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Pharmacogenomic and clinical data link
non-pharmacokinetic metabolic dysregulation
to drug side effect pathogenesis
Daniel C. Zielinski1, Fabian V. Filipp2,3, Aarash Bordbar1,4, Kasper Jensen5,w, Jeffrey W. Smith2,

Markus J. Herrgard1,6, Monica L. Mo1,w & Bernhard O. Palsson1,7

Drug side effects cause a significant clinical and economic burden. However, mechanisms of

drug action underlying side effect pathogenesis remain largely unknown. Here, we integrate

pharmacogenomic and clinical data with a human metabolic network and find that

non-pharmacokinetic metabolic pathways dysregulated by drugs are linked to the

development of side effects. We show such dysregulated metabolic pathways contain

genes with sequence variants affecting side effect incidence, play established roles in

pathophysiology, have significantly altered activity in corresponding diseases, are susceptible

to metabolic inhibitors and are effective targets for therapeutic nutrient supplementation. Our

results indicate that metabolic dysregulation represents a common mechanism underlying

side effect pathogenesis that is distinct from the role of metabolism in drug clearance. We

suggest that elucidating the relationships between the cellular response to drugs, genetic

variation of patients and cell metabolism may help managing side effects by personalizing

drug prescriptions and nutritional intervention strategies.
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A
dverse drug reactions, commonly known as side effects,
are thought to be responsible for as much as 11% of
hospital admissions1,2, a fifth of both phase II3 and III4

clinical trial failures, high-profile market withdrawals
(for example, Vioxx, Lipobay), and a large fraction of patient
therapeutic non-compliance incidents5. Risk factors associated
with side effects have been identified, including number of drugs
prescribed6, patient age7 and genetic variants8. Side effect-linked
genetic variants identified so far are predominantly associated
with drug pharmacokinetics, thereby affecting exposure of the
body to a particular drug, but these variants do not give
any indication of the mechanism by which pathogenesis is
initiated. A recent study suggests that as many as half of drug side
effects are related to known drug–protein-binding events9,
and progress has been made towards systematically identifying
drug-binding events10. However, only modest progress has
been made towards elucidating specific drug-induced changes
downstream of binding events for the majority of drugs
(Fig. 1a)11. These downstream effects in many cases may be
most directly tied to side effect pathogenesis as well as patient
genetic and environmental background.

Recent literature suggests that altered gene expression induced
by drug treatment may be one mechanism by which drugs induce
systemic off-target effects12–15. Unfortunately, the lack of clinical
data has impeded the determination of causality of particular
gene expression changes in side effect pathogenesis16. Recent
studies have successfully utilized in vitro drug-treated gene
expression profiles to predict clinical drug effectiveness17,18,
suggesting that in vitro data may contain features that are
clinically conserved. However, demonstrating the relevance of
in vitro drug response features to clinical side effect pathogenesis
presents a significant challenge, due largely to the lack of suitable
validating data sets and difficulty of clinical experimentation.

To address this challenge, we develop a network-based data
analysis workflow built upon the use of in vitro drug treatment
data to identify candidate side effect-linked features and a large
collection of historical clinical and disease model data as a
source of validation (Fig. 1). First, we identify in vitro gene
expression changes preferentially induced by drugs with clinically
defined side effects to identify candidate side effect-linked
expression features. Then, we cross-reference these side effect-
linked features with independent legacy clinical data found in the
literature to corroborate their relevance in terms of five causal
relationships. We implement this strategy within the context of
the reconstructed global human metabolic network19,20, which
provides a biologically coherent structure for data integration due
to the high degree of network annotation and clear functional
connectivity between genes via metabolic pathways20,21.

Results
Calculation of drug-induced metabolite perturbations. We first
identified drug-induced metabolic gene expression changes
within 6,040 gene expression profiles in the Connectivity Map
(CMap) data set, representing three human cell lines exposed to
1,221 drug compounds22 (Fig. 1a). We analysed the expression
profiles using the reconstructed global human metabolic network
Recon 1 (ref. 19) with a novel metabolic pathway analysis
algorithm, termed MetChange (Metabolite-Centered Hotspots of
Altered Network Gene Expression). MetChange is a constraint-
based modelling23 algorithm that computes a score for each
metabolite summarizing the drug-induced gene expression
changes along calculated production pathways for the
metabolite (Fig. 2). A MetChange score for a metabolite defines
how expression has changed in a pathway containing these
metabolite production reactions. Production in this case does not

necessarily indicate secretion, as the majority of metabolites
produced by one metabolic pathway are consumed in other
metabolic pathways. We also note that gene expression is not the
sole determinant of pathway activity, as gene and protein
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Figure 1 | Overview and workflow used in this study. (a) Studies

examining side effect pathogenesis focus primarily on drug

pharmacokinetics, involving drug transport and clearance, and drug binding

in terms of on and off target-binding events. This study examines potential

pathogenic mechanisms related to transcriptional changes downstream of

clearance and binding events. (b) Drug-treated gene expression profiles from

the Connectivity Map database are analysed in the context of the metabolic

network reconstruction Recon 1 using constraint-based modelling to identify

drug-induced pathway expression changes. Drug-induced metabolic pathway

expression changes are analysed in terms of drug side effects from the Side

Effect Resource (SIDER) using a feature selection genetic algorithm to

determine metabolic pathway perturbations conserved in particular side

effects, termed DISLoDGED pathways. (c) A new database, the Metabolism

Disease Database (MDDB), was generated by manual curation of literature

to establish links between altered metabolic pathway function and

pathologies, and this database was used to analyse DISLoDGED metabolic

pathways. (d) Five candidate causal mechanisms for metabolic changes in

side effect pathogenesis (listed in the MDDB panel) are assessed in a large-

scale manner by comparing these in vitro perturbations to clinical data linking

particular metabolic pathways to disease.
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expression are imperfectly correlated and enzyme functional state
may change due to perturbation as well. However, change in
metabolic gene expression may still indicate a pathogenic
metabolic functional change.

Validation of calculated metabolic perturbations. To compare
the MetChange method against existing approaches that predict a
metabolic outcome based on gene expression data18,24, a
published gene expression data from carbon and nitrogen
starvation in S. cerevisiae was analysed25,26. A previously
generated metabolic reconstruction of S. cerevisiae, iMM904
(ref. 27), was used to compute MetChange scores for each
condition. Scores were compared with metabolomics data
generated for the same conditions using the relative changes
from the initial time point. A total of 60 metabolites across five
time points for each carbon and nitrogen starvation were
compared for both absolute (that is, magnitude) correlation and
directional (that is, increased or decreased) correlation with
MetChange scores. The MetChange algorithm compared
favourably both with other network-based expression analysis
methods and with the use of gene expression alone in predicting
metabolic perturbations (Fig. 3). Reassuringly, k-means clustering
and principle component analysis of MetChange scores, mapped
metabolomics data, and mapped expression data suggest that
MetChange scores maintain functional relationships between
time points that are present in expression and metabolomics data
(Fig. 3).

To further validate the metabolic perturbations predicted by
the MetChange method using the CMap data set, we performed
a number of high-throughput computational analyses comparing
MetChange perturbations with drug response properties
(Table 1). First, metabolite scores were compared with co-
occurrences of drug-metabolite text terms in the PubMed
database. A bootstrap analysis of Z-score permutations showed
that PubMed drug-metabolite associations are recalled in a
statistically significant manner (non-parametric perturbation
P-value Po10� 3 for 1,000 perturbations of MetChange scores).
Second, it was found that known metabolic drug targets as found
in the DrugBank database28,29 are significantly closer in reaction
proximity to known highly perturbed metabolites than less
perturbed metabolites for these drugs (median Wilcoxon rank
sum Po1.65� 10� 10 for the highest scoring bin). Third,
MetChange scores were found to be able to predict drug–
protein literature co-associations within the PubMed database in
a statistically significant manner (non-parametric perturbation
Po0.01).

