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Hippocampal seed connectome-based modeling
predicts the feeling of stress
Elizabeth V. Goldfarb 1,2,3, Monica D. Rosenberg 4,5, Dongju Seo1,2, R. Todd Constable 3,6 &

Rajita Sinha 1,2,7✉

Although the feeling of stress is ubiquitous, the neural mechanisms underlying this affective

experience remain unclear. Here, we investigate functional hippocampal connectivity

throughout the brain during an acute stressor and use machine learning to demonstrate that

these networks can specifically predict the subjective feeling of stress. During a stressor,

hippocampal connectivity with a network including the hypothalamus (known to regulate

physiological stress) predicts feeling more stressed, whereas connectivity with regions such

as dorsolateral prefrontal cortex (associated with emotion regulation) predicts less stress.

These networks do not predict a subjective state unrelated to stress, and a nonhippocampal

network does not predict subjective stress. Hippocampal networks are consistent, specific to

the construct of subjective stress, and broadly informative across measures of subjective

stress. This approach provides opportunities for relating hypothesis-driven functional con-

nectivity networks to clinically meaningful subjective states. Together, these results identify

hippocampal networks that modulate the feeling of stress.
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Feeling “stressed out” is a common human experience.
Although it is intuitively understood, the neurobiological
mechanisms underlying this subjective experience remain

unclear. High subjective stress is associated with negative long-
term consequences for mental1,2 and physical health3–5, and
immediate detrimental effects on cognition6. Yet expressing
stress-related feelings can also be adaptive7, and increasing
awareness of feelings is a goal of emotion regulation and
mindfulness-based stress reduction8. Thus, there is a need to
understand how feelings of stress arise and the brain networks
that underlie this core human experience.

Although research across species has elucidated neurobiologi-
cal mechanisms supporting physiological stress responses,
including activation of the hypothalamic-pituitary-adrenal axis
leading to glucocorticoid release9,10, subjective feelings of stress
often diverge from glucocorticoid responses11–13. Therefore, we
cannot assume that the same processes governing physiological
stress explain the feeling of stress. However, converging evidence
suggests that the hippocampus, known to reduce glucocorticoid
release by inhibiting the hypothalamus14, may also contribute to
the feeling of stress. The hippocampus is sensitive to stressor
exposure across species15–17. In rodents, the hippocampus is
necessary for anxiety behavior18–20. Recent findings show that
hippocampal neurons encoding memory for prior stressors were
reactivated in stress-susceptible mice, and optogenetically acti-
vating these neurons increased avoidance behavior21. In humans,
hippocampal volume is associated with life stress, emotion dys-
regulation22, cardiovascular stress reactivity23, and vulnerability
for perceived stress24. Cognitively, the hippocampal system may
contribute to the subjective feeling of stress by supporting
memory retrieval, which can either augment25 or diminish26

acute stress responses. Impairments in hippocampal function
could change stress reactions through generalizing from prior
stressful contexts10 and increasing reliance on habitual coping
strategies27. However, the contributions of functional hippo-
campal connectivity to subjective stress remain unknown.

Here, we use functional magnetic resonance imaging (fMRI) to
investigate whether changes in hippocampal connectivity result-
ing from a brief, sustained stressor could predict the feeling of
stress. Using a within-subjects design, participants were exposed
to a validated fMRI-based sustained exposure paradigm28–30

involving blocks with an uncontrollable barrage of highly aversive
and threatening images (Stressor) or neutral/relaxing images
(Neutral), from which we computed stressor-induced changes in
background hippocampal connectivity (Fig. 1a, b). Feelings of
stress were assessed repeatedly using distinct affective dimensions
of rating stress and arousal31 (Fig. 1c). In addition to acute
feelings, we measured chronic, non-stressor specific stress
appraisals using the Perceived Stress Scale1.

We tested how stressor-modulated hippocampal networks
predict sustained emergent feelings of stress by developing a
predictive modeling approach. Brief emotional responses can be
predicted from patterns of univariate and multivariate fMRI
signal32–34 and connectome-based predictive modeling (CPM)
provides a powerful tool to predict behavior from functional
connectivity35,36. Thus, we developed seed connectome-based
predictive modeling (sCPM) to link stressor-modulated hippo-
campal connectivity to the complex, sustained state of subjective
stress. Analyses reveal that distinct patterns of hippocampal
connectivity during a stressor predict enhanced and diminished
feelings of stress.

