of 0.1 applied to all four parameters, the sample sizes increase from 31 to 46 to 59 to 73. These values 
correspond to a 2.1x, 3.1x, 3.9x, and 4.9x increase in the required sample size compared to the theoretical sample 
size. Similar results were seen when changing sigma (Fig. 5B).

Increasing the variability in any one dose–response curve parameter with minimal background variability 
amongst the other parameters was also shown to substantially impact sample size requirements. When there is an 
existing baseline variability of 0.1 in the  EC50, maximal response, and minimal response parameters, the impact 
of adding variability to the slope parameter is compounded. For Level 2, when a variability of 0.5 is added to the 
slope parameter alone, at a group mean difference of 0.11 there is a 1.5x increase from the theoretical sample size 

Table 1.  Sample size requirements at Levels 2 and 3, based on adding variability to each individual dose–
response curve parameter. Standard sample size calculations (theoretical n) are compared to the sample 
size requirements based on simulations at Level 2 and Level 3, as a variability of 0.1 to 1 is added to each 
of the four dose–response curve parameters where mu0 = 0.5 and sigma = 0.1. The variability refers to the 
varSlope, varEC50, varMaxResp, or varMinResp parameters in Formula (2), which serves to add variability to 
better model real-world experimental data. The relative increase in sample size requirements from standard 
calculations (theoretical n) are presented in parentheses for all sample sizes calculated using the simulation.

Sample size (n)

Theoretical Slope EC50 MaxResp MinResp

Level 2

Group mean difference = 0.01

 Variability

  0.0 1571 1643 (1.05x) 1636 (1.04x) 1657 (1.05x) 1658 (1.06x)

  0.1 1571 1666 (1.06x) 3467 (2.21x) 2016 (1.28x) 2103 (1.28x)

  0.5 1571 2298 (1.46x)  > 10,000 (6.37x)  > 10,000 (6.37x)  > 10,000 (6.37x)

  1.0 1571 5743 (3.66x)  > 10,000 (6.37x)  > 10,000 (6.37x)  > 10,000 (6.37x)

Group mean difference = 0.11

 Variability

  0.0 15 15 (1.00x) 15 (1.00x) 15 (1.00x) 15 (1.00x)

  0.1 15 16 (1.07x) 35 (2.33x) 20 (1.33x) 19 (1.27x)

  0.5 15 22 (1.47x) 679 (45x) 163 (11x) 118 (7.87x)

  1.0 15 66 (4.40x) 3313 (221x) 885 (59x) 692 (46x)

Level 3

Group mean difference = 0.01

 Variability

  0.0 1571 1708 (1.09x) 1708 (1.09x) 1714 (1.09x) 1714 (1.09x)

  0.1 1571 1741 (1.11x) 4117 (2.62x) 2181 (1.39x) 2331 (1.48x)

  0.5 1571 2652 (1.69x)  > 10,000 (6.37x)  > 10,000 (6.37x)  > 10,000 (6.37x)

  1.0 1571  > 10,000 (6.37x)  > 10,000 (6.37x)  > 10,000 (6.367x)  > 10,000 (6.37x)

Group mean difference = 0.11

 Variability

  0.0 15 16 (1.07x) 16 (1.07x) 16 (1.07x) 16 (1.07x)

  0.1 15 17 (1.13x) 43 (2.87x) 23 (1.53x) 22 (1.47x)

  0.5 15 26 (1.73x) 1108 (74x) 267 (18x) 233 (16x)

  1.0 15 135 (9.00x) 3456 (230x) 2159 (144x) 2916 (194x)
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of 15 to 22 (Table 1). In comparison, for Level 2 with a background variability of 0.1 in the other three parameters 
(Fig. 5C), increasing the slope variability to 0.5 results in a 4.3x increase in the required sample size (n = 73) at a 
comparable group mean difference of 0.1. Adding another two dose–response transformations to the simulation 
(i.e. Level 4) at a group mean difference of 0.1 further increases the sample size requirements to 152, an 8.9x 
increase as compared to the theoretical n.