Finally, we validated perturbation predictions in targeted
experimental measurements in MCF-7 cell culture under
treatment by the drugs metformin, haloperidol and genistein.
These drugs were chosen because of previous evidence suggesting
significant metabolic perturbation by these drugs. Measured
metabolites were chosen to have broad coverage of pathways and
target highly perturbed pathways as predicted by MetChange.
Drug concentrations were chosen based on previous in vitro
studies using these drugs.

First, treatment with the antipsychotic haloperidol revealed
decreased uptake of vitamin B6, consistent with the calculated
decrease in the B6 processing pathway (Fig. 4a). Second,
treatment with metformin, a 50 AMP-activated protein kinase
(AMPK) activator, showed significant perturbation of tricar-
boxylic acid cycle and fatty acid oxidation metabolites. The
observed change was consistent with the large calculated
perturbation but was in the opposite direction of the transcrip-
tional change, indicating substantial non-transcriptional control
of the metabolite levels (Fig. 4b). Additional calculated
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Figure 2 | Description of the MetChange algorithm. (1) Using a metabolic

network reconstruction, sink (demand) reactions are added for each

metabolite. Demand reactions are irreversible with the stoichiometry:

metabolite �4 Ø. Each demand reaction is maximized in turn to obtain

maximal production values for each metabolite using a linear programming

problem (LP Problem 1). (2) Reaction presence/absence P-values are

generated from gene expression data and mapped onto the metabolic

network. A second linear programming problem is then solved (LP

Problem 2) for each metabolite. LP Problem 2 identifies the flux solution

that minimizes the inconsistency of the gene expression data with the

optimal production of a metabolite by restricting the demand reaction for

the metabolite to be at maximal flux, and subsequently minimizing an

inconsistency score of (v� P-values). (3) An example case for metabolite 1.

It is observed that the control data have greater expression (lower

presence/absence P-value) for certain production reactions. Greater

expression of production reactions results in a lower production

inconsistency score for the control gene expression sample, compared with

the drug-treated case, in which certain production reactions are less

expressed (higher presence/absence P-value). (4) As different metabolites

have different combinations of production reactions, they cannot be

compared directly within samples. Instead, scores are compared for the

same metabolite between control and treated samples to generate

differential consistency scores using a simple standard score. Once

standardized, metabolites can be compared within drugs to identify regions

where perturbation in production potential has occurred due to gene

expression changes.
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metformin-induced changes supported by previous results
include: (i) a downregulation of folate metabolism consistent
with reported folate deficiency in metformin-treated patients30,
(ii) upregulated oxidative stress response consistent with reported
lower reactive oxygen species levels31 and (iii) increased
polyamine synthesis and recycling pathways that may result
from shared use of organic cation transport (OCT) proteins
between metformin32 and polyamines33. Third, treatment with
genistein, an isoflavone with hypolipidemic effects34, experimen-
tally showed a preferential reduction of the fraction of mono-
unsaturated fatty acids synthesized from glucose that was
consistent with predictions (Fig. 4c).

Identification of in vitro disease-linked metabolic pathways.
Using MetChange scores generated from the CMap data set, we
then identified the drug-induced metabolic gene expression
changes that are most conserved among drugs with
particular clinically described side effects. We used a machine
learning approach to select discriminating metabolite production
pathway perturbations from the set of MetChange-calculated
pathway changes based upon side effect frequency data
reported in the Side Effect Resource (SIDER) database35

(Figs 1b and 5). A total of 357 side effects across 1,417 gene

expression profiles from CMap were analysed, based on the
criterion that at least 30 expression sets per side effect were
available. The cutoff in number of expressions sets was
chosen rationally as a balance between the scale of the study
and the robustness of the side effect signature obtained. Overall,
2,422 disease-linked drug-changed (termed DISLoDGED)
metabolic pathways were identified with this analysis.
These pathways are MetChange calculated metabolite
production pathways that are over-represented in perturbations
by drugs with particular side effects. DISLoDGED pathways
are potential side effect to pathway relationships, hypothesizing
that drug-induced perturbations away from metabolic
homeostasis are involved in side effect pathogenesis. The
calculated DISLoDGED pathways thus comprise a large set of
omics-driven hypotheses of side effect pathogenic mechanisms
(Supplementary Data 2). These associations were initially
supported by automated co-association searches of PubMed
abstracts to examine disease-linked nutrient deficiencies across all
357 side effects (Table 1). Downregulated DISLoDGED pathways
were found to be marginally significantly predictive of deficiencies
associated with corresponding specific diseases (permutation
P¼ 0.055), whereas upregulated pathways were not predictive
(permutation P¼ 0.39). We then sought to determine whether
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Figure 3 | Analysis of MetChange analysis of matched transcriptomic/metabolomics data in S. cerevisiae under carbon and nitrogen starvation

conditions using the S. cerevisiae metabolic network reconstruction iMM904. (a) Comparison of the median correlations of computational metabolite

absolute magnitude perturbation predictions with experimental data for several existing methods of integrating gene expression data with a metabolic

reconstruction. (b) The same comparison as in part a, but taking into account the direction of perturbation (the reporter metabolites method is not

directional in its predictions, so both comparisons were made). Error bars are standard deviations. The MetChange algorithm performs favourably on this

data set in both absolute magnitude and directional predictions. (c–e) Principle component analysis of the MetChange scores, gene expression data and

metabolite data for the 60 metabolites that mapped to iMM904. It is seen that the functional association of data is conserved after transformation to

MetChange scores, and the MetChange principle component clustering has topological similarity to both gene expression and metabolite data clustering.

The number of biological replicates in the original study was 1.
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the metabolic expression changes induced by drug treatment were
involved in the pathogenesis underlying drug side effects.

Construction of a database of in vivo links between metabolism
and disease. We assessed the relevance of DISLoDGED metabolic
pathways to side effect pathogenesis through the use of a large
body of clinical, biochemical and genetic literature on
metabolism–disease relationships. We constructed a database of
in vivo links found within the literature between metabolic
function and disease, called the Metabolism Disease Database
(MDDB), that consists of curated primary literature and existing
databases (hosted at sbrg.ucsd.edu/mddb). Data collected through
manual curation of the literature included disease-linked:
(i) metabolic gene variants, (ii) physiological system-specific
metabolism, (iii) metabolic pathways, (iv) chemical inhibitors of
metabolism and (v) nutrient deficiencies and supplements. Data
aggregated from existing databases included metabolic gene var-
iants affecting disease incidences from a large genome-wide asso-
ciation study (GWAS) database36 and drug-metabolic enzyme
target pairs from DrugBank28,29. Studies on disease models were
treated as acceptable sources where clinical data were not available.
The resulting database encompasses 357 side effects, over 280 non-
drug inhibitors, 600 drug molecules, 37 nutrients and over 5,000
investigated metabolic pathway-disease-link associations. The
database includes information related to both drug side effects
and non-drug-induced pathologies, and we examined predictions
in terms of each of these separately.

Comparison of DISLoDGED pathways with side effect
pathogenesis. We first examined whether DISLoDGED metabolic
pathways contain genes with variants that alter clinical side effect
susceptibility, according to the data in MDDB (Table 1). Causal
gene variants are typically considered to affect either drug phar-
macokinetics, which involves drug exposure, or drug pharmaco-
dynamics, which involves the interaction of the drug with the
body. The majority of identified gene variants affecting drug side
effect incidence are involved in drug pharmacokinetics, because
these genes historically have been simpler to identify as drug
metabolism genes are largely known. However, we focused upon
genes affecting pharmacodynamics, as these genes are more
directly indicative of the mechanisms underlying pathogenesis. In
MDDB, we identified nine side effect susceptibility gene variants
that overlap directly with metabolism but are not involved in
drug pharmacokinetics (Supplementary Note 1). We found that
for each of the nine side effect susceptibility genes, at least one
overlapping DISLoDGED pathway for this side effect had been
identified through our analysis (Table 2). This overlap between
DISLoDGED pathways and non-pharmacokinetic side effect
susceptibility altering genes was highly significant (joint hyper-
geometric tests, P-value 2.2� 10� 11, see Supplementary Note 2
for calculation).