Results
Stressor changes feelings of stress and hippocampal con-
nectivity. The fMRI-based stressor successfully evoked feelings of

stress in our sample (N= 60, demographics in Supplementary
Table 1). Sustained ratings of both arousal and stress were greater
during the stressor relative to neutral, non-stressful image expo-
sure (Fig. 1d; controlling for sex and condition order, A: F1,58=
120.57, p < 0.001, partial η2= .96; S: F1,58= 166.51, p < 0.001,
partial η2= 0.96), and stress ratings increased significantly over
time (F2,116= 3.23, p= 0.043, partial η2= 0.045). Chronic sub-
jective stress (PSS) did not correlate with these acute stress or
arousal ratings (all p > 0.25).

To capture spontaneous, intrinsic fluctuations in functional
connectivity, we used a background connectivity approach37,
which has identified hippocampal coupling dynamics contribut-
ing to long-term memory38. After limiting synchronized
stimulus-evoked responses through regression and bandpass
filtering39, as well as regressing out other potential confounds
(“Methods”), we correlated the timeseries from an anatomical
hippocampal region of interest (seed ROI) with the timeseries
from all voxels throughout the brain, separately for stressor and
neutral conditions. As function and stress responsivity vary along
the anterior/posterior gradient40,41, we repeated this analysis
using percentile-defined anterior/posterior hippocampus as seed
ROIs (hereafter aHPC and pHPC; Fig. 1f). Comparing the
resultant seed-based functional connectivity maps revealed a
diffuse network including stressor-induced increases in connec-
tivity with pre/postcentral gyrus, putamen, and dorsolateral
prefrontal cortex (dlPFC) as well as decreased connectivity with
amygdala, hypothalamus, and parahippocampal cortex (PHC,
Fig. 1e, f; overlapping clusters shown in Supplementary Table 2).

We tested whether these hippocampal networks were simply
responsive to stressors or were also able to predict the subjective
feeling of stress. As feelings changed over time, we investigated
whether mean stressor-induced hippocampal connectivity pre-
dicted mean stressor-induced ratings of stress and arousal as
well as whether early hippocampal connectivity predicted later
ratings. We also explored whether stressor-modulated networks
could predict individual differences in chronic subjective
stress (PSS).

Hippocampal connectivity during stressor predicts feelings of
stress. We applied sCPM to understand which stressor-
modulated hippocampal functional connectivity patterns pre-
dicted feelings of stress (Fig. 2a). Similar to CPM42, this approach
uses leave-one-out cross-validation (LOO-CV) to extract clusters
from the hippocampal seed connectivity map (Fig. 1e, f) to build
models predicting behavior. For each set of N−1 participants,
Fisher-transformed hippocampal connectivity with each sig-
nificant cluster (relative to baseline) was computed per partici-
pant and correlated (Spearman rs) with feelings of stress (again,
relative to baseline). Clusters that had above-threshold correla-
tions with feelings of stress were separated into a positive network
(predicting more stress) and a negative network (predicting less
stress). Next, linear models were built relating mean hippocampal
connectivity with each network to feelings of stress. These models
were used to predict the left-out individual’s feelings of stress,
based on that individual’s connectivity between the hippocampus
and positive/negative networks during the stressor. Predictive
model power was assessed by comparing model-predicted with
true feelings of stress (rs). Statistical significance was determined
nonparametrically by comparing rs against the distribution of null
rs, derived from repeating the analysis 1000x with randomly-
shuffled ratings35. All models had medium to large effect sizes
when these analyses were repeated using tenfold cross-validation
(although, as expected with tenfold vs. LOO-CV, the correlation
coefficients were smaller; Supplementary Table 3). Seed-based
CPM analyses revealed networks that predicted higher and lower
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feelings of stress in novel individuals (Fig. 2b–g; Supplementary
Table 4). Functional connectivity between the full hippocampus
and hypothalamus and inferior temporal gyrus (ITG) throughout
stressor exposure predicted higher overall arousal ratings. Even
more remarkably, connectivity in early runs (first 2 min of
stressor relative to baseline) predicted both higher (positive net-
work) and lower (negative network) subsequent stress ratings
(last 2 min). The positive network included hippocampal con-
nectivity with hypothalamus, PHC, and medial temporal gyrus,
whereas the negative network included connectivity with cere-
bellar vermis and postcentral gyrus/precuneus. In addition,
negative networks predicting lower subsequent arousal ratings
included early hippocampal connectivity with dlPFC, cerebellar
vermis, and posterior putamen, and early pHPC connectivity with
middle frontal gyrus, precentral gyrus, and cerebellum.