Finally, a counterintuitive finding depicted in Fig. 5 is that the effect of nesting on spreading of experimental 
data becomes lower as the depth of nesting increases. For example, with a variability of 0.1 added to all four 
parameters, there is a 112% increase in sample size requirements moving from theoretical sample size calculations 
to Level 1 calculations, at a group mean difference of 0.1. With adding subsequent levels of nesting, even with 
the propagation of parameter variability, the relative increase becomes smaller as each higher Level is reached, 
e.g. there is a 50% increase moving from Level 1 to Level 2, a 28% increase moving from Level 2 to Level 3, and 
25% increase moving from Level 3 to Level 4.

Discussion
The Princess and the Pea problem gives a name to a specific challenge of translational research, which while 
well-understood, has not been quantified until now. The pathway from preclinical research to clinical trials 
includes an inherent spread of experimental variability. Despite a conceptual recognition of this accumulation of 
variability, the standard methods used by investigators to predict an appropriate sample size do not incorporate 
this spread of experimental data. Moreover, pure analytical or theoretical approaches to address the Princess 
and the Pea problem are limited by the fact that most statistical approaches, from which a theoretical analysis 
would be generated, almost inevitably are based on data that violates necessary  assumptions11. A Monte Carlo 
simulation was therefore used to take advantage of a typical sigmoidal dose–response relationship while also 
accounting for potential assumption violations to best quantify the effects of experimental variability on power 
and sample size calculations.

As seen in Fig. 2, the process of transforming study data through nested dose–response functions, akin to 
transitioning through sequential studies in a drug development program, increases the spread of variance in the 
experimental data, making it harder to identify a clinical effect.

When small amounts of “real-world” variability are added to the input parameters of the simulated experi-
ments, there is even greater widening of the distributions. In terms of study design and planning, these results 
suggest that accounting for the spread of variability in translational research necessitates a drastic increase in 
sample sizes in order to maintain a desired power and alpha. At Level 2, used to simulate two consecutive stud-
ies, the variability for a single parameter must be set high (e.g., an increase in variability from 0 to 1) to result 
in an appreciable change in sample size requirements. However, as more dose–response curve transforma-
tions are introduced into the simulation (modeling more steps between preclinical research and clinical trials), 
less dose–response parameter variability is needed to see similar increases in sample size requirements. When 
minor variability is added to all four curve parameters for the Level 4 simulation (approximating the variability 

group mean difference

group mean difference group mean difference

Theoretical n

Theoretical n

Theoretical n

Figure 4.  Effect of variability of (A)  EC50 or (B) maximal response on sample size for two consecutive 
sigmoidal dose–response transformations with various group mean differences. The difference between the 
simulation sample size estimates (n) and the theoretical sample size increases at a given group mean difference 
when greater variability is added to the maximal response parameter, with alpha and power held constant. 
(C) Effect of variability of maximal response on sample size for three consecutive sigmoidal dose–response 
transformations with various group mean differences. The difference between the simulation sample size 
estimates and the theoretical sample size increases at a given group mean difference when a third dose–response 
function is added to the simulation, with variability in the maximal response parameter.
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encountered in the drug development process), there is a drastic increase in sample size requirements, e.g. a 4.9x 
increase in sample size with a variability of 0.11 in the four parameters. When a larger variability is added to a 
single parameter, with a background of minor variability amongst other parameters, there is again a substantial 
jump in the required sample size when compared to standard theoretical power and sample size calculations. 
Between the four parameters, variability in  EC50 appears to have the greatest impact on sample size, followed by 
maximal and minimal response, and then slope.

This simulation quantifies just how large sample size requirements become for a desired power when the 
accumulation of variability that occurs during translational research programs is taken into account. For example, 
even at Level 2 of 4, with a group mean difference of 0.01 and SD of 0.1, introducing a variability of 0.5 to the  EC50 
parameter alone increases the sample size requirements from a reasonable target of 1571 subjects to a potentially 
prohibitive sample size greater than 10,000 (Table 1). Even with larger effect sizes and correspondingly smaller 
initial sample size requirements, small changes in dose–response curve input and output variability substantially 
impact sample size and the ability to detect an effect. Power calculations based on the non-central t distribution 
are often used to guide investigators in sample size selections, but do not adequately account for the variability 