To support the relevance of this overlap, we assessed the nine
overlapping DISLoDGED pathways in the context of additional
known factors related to side effect pathogenesis (Table 2). We
found that, in each case, the overlapping DISLoDGED pathway
had established ties to the clinical pathogenesis of the side effect
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termination criteria, as obtaining a global optimum was not deemed essential to gain biological insight. (5) The signature yielding the highest prediction

AUC is considered the best predictor set. In the example case, the resultant AUC is 1.0, a perfect predictor for the sample set. (6) To assess over-fitting and

hence the predictive potential of the metabolic signature, tenfold cross-validation is performed by generating ten partitions of 90% of the data to train

signatures and predict the remaining ten partitions of 10% of the data. To find signatures that have constant predictive power, the cross-validation

signatures were summed, and high scoring metabolites were considered the conserved metabolic response signature (DISLoDGED pathway) for the side

effect or indication. FPR, false positive rate; TPR, true positive rate; TP, true positive; TN, true negative; FP, false positive; FN, false negative.
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(Table 2, column 5). In the seven cases where the side effect
pathology had been reported independently of the drug,
alterations in the DISLoDGED pathway have been associated
with the disease (Table 2, column 6). Critically, in each of the
nine cases, we found that drugs causing the side effect had been
reported to induce a perturbation in the DISLoDGED pathway
in vivo, demonstrating that the in vitro-derived DISLoDGED
pathways are similarly perturbed in vivo (Table 2, column 7).
Furthermore, in seven of the nine cases, nutrient supplementation
targeted at the DISLoDGED pathways have been shown to be
effective in treating the drug side effect, whereas the remaining
two cases are inconclusive due to reports of both positive and
negative results (Table 2, column 8).

For example, among the 38 drugs within the CMap
database reported in SIDER as causing increased risk of cardiac
arrhythmias, we identified five DISLoDGED pathways
(Supplementary Note 1). Three of these DISLoDGED pathways,

which were a downregulation of oxidative pentose phosphate
pathway and two related upregulations in nitrogen metabolism,
overlap with genetic polymorphisms known to cause increased
susceptibility to arrhythmias37–39 (Table 2). These pathways
are known to have physiological ties to the pathogenesis
of arrhythmias40,41 and have been shown to be perturbed
in vivo by drugs causing arrhythmias42,43 (Table 2).
Furthermore, nutrient supplementation targeted at these
pathways has been found therapeutic in drug-induced
arrhythmias44,45 (Table 2). The remaining examples are
presented in Supplementary Note 1.

Comparison of DISLoDGED pathways with general disease
pathways. We further expanded the scope of validation beyond
the nine available cases of non-pharmacokinetic genetic variants
directly affecting side effect incidence. The MDDB database was
used to determine whether the identified DISLoDGED pathways

Table 1 | Summary of large-scale validation of drug-metabolic perturbation associations predicted by MetChange calculations.

Property Database # Drugs Properties analysed Statistical significance

Drug target distance DrugBank 134 536 Target reactions P¼ 1.65� 10� 10

(Wilcoxon rank sum test)
Drug–protein association PubMed 645 501 Signalling proteins Po0.01 (Permutation test)
Drug–metabolite association PubMed 645 375 Metabolites Po0.001 (Permutation test)
Drug side effect SIDER, PubMed 334 357 Side effects total

299 For co-term analysis
P¼ 5.6� 10� 2 (Permutation test)

Abbreviation: SIDER, Side Effect Resource.

Table 2 | Existing studies of pharmacodynamic-altering side effect susceptibility genes and overlapping DISLoDGED pathways*.

1
Side effect

2
DISLoDGED Pathway
(# metabolites in
pathway)

3
PD gene

4
Nutrient
overlap

5
Patho-
physiology

6
Metabolic
perturbation

7
In vivo drug
perturbation

8
Supplement

Weight gain Melatonin MC4R MC4R levels
correlated with
melatonin

Melatonin and
MC4R energy
regulators

Decreased melatonin
tied to metabolic
syndrome

Antipsychotics
suppress
melatonin
synthesis

Melatonin

Parkinsonism Poly-unsaturated
fatty acids

ZNF202 ZNF202 lipid
regulator

PUFAs linked to
Lewy bodies

Altered lipid
oxidation

RBC PUFAs altered Essential
fatty acids

Tardive
Dyskinesia

Serotonin 5-HT
receptors

Direct ligand Dopaminergic
neuron
interaction

NA 5-Hydroxy-
indoleacetate
perturbation

Conflicting
findings

Tardive
Dyskinesia

Ascorbate D3 receptors Dopamine
synthesis
cofactor

Dopamine
primary mediator

NA Metabolite levels
perturbed

Vitamin C,
vitamin E

Myotoxicity CoQ10 COQ2 CoQ10
synthesis

Mitochondrial
function

Q10 deficiency
associated
w/ myopathy

Decreased under
statin treatment

CoQ10
(conflicting)

Cardiac
arrhythmia

Urea cycle NOS1AP Nitrogen
regulation

NO affects
cardiac function

Altered NO linked to
arrhythmia

Various affect NO
production

L-arginine

Cardiac
arrhythmia

Pentose phosphate
pathway

GPD1L, ZFHX3 Oxidative stress
response

Oxidative stress
affects cardiac
function

H2O2 induces
arrhythmia

Clomipramine
induces via
oxidative stress

Various
antioxidants

Hearing loss Ascorbate COMT Dopamine
synthesis
cofactor

Dopamine
innervation in
inner ear

Dopa synth.
inhibition tied to
hearing loss

Cisplatin inhibits
dopamine

Vitamin C,
dopamine

Hearing loss Ascorbate, lipoate Glutathione
S-transferases

Oxidative stress
response

ROS-induced
cochlear cell
death

SOD deficiency tied
to hearing loss

Cisplatin induces
via oxidative stress

Vitamin C,
lipoate

Abbreviations: NA, not applicable; PUFA, poly-unsaturated fatty acids; RBC, red blood cell; ROS, reactive oxygen species; SOD, superoxide dismutase; 5-HT, serotonin.
*Existing studies of pharmacodynamic-altering side effect susceptibility genes and overlapping DISLoDGED pathways. The two cases of tardive dyskinesia have ‘NA’ in the ‘Metabolic perturbation in
disease’ row as tardive dyskinesia is not typically described as a disease outside of its occurrence as an adverse drug response, therefore there is no drug-independent case for comparison. See the
Supplementary Note 1 for full discussion and references related to each case.
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are conserved within in vivo data related to non-drug-induced
pathologies as well, where a significantly larger body of literature
exists than for side effect pathogenesis. This analysis hypothesizes
that non-drug-induced pathogenesis and corresponding side
effect pathogenesis share a common basis. Using the data col-
lected, we assessed the calculated DISLoDGED pathways in terms
of the five causal relationships in MDDB. Downregulated and
upregulated DISLoDGED pathways were assessed independently
to examine directional causal relationships. Approximately one-
sixth of calculated DISLoDGED pathways were investigated for
validation, and compared with an equal number of randomized
predictions as a control. The next sections describe each causal
link examined.

Gene variants affecting disease incidence. We first sought to
determine whether DISLoDGED pathways contain known
disease-linked gene variants. To do this, we compared the
metabolic subsystems into which disease-linked gene variants and
DISLoDGED pathways occur. We analysed 239 metabolic dis-
ease-linked genes from MDDB and found an enrichment
of disease-linked genetic variants among transporters
(one-tailed hypergeometric P¼ 0.0048) and inositol metabolism
(one-tailed hypergeometric P¼ 0.02), as well as a depletion of
variants in central carbon metabolism (one-tailed hypergeometric
P¼ 0.035). We found that DISLoDGED pathways showed similar
results, including an enrichment of downregulated DISLoDGED
pathways in inositol metabolism (P¼ 0.018) mirroring the
enrichment found in disease-linked genetic variants, as well as
enrichment of DISLoDGED pathways in non-central metabolism
(Supplementary Table 1). These results indicate certain metabolic
pathways may be inherently less robust to pathological
perturbation.