Hippocampal networks adaptively respond during stressor.
The stressor-modulated hippocampal networks were defined as
showing significantly different functional connectivity between
the stressor and neutral conditions. This difference could have
come from having either higher or lower connectivity during the
stressor. We examined how the networks that predicted subjective
stress were modulated by stressor exposure. This would indicate
whether the stressor, on average, changed the hippocampal net-
work consistent with amplifying feelings of stress (e.g., increasing
connectivity in the network where higher connectivity predicted
feeling more stressed), attenuating feelings of stress (e.g.,
decreasing connectivity in that same network), or had a random
pattern (schematic in Fig. 3).

We first examined positive networks, in which higher
connectivity predicted feeling more stressed. We found that the
stressor decreased connectivity with each component of these

networks—consistent with attenuating feelings of stress. Strik-
ingly, we observed the same adaptive pattern for negative
networks, in which higher connectivity predicted feeling less
stressed. For these networks, the stressor increased connectivity—
which would also attenuate feelings of stress (Fig. 3, Z scores from
group map in Supplementary Table 4). Post-hoc analyses suggest
that participants with stress-related psychiatric histories (N= 16;
Supplementary Table 1) showed less adaptive responses,
particularly for hippocampus/hypothalamus connectivity,
although this requires further evaluation in patient samples
(Supplementary Fig. 1).

The above analyses reveal that stressor exposure modulated
hippocampal networks in a pattern consistent with attenuated
feelings of stress. Importantly, several of these networks were
prospective—that is, changes in connectivity that occurred within
the first 2 min of stressor exposure predicted feelings of stress
measured at the end of stressor exposure. Although this temporal
order suggests that hippocampal networks gave rise to these
feelings, it is possible that these networks were more strongly
linked to feelings measured concurrently (suggesting that feelings
of stress might have preceded these connectivity changes). As an
exploratory analysis, we used partial correlations43 to test whether
network strength was associated with subsequent feelings of
stress, even when accounting for concurrent feelings of stress. Of
the four networks that predicted subsequent stress, three
continued to show significant associations with subsequent stress
even with this control (hipp: Late stress [+]: rs= 0.42, p < 0.001;
Late arousal [−]: rs=−0.51, p < 0.001; pHPC: Late arousal [−]:
rs=−0.28, p= 0.03). These analyses support the idea that
these hippocampal networks responded during the stressor to
influence subsequent subjective stress. Together, these results
suggest an adaptive, multifaceted hippocampal connectivity
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response (extending across both positive and negative networks)
that is engaged during a stressor to modulate the feeling of stress.

Predictive hippocampal networks are specific. Having shown
that stressor-modulated hippocampal networks significantly
predict feelings of stress, we next tested the specificity of these
predictions. In particular, we investigated whether stressor-
modulated hippocampal networks could selectively predict the
construct of stress and whether the hippocampal network was
especially informative for generating these predictions.

To examine construct specificity, we used subjective ratings of
a construct unrelated to stress (focus) that was measured

concurrently with stress and arousal ratings (Fig. 4a). Overall,
participants reported being highly focused on the images, and this
did not significantly differ between conditions (Stressor vs.
Neutral: t59= 1.54, p= 0.13). We found that, even when
hippocampal connectivity predicted feelings of stress, it did not
predict ratings of focus (all models in Supplementary Fig.
2). An example model is shown in Fig. 4a (difference in
correlation with stress vs. focus Z= 1.87, p= 0.06). These results
demonstrate that predictive hippocampal networks are specific to
the feeling of stress.