Theoretical n

Theoretical n

Theoretical n

group mean difference

Figure 5.  (A) Effect of increasing the number of dose–response levels on sample size when there is variability 
in all dose–response parameters. Depending on the difference in group means, the transformation of data 
through increasing levels of sigmoidal dose–response functions with fixed (0.1) variability in all four dose–
response parameters (slope,  EC50, maximal response, minimal response) resulted in simulation sample size 
requirements (n) that progressively increase, compared to standard sample size calculations (theoretical n). (B) 
Effect of increasing the number of dose–response levels on sample size at various sigma values. The sample size 
(n) derived by simulations using transformed dose–response data progressively increases from the theoretical 
sample size (theoretical n) as more dose–response levels are added to the simulation with fixed background 
variability (0.1) in all four curve parameters. The greater the number of dose–response levels in the simulation 
the greater the effect of background variability and dose–response transformations on the simulation sample 
sizes. (C) Effect of slope variability on sample size for various dose–response levels with fixed background 
dose–response curve variability. For a fixed group mean difference, the inclusion of fixed background variability 
(0.1) in  EC50, maximal response, and minimal response amplifies the effect of slope variability on increasing 
simulation sample sizes (n) as compared to the theoretical sample sizes (theoretical n).
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accumulated over a sequence of experimental studies. If the sample size used for a trial based on standard power 
calculations is 15 while this simulation finds a minimum sample size of 73 at Level 4 (Fig. 5A), it should come as 
no surprise that researchers frequently fail to detect a significant effect at the clinical trial level (Fig. 5A). In reality, 
trials are typically limited to hundreds (e.g., Phase 2) to a few thousand (e.g., Phase 3) of participants. Working 
within the bounds of a feasible clinical trial, these results suggest that the ability to detect a significant difference 
between experimental groups is reduced by the inevitable spread of variance in translational research. Clinical 
trials for rare diseases exemplify the importance of selecting adequate and feasible sample size targets. Given 
the inherent rarity of these diseases, setting recruitment targets that are sufficient to detect a difference between 
experimental groups while also feasible is of central  importance12. When hundreds, rather than thousands, of 
patients are recruited for Phase 3 trials, the aforementioned spread of variance can easily mask the effect of a 
therapy and result in a failed trial. In this context, increasing sample size numbers to overcome variability is 
frequently not feasible. Even in larger trials, where thousands of patients can be recruited, this same challenge 
can lead to the dissipation of a clinically meaningful effect within the noise of study variability.

When planning a clinical trial, investigators can typically predict the variability of study measurements but not 
of the effect size. With this simulation, the measured effect size in an animal model can effectively be translated 
to a predicted effect size for a clinical trial by taking into account the variability accumulated with sequential 
experimental steps. For instance, if a study drug is found to protect 50% of retinal ganglion cells (RGCs) from 
dying in a rat model of glaucoma, investigators can predict that it also protects 50% of human RGCs from dying. 
The effect size, however, will almost inevitably be reduced at the human trial level due to the greater variability 
encountered in human populations. Rather than relying on assumptions that a preclinical effect size (i.e. effect 
size in an animal model) will remain the same throughout the translational process, investigators can use tools 
derived from the simulations outlined in this study to better predict the effect size of a given drug once at the 
clinical trial stage.

The results of these simulations also suggest some approaches to prevent translational failure as a result of 
the Princess and The Pea problem. We propose that in order to design successful translational studies of novel 
therapeutic classes, investigators should aim for more robust preclinical effect sizes than routine power analyses 
might suggest. Smaller preclinical effect sizes may not warrant progression to larger trials once investigators 
account for the variability inherent to the study design and to the therapeutic effect. Given that effect size 
depends on the ratio between the group mean difference and the population standard deviation, investigators 
must simultaneously seek larger differences between experimental groups and smaller variation in their data to 
better design translational studies.

Scrupulous control of sources of variability throughout the translational research process can also help miti-
gate some of these effects. From the way investigators collect data and record measurements to the way they 
culture cell lines and interact with experimental animals, investigators can actively seek ways of minimizing 
variability within their experimental systems, recognizing how this variability will propagate, as simulated in 
this study by carrying forward variability through each Level. The actual effect of a therapy will itself have a 
degree of variability that cannot be directly controlled by the careful planning and execution of studies. Some 
spreading of variance is therefore an unavoidable consequence of developing new therapies and of transitioning 
between experimental systems.