DISLoDGED pathway associations with disease physiology.
Next, we examined whether DISLoDGED pathways are known to
be essential to system physiology in a manner that could result in
disease when perturbed. To compare DISLoDGED pathways to
disease pathophysiology, side effects were grouped based on
affected physiological systems, such as renal diseases or auto-
immune complications. We first grouped DISLoDGED pathways
by nearest nutrient for better coverage in the literature (Fig. 6a).
DISLoDGED nutrient pathways preferentially altered by drugs
causing side effects in specific physiological systems were then
calculated. In 17 of the 18 cases of enrichments of downregulated
DISLoDGED nutrient pathways within particular physiological
systems, the downregulated pathways had directionally consistent
links to the disease pathophysiology (Fig. 6b and Supplementary
Data 2). For example, inositol metabolism downregulation was
enriched among drugs with side effects affecting the kidney,
including kidney failure. Supporting this relationship, the kidney
is a primary site of inositol synthesis46, and inhibition of inositol
transport has been reported to cause renal failure47.

Similarly, pathways that were upregulated by drugs affecting
particular physiological systems also showed directionally
consistent links to pathophysiology. In 9 out of 17 DISLoDGED
nutrient pathways that were upregulated in particular
physiological systems, inhibitors targeted at the upregulated
pathway were established therapeutics within the disease class
(Fig. 6c). For example, drugs causing cancer- or autoimmune-
related side effects were enriched in upregulation of folate
metabolism, and anti-folates are commonly used in treatment of
diseases in both classes. Supporting the implications of this
upregulation in side effect pathogenesis, studies have shown that
folate supplementation is tied to increased incidence of both
cancer48 and childhood asthma49.

Altered activity of DISLoDGED pathways in disease. We
then sought to determine whether DISLoDGED pathways are
significantly over- or under-active in corresponding clinical
disease and disease models, based on several metrics in the
MDDB. To perform this analysis, DISLoDGED metabolic
pathways were associated with dietary nutrients nearest in the
metabolic network. In an initial analysis of 323 DISLoDGED
nutrient pathways, downregulated DISLoDGED pathways
were found to be significantly enriched in disease-associated
nutrient deficiencies (59% enrichment, binomial P-value 0.0017),
whereas upregulated DISLoDGED pathways were depleted in
disease-associated nutrient deficiencies (47% depletion, binomial
P-value 0.036; Fig. 7a).

These results were confirmed in an independent set of 453
investigated DISLoDGED pathways added to MDDB.
Downregulated DISLoDGED pathways were more likely to have
a causal downregulation associated with the corresponding
pathology (17% enrichment of downregulation, binomial
one-tailed P¼ 0.045; Fig. 7b), whereas upregulated DISLoDGED
pathways were significantly predictive of consistently over-active
pathways tied to corresponding pathologies (67% enrichment of
over-activity, binomial one-tailed P¼ 0.003; Fig. 7c).

Effect of targeted inhibition of DISLoDGED metabolic pathways.
Next, we analysed in vivo data on the effect of non-drug chemical
inhibitors targeted at calculated DISLoDGED pathways. A causal
relationship would be indicated by (i) inhibitors targeted at
downregulated DISLoDGED pathways reproducing the clinical side
effect and (ii) inhibitors targeted at upregulated DISLoDGED
pathways treating the clinical disease. We found that metabolic
inhibitors targeting downregulated DISLoDGED pathways specifi-
cally were significantly more likely to cause corresponding side
effects (28% enrichment, binomial one-tailed P¼ 0.04; Fig. 7d).
Also, we found that both downregulated and upregulated DIS-
LoDGED pathways were more likely to be known targets for
effective metabolic inhibition to treat corresponding diseases,
indicative of imperfect directionality of predictions (64% enrich-
ment, binomial one-tailed P¼ 0.0015 and 29% enrichment, bino-
mial one-tailed¼ 0.09, respectively; Fig. 7e).

Effect of supplementation targeted at DISLoDGED pathways.
Finally, we compared calculated DISLoDGED pathways grouped
by nearest nutrient with clinical therapeutic nutrient
supplementation data (Fig. 6a). We sought to determine whether
downregulated DISLoDGED pathways might be targets for
nutrient supplementation as a disease therapy. We observed
that predicted downregulated DISLoDGED pathways were
preferentially targets of nutrient supplementation to alleviate
corresponding pathologies (24% enrichment, binomial one-tailed
P¼ 0.065; Fig. 7e), whereas overexpressed pathways were
preferentially depleted as effective nutrient supplements
(19% depletion, binomial P¼ 0.14), although the relationships
did not reach statistical significance for given sample sizes
available.

Discussion
The systems biology-based workflow developed in this study
predicts side effect-linked dysregulated metabolic pathways
(termed DISLoDGED pathways) from drug treatment of human
cells in culture. We contextualize numerous independent data
types that together support a key role of drug-induced non-
pharmacokinetic metabolic dysregulation in side effect pathogen-
esis. Through the construction of a comprehensive resource on
metabolic involvement in disease, we corroborate the predictions
made using five independent clinical, genetic and biochemical
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bodies of the literature. These results provide understanding of
the mechanisms underlying side effect pathogenesis, which have
remained largely opaque despite recent progress identifying
causal protein-binding events and genetic susceptibility factors.

The work presented relied upon the development of a systems
biology workflow to identify side effect-linked features and
validate the relevance of these features using historical in vivo
data. The use of systems biology approaches to study drug side
effects has become an active field in recent years. Previous studies
have predicted drug–protein-binding events responsible for side
effects9,50, effective combinations of drugs to minimize side
effects51, and drug mechanisms of action underlying side effect
pathogenesis12,52. Still, uncovering how causal binding events
result in disease is an essential and largely unanswered question,
as identified pathogenic mechanisms can potentially be used to

design therapies to circumvent drug side effects. The present
work we believe is the first to validate omics-driven predictions of
post-binding mechanisms underlying side pathogenesis using
clinical data at a large scale, which was empowered by the
generation of a new database through manual curation of the
literature.

The workflow presented is highly dependent upon large
amounts of gene expression data obtained under treatment by
diverse drugs to filter out perturbations due to factors other than
common side effects. Normalization of data across multiple
studies and platforms is a substantial issue. Thus, data generated
within a single study is ideal, but such large studies are rare. For
this reason, the potential to extend the workflow to new data
types, for example, in vivo gene expression data, may be limited.
Owing to the use of in vitro data, corroboration against in vivo
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Figure 6 | Maps of interactions between DISLoDGED pathways grouped by nutrient domain and corresponding side effects grouped by disease class.

Only nutrients and disease classes with at least one marginally enriched nutrient-class interaction (hypergeometric Po0.1) are shown. (a) Using the

metabolic network reconstruction Recon 1, side effect-specific metabolic perturbations (DISLoDGED pathways) are grouped into nutrient domains to

enable comparison with existing disease-related genetic, clinical and pre-clinical data to assess the potential causality of observed perturbations. In this

figure, the number of side effects with an upregulation in the production pathway for a metabolite is shown in yellow boxes, whereas blue boxes show

the number of side effects with a downregulation in the production pathway for a metabolite. (b) Downregulated DISLoDGED pathways. Nutrient-disease

class interactions indicating an enrichment of downregulations in drugs causing side effects within the class are coloured according to the legend.

(c) Upregulated DISLoDGED pathways. Nutrient–disease class interactions indicating an enrichment of upregulations in drugs causing side effects within

the class are coloured according to the legend. Many of the enriched interactions are consistent with known effects of nutrient/pathway perturbation on

the corresponding disease classes and physiological systems.
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data appears critical. Further deployment of the presented
workflow may hinge upon expansion of curated disease data
necessary to corroborate the clinical relevance of in vitro drug
treatment features. Furthermore, the definition of pathways used
to integrate disparate data types has yet to be concretely
established and may be an area for further workflow
optimization.

Owing to the ubiquity of gene set enrichment analysis
(GSEA)53 in pathway-based analysis of gene expression, a
discussion on the differences between the MetChange algorithm
and GSEA is warranted. Both methods attempt to aggregate
‘signal’ in gene expression data along pathway definitions to
increase the interpretability of the data and decrease the effect of
noise. GSEA uses a variety of pathways, including manually
curated metabolic pathways, and results are typically P-values of a
Kolmogorov–Smirnov test for the likelihood that the cumulative
distribution of expressions of genes in each pathway have not
changed between conditions. MetChange defines a different
production pathway for each metabolite in the network, based on
calculation of functional states of the metabolic network, and
scores for each metabolite how gene expression along this
production pathway has changed between conditions. As a result,
MetChange has the potential to give finer resolution results, as its
results are defined at the level of individual metabolite scores
rather than pathway scores. However, the overall performance of
the methods are difficult compared due to the fundamental
difference in resolution of outputs.