To test whether hippocampal connectivity was specifically
informative about subjective stress, we tested the null hypothesis
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Fig. 2 Stressor-induced hippocampal connectivity networks predict feelings of stress. a Schematic of seed connectome-based predictive model (sCPM)
analysis and summary of predictive networks. The goal of this analysis was to determine whether stressor-modulated hippocampal connectivity could
predict feelings of stress and, if so, to identify the clusters that were part of positive (predict feeling more stressed) and negative (predict feeling less
stressed) networks. We used leave-one-out cross-validation to determine which clusters correlated (positively and negatively) with feelings of stress
across N-1 participants, and used these linear models to predict feelings of stress in left-out participant N. b–g Hippocampal functional connectivity
networks predict feelings of stress. b–d Positive networks separated by whether they predicted ratings of stress (pink) or arousal (green). b Anatomical
distribution of positive network. Clusters that predicted both stress and arousal shown in purple. c, d Summary of network performance. Left, predictive
power; Spearman’s correlation (rs) of model-predicted with observed ratings. Histogram shows distribution of correlation values from 1000 iterations of
randomly-shuffled feelings of stress used to nonparametrically determine P values. Right, correlation between overlap network strength (i.e., mean of
clusters selected on every leave-one-out iteration) and observed ratings. e–g Negative networks. As in (b), clusters that predicted both stress and arousal
are shown in purple. h, i Posterior hippocampal functional connectivity network predicting lower arousal ratings. Source data for network performance are
provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16492-2

4 NATURE COMMUNICATIONS |         (2020) 11:2650 | https://doi.org/10.1038/s41467-020-16492-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


that any stressor-induced changes in functional connectivity
could predict feelings of stress. We used a control ROI (FFA, 7
mm-sphere centered on published coordinates44) and computed
stressor-modulated background connectivity with FFA following
the same procedure used for the hippocampal ROIs. This revealed
a stressor-responsive FFA network. Notably, this network had
even more significant clusters (i.e., model features) than the
hippocampal network. We then repeated the sCPM analysis to
test whether the FFA network could predict the same dimensions
of subjective stress. Supporting the predictive value of the
hippocampal network, the FFA network did not successfully
predict any of these metrics of subjective stress (example in
Fig. 4b). Indeed, all hippocampal models predicting stress
significantly out-performed models trained on the FFA network
(Supplementary Fig. 2). Interestingly, the FFA network—
specifically, connectivity between FFA and clusters in orbito-
frontal cortex (OFC)—could successfully predict focus (nonpara-
metric P= 0.03; focus vs. stress: Z= 2.47, p= 0.013). Thus, this
analysis revealed a double-dissociation: stressor-modulated hip-
pocampal connectivity predicted feelings of stress (not focus),
whereas stressor-modulated FFA connectivity predicted focus
(not feelings of stress). Together, these results support the
construct and network specificity of the hippocampal models.

Further analyses confirmed that hippocampal model predic-
tions were not confounded by age or motion. Motion, measured

as absolute mean frame-to-frame displacement, did not signifi-
cantly correlate with the predicted behaviors (rated stress and
arousal x Stressor scan motion: both p > 0.25; rated stress and
arousal x age: all p > 0.23). To control for broader motion
confounds, we compared model-predicted to observed ratings
using partial correlations43 accounting for motion during these
scans (e.g., during both stress images and gray baseline runs) or
participant age. All model predictions significantly correlated
with observed ratings even with these controls (all rs > 0.35).
Finally, in a separate analysis, we confirmed the relevance of the
full hippocampal networks (rather than individual clusters) by
demonstrating that each network numerically out-performed the
single best cluster (Supplementary Table 5).

Predictive hippocampal networks are consistent. The above
results uncover functional hippocampal connectivity networks
that significantly and specifically predict feelings of stress. But
how well do these networks capture the feeling of stress? Ideally,
hippocampal networks would predict multiple dimensions of
stress-related feelings, and extend beyond any particular hippo-
campal seed or subgroup of participants. We conducted further
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analyses to test the generality and consistency of these predictive
networks.