Given that each sequential dose–response transformation, or Level, (i.e. “mattress”) resulted in the spread-
ing of a given effect size (i.e. “pea”) due to variability, we also suggest designing translational drug development 
programs with fewer steps, where possible. If the number of steps between initial preclinical biochemical studies 
and eventual human clinical trials can be reduced without compromising study integrity, it may be possible to 
more accurately predict the propagation of the true effect size and calculate accurate sample size requirements.

Another helpful tool to mitigate the effect of spreading experimental variability is to use biomarkers through-
out the translational research process. Biomarkers play an important role in bridging laboratory and human 
studies. For instance, biomarkers can provide subject-specific biologic data on variations that influence a given 
drug’s efficacy and  toxicity13. Assessing the same biomarker at each experimental level can help to control for the 
loss of the ability to detect an effect size given that the measured outcome often varies at each stage (e.g., fraction 
bound in a receptor-binding assay versus visual acuity letter score in a clinical trial).

The modeling used in the present simulation made certain assumptions. When multiple dose–response 
curve transformations were included in the simulation, the variability added to a given curve parameter was the 
same for each experimental level. In reality, we are unlikely see an exact propagation of the same variance for an 
experimental parameter. We may in fact expect the variability to increase for a given parameter as the study pro-
gresses to increasingly more complex biological systems. This study was designed using a sequence of sigmoidal 
dose–response curves as an abstraction for the steps involved in the development of a new therapy. The choice 
of a dose–response curve has a number of implications for our results. For one, what we measure as a response 
outcome may change as we move between experimental systems, which was not accounted for in our simulation. 
Our conclusions are also limited to studies dealing with data that follows the feature of a dose–response trans-
formation. The dose–response curve has the features of asymptotes to a maximum, a minimum, a half-maximal 
response, and a slope. Other curves grow exponentially with discrete intervals of time, as in a typical exponential 
curve, or with multiple phases and rates of growth, as in biological growth curves. We can in future investigate 
whether similar effects are seen using other relationships that exist between experimental data.

The simulation also assumed normal distributions for all datasets. Given that many biological functions do 
not have a normal distribution, this assumption could result in under- or overestimation of the spread of vari-
ance. The selection of an appropriate test for a given dataset is of critical importance for all  research14. Monte 
Carlo simulations, as used by our simulation, are particularly useful when analyzing data that do not conform 
to the assumptions required for a given statistical  test15. Examination of Type I error rate, the probability of 
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rejecting a false null hypothesis and power estimates, for instance, can be appropriately assessed using Monte 
Carlo  methods15.

In summary, the Princess and the Pea problem is a challenge inherent to translational research, where an 
effect seen early in the development process becomes difficult to detect at the clinical trial level due to a gradual 
accumulation of variance with each experimental step. Consequently, large sample sizes are needed to detect an 
effect that may have appeared promising early in the development process. This study provides a quantitative 
rationale for the frequent failure of translational research, namely the fairy tale-like assumption that an effect 
size is equally detectable at all levels of translation, despite the spread of variability. The failure to account for the 
increase in variability during the translational process can lead to an underestimation of sample sizes for later 
clinical studies. The simulations in this study can be used as tools to better account for the spread of experimental 
variability when making power and sample size calculations and, ultimately, to design translational studies that 
are both feasible and successful.

Methods
Monte Carlo simulation. Monte Carlo simulations were used to quantify the effects of variability on 
individual experiments and on a series of consecutive experiments. For this study we selected a sigmoidal 
dose–response curve as the basis of the simulated experiments based on its relevance to a variety of biomedical 
processes. These simulations were designed to better account for the propagation of variability in translational 
research, which is not typically considered in standard power and sample size calculations.