In the comparison between MetChange and comparable
methods (Fig. 3), it is apparent that, on the data set used, output
correlations of none of the methods with measured metabolite
perturbations in yeast were particularly high. However, given
that this analysis is possibly using these methods out of their
intended use cases, no presumptions should be made regarding
the general usefulness of any of these methods. Rather, this may
highlight the difficulty in establishing standards by which to
compare pathway analysis algorithms with statistical rigor. In this
study, we performed the analysis primarily to provide some
context for the relative performance of the MetChange algorithm
at one specific task relevant to predicting metabolic changes
occurring within the cell. We note that a recent method to predict
metabolomics changes from gene expression has reported
statistically significant correlations on three other yeast data
sets54, including values that exceed those reported in Fig. 3.

There are at least two obvious potential improvements that
could be made to the workflow used in this work. First, as the cell
lines within the CMap are within the NCI60 cell line panel, and
expression, growth and most recently exometabolomic12 data
have been measured for these lines, cell-specific metabolic models
could be used in place of a global model. Second, the human
metabolic network reconstruction has been updated with the
publication of Recon 2 (ref. 55), and thus improvements might be
made from the increased scope of the model. We evaluated the
potential for improvements using these changes by constructing
cell-specific models for the MCF-7, HL-60 and PC-3 cell lines
based on Recon 2 and running the MetChange algorithm on
randomized simulated expression data drawn from an empirical
distribution of MAS5.0 normalized P-values from the CMap data
used in this study. Briefly, between cell-specific Recon 2 models,
error was between 10 and 25% across replicates when given the
same metabolite uptake constraints. The largest difference
observed was by enforcing measured metabolite uptake
constraints. Differences in MetChange scores between models
constrained and unconstrained by metabolite uptakes were
around 70%, indicating that significantly constraining the flux
state of the model alters MetChange scores more so than
topological differences. Thus, further improvements in prediction
accuracy might be seen by accounting for the baseline metabolic
differences between cell lines.

One interesting outcome of the work was that, although
previously identified genetic susceptibility factors in the literature
are dominated by genes involved in pharmacokinetics, we observe
overlap of drug-induced metabolic changes with nine genes that
affect pharmacodynamics. This may suggest that such non-
pharmacokinetic genes may play a larger role in side effect
pathogenesis than currently appreciated. We did, however, see
some alteration of pharmacokinetic genes in a few cases as well
(Supplementary Note 3). In addition, DISLoDGED pathways
overlapped with clinical disease-linked pathways for both drug-
treated and drug-independent studies, suggesting a common basis
in pathogenesis. Furthermore, our results suggest that targeted
nutrient supplementation may be a relatively simple and
inexpensive path to broadly reduce side effect incidence. The
impact of drugs on patient metabolic status is thought to be an
underappreciated but important aspect of drug response56, and
this work further suggests this interaction is worthy of significant
investigation. Patient attrition may be reduced through effective
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nutrient supplement to drug pairing during the development
process.

A natural question that may arise is whether certain pathways
or side effect disease classes are more successfully predicted by the
method used in this work than others. A sensitivity analysis
shows that the method appears to be fairly robust in being able to
predict DISLoDGED pathways in various areas of the metabolic
network and across disease classes. Restricting to at least five pairs
investigated for both the down-regulated DISLoDGED pathways
and random pairs, deficiencies of nine nutrients (polyunsaturated
fatty acids, coenzyme Q10, melatonin, niacin, riboflavin, steroids,
thiamine, vitamin A and vitamin D) had disease associations
better predicted by down-regulated DISLoDGED pathways
compared with random, whereas one (choline) did not. Similarly,
in side effects with at least two pairs investigated in both random
and real, seven side effect/nutrient deficiency relationships were
better predicted by down-regulated DISLoDGED pathways
(dyspepsia, epilepsy, hyperlipidemia, interstitial nephritis, tardive
dyskinesia, testicular atrophy, and thrombocytopenia), whereas
only two were better predicted by random nutrients (ecchymosis
and tendonitis). These types of sensitivity analyses on predictive
capability for particular nutrients and side effects are vulnerable
to error because of small sample size but corroborate overall
results that dysregulated DISLoDGED pathways are predictive of
metabolic pathways associated with corresponding pathologies.

Although challenges remain, the ability to observe perturba-
tions important to in vivo side effect susceptibility within in vitro
data suggests that early-stage drug screening to identify and
manage side effect risk may become possible, analogous to other
‘disease in a dish’ efforts57. Notably, high use drugs such as statins
and antipsychotics, where patient populations are large enough
for statistical analysis of rare side effect events, dominate cases of
side effects where genetic components have been identified.
However, if vulnerable pathways can be identified through
analysis of in vitro data, it may become easier to identify
susceptibility factors for more rare disease classes as well. This
workflow is currently limited to cases in which gene expression
alteration underlies side effect pathogenesis, which is an
undefined subset of all side effects. The results presented show
the utility of integrating large, standardized data sets, such as the
CMap, with clinical data types such as side effect incidence,
genetic studies and disease–nutrient associations, in the context
of a highly annotated network with clear functional connections.
Such integration of disparate data sources is a key challenge in
many areas of the life sciences today.

Methods
Overview of computational approach. As described schematically in Fig. 1, with
more detailed methods diagrams in Figs 2 and 5, we employed a combination of
constraint-based modelling and machine learning to look for metabolic gene
expression perturbations that are conserved in adverse drug reactions. The first
step is the analysis of drug-specific metabolic perturbations using the constraint-
based MetChange algorithm described below and comparison of these perturba-
tions to drug-specific response properties. We then combined MetChange scores
based on side effects and used an area under the Receiver Operating Characteristic
curve (AUC)-maximizing classification genetic algorithm described below to
determine small subsets of metabolic changes highly conserved in certain side
effects. We note in general that the fields of constraint-based modelling and
machine learning have developed a wide variety of methods that perform similar
tasks. We compare our method with several other constraint-based methods and
with gene expression data alone, as described in the Results. We also qualitatively
contrast our method with GSEA53 in the Discussion. In general, performance of
machine learning methods largely depends on the particular problem. We note that
in cases of rare events, such that only a small fraction of samples have a property,
AUC (or rank) maximizing algorithms have been shown to perform particularly
well. In addition, we choose to place a hard constraint on the number of variables
rather than using a traditional SVM with an L2-norm approach, for example. This
was done to maximize interpretability of the resulting signatures, which was critical
for later comparison of DISLoDGED pathways with pathology deficiency
relationships and disease-linked and side effect-linked genetic susceptibilities.

Thus, although we do not discount that other methods may exhibit better
performance by certain standards, we chose our approach to meet the specific
requirements of our problem, as is typical in the field. Full description of methods
is below and a MATLAB implementation is provided (see Supplementary
Software).

CMap data processing and integration. Gene expression data for the AffyMetrix
HT Human Genome U133A platform were obtained from the CMap database22 for
MCF-7, PC-3 and HL-60 cell lines. Data were MAS5.0-normalized with the
BioConductor package58. Human Entrez Gene identifiers associated with probes
were used to map detection P-values to their corresponding reactions based on the
Boolean gene–protein–reaction associations as was previously described59.
Reactions that were not associated with a gene were assigned a P-value of 0.
Metabolic exchange was set to an exchange value of � 1 for DMEM (MCF-7)
or RPMI (PC-3 and HL-60) media metabolites. In cases where no metabolite
production was possible with open constraints, the metabolite was removed from
further analysis. For the cases of in vitro experimental validation under genistein
treatment, for which data was generated for the fraction of metabolites generated
from glucose, the MetChange algorithm was run using glucose as the sole carbon
source to enable direct comparison with the data.