As we measured several assays of stress-related feelings (ratings
of stress, arousal, and chronic subjective stress [PSS]), and could
generate predictions from hippocampal network strength at
different timepoints (overall vs. first 2 min of the Stressor scan)
with different baselines (relative to the preceding baseline epoch
or the Neutral control scan), we tested whether similar clusters
were consistently predictive across these analyses (Fig. 5a). In
particular, we identified clusters that were selected in every LOO
fold of models built to predict each measure of subjective stress
(i.e., hippocampal connectivity with these clusters correlated with
feelings of stress for every set of N−1 participants). We then used
nonparametric permutation testing to assess whether these
clusters were selected more often than chance. Connectivity
between the hippocampus and hypothalamus (16.7% of models;
P= 0.042), PHC (33.3%; P= 0.007), ITG (16.7%; P= 0.03),
precentral (16.7%; P= 0.043) and postcentral gyri (25%; P=
0.013) were consistent features of positive networks, in
which higher connectivity predicted feeling more stressed. In
contrast, connectivity with dlPFC (25%; P= 0.016), cerebellar
vermis (16.7%; P= 0.027), and postcentral/precuneus (16.7%:
P= 0.047) were consistent features of negative networks. pHPC
network clusters did not survive permutation testing (P > 0.05).

Together, these results demonstrate that hippocampal networks
can broadly predict the feeling of stress.

We next tested whether these predictive networks were
consistent across functional connectivity maps computed using
the full hippocampus, aHPC, and pHPC as seed regions. As these
connectivity maps were calculated separately, deriving consistent
predictive regions across maps would provide further internal
validation. For each predictive model, we compared anatomically
overlapping clusters identified on every LOO fold using full
hippocampus, aHPC, and pHPC as seeds (Fig. 5b; Supplementary
Table 2). Notably, both hypothalamus (arousal) and PHC (stress)
were identified as part of positive networks, regardless of whether
connectivity was computed with the full hippocampus or only the
anterior portion.

Finally, we tested whether predictive networks were consistently
informative across our participant sample. As men and women
have been shown to differ in expressing subjective stress45,46 and
in prevalence of stress-related psychopathology47,48, it was
possible that the identified networks were actually driven by one
sex, or were more informative for one sex than the other. In an
exploratory analysis, we built seed connectome-based predictive
models of interactions to identify hippocampal networks that
differentially predicted feelings of stress for men and women
(Supplementary Fig. 3). These analyses revealed several pHPC and
aHPC networks that predicted opposite feelings of stress and
arousal for male and female participants, which included
connectivity with dorsomedial and ventromedial PFC. Crucially,
none of the regions that predicted overall subjective stress were
identified as uniquely predicting stress in men and women. That
is, hippocampal connectivity with regions from the positive
network (including hypothalamus) and negative network (includ-
ing dlPFC) did not make different stress predictions for male and
female participants. Thus, these findings demonstrate that the
predictive hippocampal networks were consistently informative
across subgroups of participants.

Discussion
By developing sCPM, we showed that hippocampal connectivity
during a stressor predicts the emergent feeling of stress in novel
individuals. We show that stressor exposure leads to widespread
changes in functional coupling between the full hippocampus, as
well as anterior (aHPC) and posterior (pHPC) subregions, and
the rest of the brain. sCPM analyses parsed these patterns into
distinct networks that predicted feeling more or less stressed.
Identified networks were specific to the construct of stress and the
hippocampal connectome, and were consistent across dimensions
of subjective stress, hippocampal seeds, and participant sub-
groups. This work uncovers a role for hippocampal networks in
the subjective experience of stress.

The sCPM approach enabled us to find which components of
stressor-modulated hippocampal connectivity, an anatomically-
specific and hypothesis-driven network, predict the feeling of
stress. Crucially, this technique facilitated the discovery of net-
works relevant to subjective stress by considering all hippocampal
connections35 rather than limiting to specific a priori connections
of interest (e.g., amygdala49, which was not predictive). Instead,
we found that hippocampal connectivity with clusters in the
hypothalamus, PHC, and ITG formed a positive network (where
higher connectivity predicted feeling more stressed), whereas
connectivity with dlPFC, postcentral gyrus, and cerebellum
formed a negative network, predicting feeling less stressed.
Despite the distinct roles of these networks, our findings suggest
that individuals engaged both positive and negative networks
adaptively to attenuate feelings of stress. That is, participants had
higher connectivity with negative networks (whose strength
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Fig. 5 Consistency of predictive hippocampal connectivity networks. N=
60 participants. a Clusters identified on every LOO fold as predictive across
a significant number of models. Clusters are shown separately for models
predicting higher (positive network) and lower (negative network) stress
responses. Bar plots indicate the number of models predicting arousal (A),
stress (S), and PSS (P) that included that cluster. b Overlapping clusters
predicting the same stress construct across hippocampal seeds.
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predicted feeling less stressed), but, at the same time, had lower
connectivity with positive networks.