Functions to simulate power and sample size calculations were written in MATLAB (MathWorks, Natick, 
MA), based on an unpaired equal-variance t-test (“simulation n”). The MATLAB randn function was used to 
generate randomly generated numbers from a normal distribution and two distributions were generated (Group 
A, Group B) with a defined difference between group means (mu0; mu0 = 0.5 for all simulations where mu0 was 
held constant). The randn function is robust and is based on the Mersenne twister algorithm, with a period of 
 219937 − 1. The ratio of significant to non-significant t-statistics for 10,000 runs of the simulation with various 
sample sizes determined the power for the simulation (see Supplementary Material).

To confirm that in the absence of variability our simulation replicated standard functions, we compared the 
sample size requirements for a given power using our simulation to the standalone MATLAB sampsizepwr func-
tion. After confirming that our simulation produced reliable sample size estimates, a dose–response relationship 
was introduced into the model. The simulation was designed to include a maximum of four dose–response 
transformations, or levels (Fig. 1). The Level 0 simulation replicates a typical unpaired equal-variance t-test with 
a given difference between the two experimental group means, i.e. no transformation of the data. The Level 1 
simulation transforms drug doses for both groups by a dose–response function and again runs a t-test. Level 2 
uses the response output values from Level 1 as the input for a second dose–response transformation of both 
groups. Level 3, similarly, uses the response output from Level 2 and transforms these data again by the same 
dose–response function. Finally, the Level 4 simulation uses the Level 3 response output as the dose input for 
another dose–response transformation. In other words, each level reflects progressively greater numbers of nested 
dose–response curves, using the output of one level as input to the next, thus modeling a series of biological steps 
in the action of a drug at biochemical, biological, and clinical levels.

The model was designed to allow for variability in four dose–response curve input parameters: the half 
maximal effective concentration  (EC50), the slope of the dose–response curve (slope), the maximal response 
(MaxResp), and the minimal response (MinResp).

The power and sample size calculations in this study are based on the ability of the simulation to detect a 
clinical effect in the simulated experiment(s). The study was designed to simulate up to a maximum of 10,000 
trials, generating a t-statistic for each of the 10,000 runs, as mentioned above. If a single run was significant, 
based on an alpha of 0.05, the trial was coded as a 1. Conversely, if the t-statistic for the simulated trial was non-
significant, the run was coded as a 0. The ratio of significant (1) to non-significant (0) trials then determined the 
power of the simulation to detect an effect for the parameters and variability of a given hypothetical clinical trial.

Source of model parameters. In order to populate numbers for the main parameters of the simulation, 
namely  EC50, slope, maximal response, minimal response, group A drug dose, and group B drug dose a vector of 
random inputs was generated for each. For example, the input for group B drug dose was generated as follows:

where b = vector for adding variability to the drug dose input for group B, σ = standard deviation (SD) of drug 
dose, randn(n, 1) = n-by-1 column vector of normally distributed random numbers with mean 0 and variance 1, 
μ = arithmetic mean of group A drug dose, Δ = difference between group means.

Variability was added to the dose–response curve parameters using a similar function as the one above, with 
a modifiable variability parameter. For example, the slope for the dose–response curve was modeled as follows:

where simSlope = slope parameter that will be used for the dose–response function, Slope = slope parameter before 
adding variability, randn(n, 1) = n-by-1 column vector of normally distributed random numbers with mean 0 
and variance 1, varSlope = amount of variability to add to the slope.

A dose–response curve was modeled using the following equation:

(1)b = [σ × randn(n, 1)]+ µ+�

(2)simSlope = Slope +
[

randn(n, 1)× varSlope
]
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where, Dose = drug concentration (group A or group B), MaxResp = maximal response, MinResp = minimal 
response, EC50 = half-maximal concentration, Slope = slope of dose-response curve, Response = xAorxB.

An unpaired equal-variance t-test was used to compare differences between the two normally distributed 
groups. This test was selected because of its utility in power  calculations16.

All sample sizes refer to the sample size per group. “Theoretical n” refers to the sample size calculated using 
standard MATLAB methods (namely, sampsizepwr) whereas “simulation n” refers to the sample size calculated 
using the Monte Carlo simulation described above. The calculations in this study assume equal group sizes; 
however, the simulation was designed to allow for the use of unequal group sizes, if desired.
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