The MetChange algorithm. The Metabolite-Centered Hotspots of Altered Net-
work Gene Expression (MetChange) algorithm was used to analyse differential
quantitative gene expression profiles in the context of a genome-scale metabolic
network19. This algorithm is built upon the Gene Inactivity Moderated by
Metabolism and Expression (GIMME) algorithm previously developed to build
context-specific metabolic networks based on gene expression data59,60.

The MetChange algorithm defines a consistency metric of an expression profile
with optimally producing each metabolite in the metabolic network. For each
metabolite, a sink reaction is created and flux through the sink reaction is
maximized using flux balance analysis:

vmax;i ¼ max½cv;i � v � S � v ¼ 0; a � v � b� ð1Þ
where S is the stoichiometric matrix, v is the reaction flux vector, a and b are
vectors for the lower and upper bounds of the reactions and cv,i corresponds to the
imposed reaction objective for each ith sink reaction. This results in a set of optimal
production fluxes for each network metabolite.

Each reaction is then weighted by a detection P-value from mapped expression
data to solve a second optimization problem. To obtain metabolite production
‘consistency’ scores, xi, for each ith metabolite, scores were generated by setting the
lower bound of the metabolite sink reaction to its maximal production flux, vmax,i,
and minimizing the inner product of the reaction detection P-values:

xi ¼ min½cp � v � S � v ¼ 0; a � v � b; ai ¼ vmax;i�; ð2Þ
where mapped detection P-values p were stored in a weighting vector cp, and each
vector component cp,i¼ pi mapped to each ith reaction. This optimization is the
GIMME algorithm-like step of the MetChange algorithm. Each ith component in
cp serve as a cue for whether a reaction is detected or absent (that is, a lower P-
value indicates a reaction is more likely to be present). Hence, this second
optimization determines: (i) a flux distribution which maximizes the production of
a metabolite and (ii) generates a weighted flux distribution score defining
consistency of the production of that metabolite with expression data. These scores
cannot be directly compared across metabolites because of the fact that each
metabolite has a different network flux state at maximal production. Thus, we
compared metabolite production consistency scores between treated and control
samples with a standardized score:

Zmet;j ¼
xtreated;j � mcontrol;Nj

scontrol;Nj

; ð3Þ

A MATLAB implementation of the MetChange algorithm is provided in the
Supplementary Software File.

Analysis of expression data for yeast under carbon and nitrogen starvation.
Metabolite concentration25 and gene expression26 data for S. cerevisiae were
mapped to a genome-scale yeast metabolic reconstruction, iMM904 (ref. 26). For
all methods, scores were compared to log-2 metabolite concentration changes
relative to the initial time point for carbon or nitrogen data. Spearman correlations
were calculated to avoid biases due to variable score distributions among the
different methods. K-means clustering analysis was performed using 100 replicates.
In all cases, the same clusters were obtained in repeated runs.

For the MetChange algorithm, reported expression values were used to generate
reaction presence/absence P-values. Expression values were ranked, and based
upon the apparent distribution, a value corresponding to the bottom second
percentile of expression was used to define the noise level. Expression values below
this threshold were assigned a P-value of 1 as ‘not present.’ The P-values below the
threshold were then inverted across the threshold to generate a symmetric
distribution. The mean and standard deviation of this approximated noise
distribution were used to generate significance scores for the remaining expression
values using a Z-test. These P-values were then mapped to reactions based on
model-defined gene–reaction relationships. When multiple probes were assigned
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the same reaction, the minimum value was used. The MetChange algorithm was
then applied using these mapped reaction presence/absence P-values. As the data
were longitudinal in time and multiple controls were not available, log-2 scores
were calculated with respect to the initial time point, rather than taking standard
scores.

Reporter metabolite analysis was then implemented. P-values for the
significance in expression change were used as inputs to the reporter metabolite
analysis. Each expression value was first standardized across conditions and then
P-values were calculated using a standard Z-test for each gene across condition.
10,000 permutations of the data were used to generate the background levels of
perturbation.

In addition, the E-Flux method was implemented18, with metabolite sinks set as
separate objective reactions similar to the MetChange algorithm for comparison.
Optimal flux through each metabolite sink reaction was then calculated using flux
balance analysis for each gene expression data set, and log-2 scores compared with
the initial time point for each carbon and nitrogen data set were calculated.

For a direct comparison with gene expression level cues, we implemented the
following approach. First, standardized scores of expression level changes were
calculated with respect to all gene expression data sets for the particular
perturbation (carbon or nitrogen starvation). The scores were mapped to their
respective reactions according to the gene–reaction association in the metabolic
network. We then assessed whether absolute changes in expression levels are
predictive of the magnitude of metabolite change by adding the standardized
reaction scores, weighted by the absolute stoichiometric coefficients. We then
assessed whether higher gene expression for a reaction was indicative of a higher
product concentration and lower reactant concentration. The mapped reaction
score was added to the score for all metabolites in the reaction, multiplied by the
signed stoichiometric coefficient for each metabolite.

Analysis of metabolic response phenotypes across drugs. The Recon 1
metabolic network19 was first converted into an irreversible network, such that each
reaction proceeds only forward, and reactions that can proceed in multiple directions
are split into two forward-proceeding reactions. The MetChange algorithm was run
using gene expression presence/absence MAS5.0 P-values from the CMap database
build 02 (ref. 22). When multiple controls were present, a standard score was
generated. When a treated sample was from a batch with a single control, the mean
and standard deviation of all control samples was used instead.

Cell line standard scores were then generated in the following manner. First, for
each cell line, the median scores of all samples for each drug were found and used as
the cell line-specific response. Then, to simplify compartment-specific scores to a
general metabolite response, cytosolic metabolite scores were taken when available. If
no cytosolic metabolite existed, the median of scores across all compartments was
taken as the metabolite score. Finally, a standard score across all drugs was calculated
for each cell line. Consensus drug perturbations across cell lines were calculated by
averaging cell-specific MetChange scores and standardizing across all drugs.

PubMed querying of drug associations. To identify drug-metabolite associations
in the literature in an automated manner, PubMed/MEDLINE records were
downloaded from the National Library of Medicine and abstracts were parsed to raw
text. Chemical entities were tagged using Reflect61. A training set of 44 abstracts
describing true drug-metabolite correlations (positive set) and 150 abstracts with
other chemical entities (negative set) were used to train a Bayesian network to
recognize abstracts that mention the causative relationship between an administrated
drug and the presence of a certain metabolite. A second Bayesian network was
trained to recognize sentences within the abstracts that refer to metabolites from
those that refer to other chemical entities. For each drug-metabolite co-occurrence
the two Bayesian networks were used to assign a posterior for abstract occurrence
and a posterior for sentence occurrence and the joint probability of the two
posteriors was used as the drug–metabolite score. The evaluation of the output is
provided in Supplementary Data 1. The text-mining output was evaluated using a
random sample of 100 pairs. The abstracts that describe each sampled pair were
manually checked and identified as true or false positives. The score cutoff was set to
0.33, which provides an 82% true positive rate and 70% accuracy.

Text querying on side effect–metabolite, protein–metabolite and drug–protein
co-occurrences were performed using the Entrez Programming Utilities (NCBI)
using a simple ‘AND’ specification. Side effects were obtained from the SIDER
database35. Signalling protein lists were obtained from various publically hosted
resources including the International Union of Basic and Clinical Pharmacology
database (http://www.iuphar.org/). Metabolite common names were obtained from
the Recon 1 network reconstruction19. All associations are included in
Supplementary Data 1.

Determining metabolite network distance from drug perturbation. To calcu-
late network distance from metabolites, the DrugBank database28,29 was
downloaded and cross referenced with drugs from CMap. A total of 134 drugs
present in CMap have targets in Recon 1 reported in DrugBank. Across the three
cell lines (HL60, MCF7, PC3) and multiple drug concentration ranges, there were a
total of 611 expression profiles of drug-perturbed states. The median metabolite
network distance of each metabolite was calculated for each of the 134 drugs,

ignoring metabolites with reaction connectivities greater than 30, such as cofactors,
protons and water.