The discovery that hippocampal/hypothalamic coupling pre-
dicts the human conscious feeling of stress expands the known
role of this circuit in regulating the physiological stress
response14. This also aligns with recent findings in rodents that
anxiety behavior was caused by activating hippocampal neurons
which project to the hypothalamus50. On average, the hippo-
campus was negatively correlated with the hypothalamus during
the stressor relative to neutral image exposure (possibly con-
sistent with suppression51 of physiological stress responses by the
hippocampus). Having more negative connectivity also predicted
feeling less stressed, suggesting similar directionality of physio-
logical and subjective stress responses. Our identified networks
also include other regions known to have congruent associations
with stress-related physiological and cognitive functions. In the
positive network, ITG and PHC BOLD responses correlate with
higher blood pressure stress reactivity52 and predict more intense
negative emotions33. In the negative network, dlPFC is sensitive
to stress hormones and regulates thoughts and attention53,
including diminishing threat responses via cognitive emotion
regulation54. Together, these findings suggest overlap in higher-
level neural networks supporting both subjective and physiolo-
gical stress55,56, consistent with recent reports that hippocampal
responses could predict both subjective and physiological fear
responses34.

These predictive hippocampal networks were specific to the
construct of stress and generalized across multiple facets of the
subjective stress response. By capturing individual variation, these
predictive models robustly account for a range of subjective stress
experiences. Although the hippocampal network was shown to be
particularly informative, it is worth noting that other neurobio-
logical mechanisms likely contribute to subjective stress. Wide-
spread plasticity during stress can influence behaviors like coping
strategies28, impulse control57, and drug craving58, which may
themselves relate to specific aspects of the subjective stress
response. Further work is also needed to determine whether this
hippocampal network is predictive across stressors that induce
varying levels of subjective stress responses. Notably, this analysis
approach revealed that a distinct subjective state (focus) could be
predicted by a relevant network (FFA/OFC connectivity), con-
sistent with work implicating these regions in attention to salient
stimuli44,59. These results underscore that the sCPM approach
presented here will provide an ideal tool to explore the predictive
power of networks centered on other hubs and broadly map
neural correlates of subjective states.

In addition to demonstrating the specificity of hippocampal
networks, we also showed that they were widely informative
across subjective stress measures and subgroups of participants.
An exploratory analysis identified distinct hippocampal con-
nectivity networks that predicted opposite feelings of stress for
men and women. These included hippocampal connectivity with
mPFC regions, associated with emotion regulation53 and sex-
specific stress responses in humans60 and rodents61. While fur-
ther work is needed to characterize the sex-specific roles of these
networks, these results provide an important precedent and
technique to discover sex-specific neural predictors of other
states.

Finally, by demonstrating that hippocampal connectivity
within the first 2 min of stressor exposure can predict subsequent
feelings of stress, these results support the prospective power of
these models and highlight the importance of early stressor
effects. Although many studies of stress actions on human hip-
pocampal function wait over 10 min (for peripheral glucocorti-
coid elevation), these findings compel investigations of early
stress effects on hippocampal cognition62. The finding that

hippocampal connectivity could predict future feelings of stress,
even when controlling for concurrent feelings, also suggests a
causal mechanism in which these networks drive subjective stress
responses, although this cannot be confirmed with correlational
data. It is also possible that the success of these predictive models
is due to a separate factor modulating hippocampal connectivity
across individuals (e.g., variability in univariate responses to sti-
muli) or modulating both brain and subjective stressor responses
(e.g., attention to stimuli). Our analyses indicate that these par-
ticular factors are unlikely, as background connectivity analyses
should mitigate the influence of stimulus-driven univariate
responses, and analyses of focus ratings indicate that subjective
attention is both uncorrelated with subjective stress and asso-
ciated with a distinct neural network. Nevertheless, it is important
to consider non-causal interpretations of the relationship between
hippocampal connectivity and subjective stress.

In conclusion, we show that hippocampal connectivity under
stress predicts feelings of stress. sCPM enables the discovery of
hypothesis-driven functional connectivity networks that predict
clinically relevant behavior. The identified networks provide
insight into the neurobiological mechanisms supporting this
important subjective component of the stress response, which
may in turn have implications for health and psychopathology2,4.

Methods
Participants. In total, 60 right-handed healthy participants (N= 31 female;
demographics in Supplementary Table 1) provided written informed consent to
participate in the experiment and were included in analyses. This sample size was
determined based on prior work showed that significant stressor-modulated brain
responses could be observed using this protocol for N= 30 participants28. To
account for sex differences in stress responses63, we doubled this sample size to
have equivalent power for male and female participants. Male and female parti-
cipants did not differ significantly in age (F: mean 29.68 years [SD 10.05]; M: 29.52
[6.94]; p > 0.25) or IQ (F: 113.17 [6.91]; M: 114.48 [7.17]; p > 0.25). Participants did
not meet any of the following exclusion criteria: current criteria for any moderate/
severe substance use disorder; current opiate use; psychosis/severe psychiatric
disability; significant medical conditions; regular use of medications that could
interfere with the stress response; claustrophobia or ferromagnetic metal in the
body (MRI safety); and, for female participants, pregnant or nursing. All partici-
pants were light to moderate drinkers per National Institute on Alcohol Abuse and
Alcoholism criteria. The Yale Medical School Institutional Review Board approved
procedures.

Procedures. Participants arrived at the MRI center and had ~30 min to acclimate
to the environment. They completed practice trials outside the fMRI scanner,
viewing four unique images (not repeated during the experiment) and using the
button box to practice making ratings. Immediately prior to the fMRI scan, par-
ticipants completed guided progressive relaxation (4 min). At 8 AM, the fMRI
session began. Participants passively viewed 132 unique images in Stressor (S, 66
images) and Neutral (N, 66 images) conditions using a block design (Fig. 1a, order
counterbalanced). There was a recovery period between conditions (~5 min)
during which participants were provided progressive relaxation instructions. Each
condition contained 8 contiguous runs (66 s each): 2 baseline (5 s gray screen, 1 s
inter-stimulus interval [ISI]) followed by 6 image runs (5 s image, 1 s ISI). During
each ISI, a black screen was presented with a white central fixation point. Prior to
each run, participants were reminded to focus on the presented images. The
Stressor condition contained highly aversive images including terror, violence,
mutilation, fear, and disgust selected from the International Affective Picture
System64 (mean valence rating= 2.34 [SD 0.63], 1: negative/9: positive; arousal=
6.0 [0.83], 1: calm/9: excited), shown to correspond to the discrete emotional
categories of anger, disgust, fear, and sadness65. Neutral images were identified
online based on common neutral/relaxing situations, including images of nature
and people reading in a park (valence= 6.07 [4.2], arousal= 3.63 [0.47]). Emo-
tional intensity (valence/arousal ratings) and content (image category) were mat-
ched per run within each condition. Stimuli were projected onto a screen that
participants viewed using a mirror attached to the head coil. Each image was 880 ×
660 pixel resolution (standard for tasks involving IAPS images) and centrally
presented, occupying the majority of the screen as shown in Fig. 1b. After every
run, participants rated their stress (1: not at all stressed while viewing the pictures,
9: extremely stressed), arousal (1: calm/relaxed, 9: highly aroused or excited,
including images from the Self-Assessment Manikin66), and focus (1: not at all, 9:
very well) using an MRI-compatible button box. Responses were self-paced. Stimuli
were presented using E-Prime (2.0)67. Following completion of the scan, partici-
pants were compensated and went home.
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fMRI parameters. Scanning was performed using 3 T Siemens MRI systems (Trio
and Prisma). Acquisition parameters were the same across scanners with no sig-
nificant difference in proportion of male and female participants collected using
each scanner (p > 0.25) or the measures of subjective stress predicted by hippo-
campal connectivity (all p > 0.16). Structural data were acquired using a sagittal
high-resolution T1-weighted 3D MPRAGE sequence (2400 ms TR, 1.96 ms TE, flip
angle: 8°, FOV: 256 × 256, 208 slices, 1 mm3 isotropic voxels). Functional data were
acquired using a multiband (5 slices/RF pulse) gradient EPI sequence (1000 ms TR,
30 ms TE, flip angle: 55°, FOV: 220 × 220, 75 slices, interleaved acquisition, 2 mm3

isotropic voxels; 4 s dummy run pre-acquisition).