MetChange scores were compared against expression data, randomized data
and reporter metabolite analysis results. Data and scores were pooled into bins
based on their standard scores. For each bin, the average of the median network
distance of metabolites to metabolites of known drug-targeted enzymes was
calculated for comparison. Metabolites predicted from the expression data set were
determined by taking the highest expression change among reactions involving the
metabolite and binning accordingly. The random data set was generated by
permuting the expression data set 1,000 times and calculating the average bin value
across all 1,000 sets. The reporter metabolite data set was generated as described in
the original publication24 using 10,000 permutations to generate background
perturbation levels.

Analysis of drug-signal protein signatures. Drug–protein and protein–
metabolite literature co-associations were found as described. Associations were
binary based on the presence or absence of known literature association. A receiver
operating characteristic (ROC) curve was generated for the ability of MetChange
scores to indirectly predict drug–protein association. MetChange scores for all
three cell lines (not averaged) were used together. At increasing thresholds from 0
to effectively infinity, metabolites with absolute MetChange scores greater than the
threshold were scored as significantly changed for each drug. Proteins associated
with perturbed metabolites were then determined using the protein–metabolite
literature co-associations. These proteins were used as guesses for true drug–
protein literature associations for the drug corresponding to the sample, and the
true positive rate and false positive rate were calculated. Varying the threshold from
0 to effectively infinity then generates the ROC curve. To assess statistical sig-
nificance of the resulting AUC, 1,000 permutations of MetChange scores were
analysed in the same way and a non-parametric rank test was conducted on the
resulting AUCs.

Determination and analysis of drug side effect signatures. Drug side effects
were taken from SIDER database33 for available drugs overlapping with the CMap
database. The SIDER database contains minimum and maximum occurrence
frequencies for a number of both treated and control studies for each drug–side
effect pair. Side effect frequencies were processed in the following manner. The
mean of the minimum and maximum frequency was calculated for each study, and
then the median of frequencies from all studies was found for both treated and
placebo studies. The difference between treated and placebo occurrence frequency
was then calculated. If placebos were not available, the treated frequency was used.
These frequencies were then mapped to all expression samples from CMap
corresponding to the appropriate drugs. A minimum of 30 expression sets for a
side effect were required for inclusion in the analysis. A total of 357 side effects
were analysed for 850 expression sets corresponding to 334 drugs.

A genetic algorithm was then implemented, termed SiderFinder (Fig. 5). The
matrix of MetChange scores for the 850 expression sets was input as well as the
corresponding side effect frequencies for a particular side effect. A maximum
number of predictor metabolites was set to 20 metabolites. A set of 125 candidate
solutions were generated, assigning values of � 1, 0 or 1 to each metabolite to
indicate negative, no or positive prediction of a high MetChange metabolite score
on occurrence of side effect. Each expression set was then scored for the side effect
for each individual by multiplying the predictor set for the individual by the
MetChange scores for the expression set. These side effect scores were ranked and a
pseudo-ROC curve was generated by comparison of scores with the side effect
frequencies for the current side effect. At each threshold, expression sets with a side
effect score greater than the threshold were called as having the side effect. To
weigh more heavily affecting samples with higher side effect frequency, the base 10
logarithm of each side effect frequency was taken and adjusted such that the lowest
non-zero frequency had a value of 1, each order of magnitude greater in frequency
is a unit greater, and all zero frequency side effects remain zero. An ROC curve was
then calculated with true positive hits being assigned the value of the adjusted side
effect frequency, with no effect to false positive, true negative and false negative
values. The number of true values was taken to be the sum of the adjusted
frequency vector so the AUC of the pseudo-ROC still spans 0 to 1. The AUC of this
curve was then used as the objective function to maximize in the genetic algorithm.
Tenfold cross-validation was performed, and perturbations that appeared
cumulatively in at least four of the ten sets we selected. Using the genetic algorithm
directly on gene expression data achieved similar classification performance
(results not shown), but metabolite scores were chosen as the variables due to their
previously established performance in predicting drug-specific metabolic
perturbations.

Genetic algorithm creation, mutation and crossover parameters were used as
implemented in the OptGene function of the COBRA Toolbox 2.0 (ref. 62). The
genetic algorithm was solved using the Global Optimization Toolbox in MATLAB
(MathWorks). A MATLAB implementation is provided.

Co-association analysis of drug side effect signatures. Statistical analysis of
literature co-associations of side effects with side effect metabolite signatures was
performed with (i) a non-parametric permutation test on the drug side effect
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metabolite signatures against 1,000 permutations of the signatures for the AUC of
predicting presence/absence of literature side effect/metabolite co-association in
PubMed abstracts and (ii) a hypergeometric test for the enrichment of literature
association among side effect/metabolite pairs in predicted signatures.

Construction of MDDB. To enable statistical analysis of predicted DISLoDGED
pathways, disease–nutrient pairs were randomly selected from observed down-
regulations, observed upregulations and random associations chosen by resampling
the former two lists through bootstrapping. These disease–nutrient pairs were then
evaluated for existence of established relationships using manual literature searches
while blind to the origin of the pair to prevent investigator bias. The list of collected
metabolism–disease relationships is not yet comprehensive because of the scope of
the effort, but instead relationships were investigated in a targeted manner.

Data collection for the database covered literature up to and including
May 2013.

Pathway analysis. We curated a database of 1,394 distinct GWAS publications34

and extracted 239 distinct disease-associated metabolic genes that overlapped with
the 1,496 genes in Recon 1. We then assigned pathways to each disease-associated
metabolic gene as well as to each DISLoDGED pathway calculated in our analysis
(Supplementary Data 1). Disease-associated genes were assigned pathways based
on the previously assigned pathway of corresponding reaction assigned in Recon 1.
DISLoDGED pathways (which are metabolite centred) were associated with
disease-linked pathways by determining the most frequent pathway among all
reactions in which a metabolite takes part. To assess enrichment, hypergeometric
tests were performed to determine whether the observed coverage of metabolites or
genes was enriched or depleted in particular pathways, controlling for multiple
hypothesis testing.

Side effect pathophysiology classifications. To assess whether common meta-
bolic perturbations were observed among related diseases, we manually grouped
side effects by pathophysiological disease class. Enrichment was assessed with the
hypergeometric test, at a significance level of a¼ 0.1. Enrichment where there was
only a single disease within the class was discarded, as were in conflicting cases (in
which a nutrient was downregulated in certain diseases in the class and upregulated
in others).

Side effect-linked gene polymorphism search. We attempted to identify all cases
of genetic basis for side effect incidence reported in the literature, including GWAS
and targeted genetic studies. To be eligible for comparison, we required that the side
effect be a near or exact match and the metabolic pathway of the susceptibility gene
be within the scope of our model. For example, immune-related genes were excluded
due to nonspecific metabolic association, whereas G protein–coupled receptors
known be regulated by particular metabolic pathways were included. We generally
excluded genes related to drug pharmacokinetics, including drug metabolism and
transport, as the effects of polymorphisms on susceptibility are generally nonspecific
to the pathology. We also required that the pathology be manifested in nucleated
cells (that is, excluding red blood cell pathologies), as gene expression changes are
assumed to be irrelevant to pathologies of enucleated cells. Based on these criteria,
well over 20 studies were excluded, whereas 9 genetic susceptibilities spanning 6 side
effects were valid for comparison with predictions. We also mention two cases in
which pharmacokinetic genes do overlap with conserved side effect-linked gene
perturbations, suggesting possible interactions between pharmacokinetic and gene
expression effects of drug perturbation. Lists of included and excluded studies are
found in Supplementary Notes 3 and 4, respectively.

Nutrient deficiency literature search. To populate MDDB, we searched the
literature for associations between the pathology of the side effect and deficiency
relationships between the closest nutrient to the metabolic perturbation and the
occurrence of the pathology of the side effect. In an automated search, PubMed
abstracts were searched for a number of side effect and nutrient synonyms along
with a list of deficiency synonyms (Supplementary Data 2). Statistical significance
of enrichment of co-association PubMed abstract hits (presence/absence) among
downregulated and upregulated nutrient pathways was assessed through a dual
permutation analysis. For each perturbed side effect–nutrient pair, 1,000 permuted
pairs were generated by first randomly selecting the presence/absence result for a
random nutrient with the same side effect, and then randomly selecting the pre-
sence/absence result for a random side effect with the same nutrient, then aver-
aging the result. Then, the number of permutations with total presence calls greater
than the true observation was counted and divided by the total permutations, as is
typical in permutation tests.

In the manual alteration search, a number of possible nutrient–disease
relationships were identified, such as an inhibitor of the metabolic pathway causing
the side effect, an inhibitor of the metabolic pathway curing the side effect and so
on (Supplementary Data 2). Then, search terms were generated using synonyms,
and PubMed was searched. ‘Results were then filtered such that each nutrient–side
effect pair was assigned as ‘upregulated activity associated with the disease’,
‘downregulated activity associated with the disease’, ‘no associated with the disease’

or ‘conflicting associated with the disease’. Inconsistent results were assigned as
conflicting and were excluded from further analysis.’ Significance of enrichments of
particular relationships among upregulated and downregulated pathways were then
evaluated with the hypergeometric test.

In the manual deficiency search, deficiency relationships were defined such that
the DISLoDGED nutrient pathway could meet any of three possible criteria to be
considered a ‘hit.’ First, the deficiency of the nutrient could be known to be
associated with the occurrence of the side effect pathology. Second,
supplementation with the nutrient is known to alleviate the side effect pathology.
Third, a physiological dysregulation of the pathway is known to be associated with
the side effect pathology. PubMed and Google Scholar were both used for this
study. Patents were not accepted as valid references, unless associated with a
peer-reviewed publication.

To determine whether DISLoDGED pathways are significantly predictive of
side effect/nutrient deficiency relationships, we generated a list of ‘random’ side
effect/nutrient pairs for comparison with DISLoDGED pathway–disease pairs
through resampling of the pairs. Kolmogorov–Smirnov tests were used to ensure
the distributions were not significantly different between DISLoDGED pathways
and random side effect–nutrient pairs in terms of the frequency of occurrence of
nutrients, as resampling should guarantee.

We then performed the nutrient deficiency literature search in two phases. The
first was blinded and the second was an expansion and additional curation of the
blinded study. The initial study was blinded to ensure that there was no selection
bias in the search process. Random pairs were mixed with DISLoDGED pathways,
both upregulations and downregulations, and information on their origin was
removed. The literature searches for deficiency relationships were then conducted
by investigators not involved in the generation of the distribution and thus were
unaware of the treatments or treatment distributions. Statistical tests were only
performed on the blinded literature results. The initial blinded list was then
expanded to examine additional DISLoDGED pathways and curated to ensure
consistent criteria between investigators. Although the curated list is unblinded, we
have a greater confidence in this list for research purposes due to the consistent
criteria and expanded list of investigated relationships.

Overview of experimental validation of MetChange results. Drug-induced
metabolic perturbations calculated using the MetChange algorithm were validated
using in vitro experiments in the MCF-7 cell line for three drugs: metformin,
genistein and haloperidol.

Sample preparation. Human MCF-7 breast carcinoma cells (American Type
Culture Collection, HTB-22) were maintained in supplemented DMEM media
(CellGro Mediatech, 10013CV) with 10% (v/v) fetal bovine serum (Hyclone,
SH3039603), 1% (v/v) antibiotic/antimycotic solution (Omega Scientific, PS-20),
1% (v/v) non-essential amino acids (Hyclone, SH3023801), 1% (v/v) MEM vita-
mins (CellGro Mediatech, 25020CI), 1 mM L-glutamine (CellGro Mediatech,
25005CI). 4� 106 cells were seeded in supplemented MEM medium (CellGro
Mediatech, 15010CV) into 150 mm dishes. For labelling with [U-13C] glucose
(Sigma-Aldrich, 389374), the medium was replaced with supplemented MEM with
2 g l� 1 glucose total of which 50% was [U-13C] glucose. Approximately 2.0� 109

cells were harvested by incubation with trypsin for 5 min at 37 �C (Gibco, 25200-
056) and adjusted for total protein amount (Thermo Scientific Pierce, 23227).
Intracellular polar metabolites were extracted by rapid quenching with 50%
methanol at � 40 �C; total lipids were extracted using chloroform (Sigma-Aldrich,
366919). The cell extracts were dried by vacuum evaporation. Organic acids were
derivatized to form the corresponding oximes and trimethylsilyl derivatives. Acyl-
carnitines were derivatized to their corresponding methyl esters. Polar metabolites
were dissolved in 99.9% 2H2O with 0.75% 3-(trimethylsilyl)propionic-2,2,3,3-d4
acid (Sigma-Aldrich, 293040). Lipophilic metabolites were dissolved in
2H-chloroform with 1% tetramethylsilane (Sigma-Aldrich, 151831).

Drug treatment. Cells were exposed for a 24 h period to varying drug con-
centrations (as indicated in their respective citations below) while control cells were
exposed to the corresponding DMSO (CAS 67-68-5, Sigma-Aldrich, D8418)
dilution: metformin (glucophage; CAS 1115-70-4, 15169101, MP Biomedicals,
stock 3 M in PBS), genistein (CAS 446-72-0, 10005167100 Cayman Chemicals,
stock 100 mM in DMSO), haloperidol (haldol; CAS 52-86-8, 15369690 MP Bio-
medicals, stock 50 mM in DMSO). For acyl-carnitine measurements, the medium
was supplemented with 1 mM L-carnitine (CAS 6645-46-1, Sigma-Aldrich, C0283).
Each experiment was performed in three biological repeats.

NMR spectroscopy. NMR experiments were performed on a 500-MHz Bruker
Avance spectrometer with a 5-mm TXI z-gradient probe (Bruker-BioSpin, Karls-
ruhe, Germany) at 298 K. 13C enrichments were determined by one-dimensional
1H NMR difference spectroscopy (13C-coupled spectrum minus the 13C-decou-
pled spectrum). Two-dimensional indirect-detected 13C, 1H J-resolved HSQC
spectra were recorded over an experimental time of 1.5 d per spectrum with 5,120
indirect 13C data points, at 80 p.p.m. 13C sweep width, 40 p.p.m. carrier position,
4,096 direct 1H increments, 3 s recycling delay and 8 scans. Before Fourier
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transformation, the data were multiplied with a squared sine-bell window function,
phase corrected and zero-filled to 8,192 data points, for indirect 13C sampling.

Mass spectrometry. Quantification of organic acids was accomplished by gas
chromatography-mass spectrometry (ThermoFisher Trace GC Ultra/DSQ II single
quadrupole mass spectrometer). Calibration standards were prepared in water and
spiked with stable isotope-labelled internal standards. Detecting the derivatized
organic acids was achieved by single ion monitoring of each derivative after gas
chromatography separation. Acyl-carnitines were quantificated by LC/MS/MS
(Waters Ultra Performance LC/triple quadrupole mass spectrometer) using flow
injection analysis with electrospray ionization. Calibration standards of the acyl-
carnitines were prepared in bovine serum spiked with stable isotope-labelled
internal standards. Parent ion scanning was used to detect parent, acyl-carnitine
molecular ions that produced a characteristic acyl-carnitine fragment ion,
m/z¼ 99, formed by collision-induced dissociation.

Enzymatic assays. Pyridoxal 50-phosphate or vitamin B6 was determined in an
enzymatic plasma assay (A/C Diagnostics, ACB6001), which we adapted to
quantify tissue culture supernatant or intracellular Vitamin B6 content by using
PBST buffer with 0.1% Tween-20 (CAS 9005-64-5, Sigma-Aldrich, P9416).

Additional methods for analysis of metformin response. Acyl-carnitine species
from 2 to 16 carbons and organic acids of the tricarboxylic acid cycle were
analysed by liquid chromatography mass spectrometry and show dose-dependent
associations upon metformin treatment in MCF-7 cells. Acetyl-carnitine (C2)
values were determined in nmol mg� 1 protein (scaled by factor 1/1,000) and were
compared with acyl-carnitine (C12-C16) levels in pmol mg� 1 protein. Organic
acids were determined in nmol mg� 1 protein.
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