fMRI preprocessing. Scans were preprocessed using FSL 6.0.1 and AFNI 18.3.08.
Data were high-pass filtered at 0.01 Hz to remove low-frequency drifts in signal,
and runs with excessive head motion (defined a priori as >1.5 mm absolute mean
frame-to-frame displacement, MCFLIRT) were excluded (1 run from 1 partici-
pant). A GLM was conducted per run to control for motion and covariates of no
interest (FEAT68). Regressors included: 6 linear estimated motion parameters,
white matter, cerebrospinal fluid, and global mean signal timeseries (each plus
temporal derivatives) and stick function regressors for nonlinear motion outliers.
To focus on background connectivity, we removed trial-evoked signal (image on/
offset modeled using a boxcar convolved with a double-gamma HRF, plus temporal
derivatives).

Model residuals were aligned to a reference functional scan and then to the
participant’s high-resolution anatomical scan using boundary based registration69.
Images were warped to MNI space and smoothed to 6 mm FWHM (using
3dBlurToFWHM, which has been shown to help address motion confounds70).
Data were then bandpass-filtered to leave signal from 0.01-0.1 Hz, a frequency
band used to compute background connectivity during extended task blocks38.
This provided an additional control for task-evoked responses, as stimulus
presentation (1 image/6 s; 0.17 Hz) was outside the upper bound of this filter, and
helped minimize potential respiration-related artifacts71. Smoothed, filtered data
were then concatenated into baseline (gray runs 1–2), early (image runs 1–2), mid
(image 3–4), and late (image 5–6) epochs (following28,63). These epoch boundaries
were not signaled to participants during the experiment.

Regions of interest. The hippocampus was anatomically defined on each parti-
cipant’s high-resolution MPRAGE scan using FSL’s FIRST segmentation. Anterior
(aHPC) and posterior (pHPC) hippocampus were defined as the anterior- and
posterior-most thirds of this ROI along the longitudinal axis using a custom
MATLAB script72. Participant-specific ROIs were warped to MNI space for group-
level analyses.

Seed-based connectivity maps. The average time course of responses within each
hippocampal ROI was computed from the preprocessed data (separately per
baseline/early/mid/late epochs; 132 s each). ROI timeseries were each correlated
with the timeseries of all voxels throughout the brain and resulting r maps were
Fisher z-transformed. To assess changes induced by stress (and enable us to
interpret relative correlation directionality), differences in connectivity during each
image epoch (early/mid/late; 528 s total) relative the immediately preceding base-
line epoch (B) were computed.

These differential functional connectivity maps were then entered into a
second-level linear mixed effects model (3dLME) with Condition, Epoch, and Sex
as fixed effects and participant as a random effect. This allowed for changes in
connectivity over time based on temporal evolution of feelings of stress and prior
reports of changing univariate stress responses28 and did not assume the same
cross-run variability across participants73. Importantly, feelings of stress were not
included in the model. The contrast used to define significant stressor-modulated
clusters, which would be used in the seed connectome-based predictive models, was
the Condition contrast of Stressor vs Neutral. To control for multiple comparisons,
this contrast was cluster-corrected using the latest 3dClustSim74. For voxelwise p <
0.001, we used bi-sided first-nearest neighbor clustering to determine the cluster
threshold for α= .05. Clusters were labeled using visualization in fsleyes with labels
from the Harvard-Oxford Cortical and Subcortical Atlases, Cerebellar Atlas in
MNI152 Space, and published coordinates (e.g.,75). Networks were visualized using
NeuroMArVL (Monash Adaptive Visualization Lab; http://marvl.infotech.monash.
edu.au/).

Seed connectome-based predictive models (sCPM) inputs: brain. Using sig-
nificant clusters from ROI seed-based connectivity maps as a mask (full hippo-
campus: 73 clusters: aHPC: 95; pHPC: 122; FFA [control ROI]: 121), we computed
mean hippocampal connectivity per cluster per participant using each participant’s
z maps. Consistent with 3dLME model inputs, average connectivity per cluster was
computed for early/mid/late epochs relative to baseline. To predict stressor-
modulated feelings from stressor-modulated hippocampal connectivity, inputs
were relative (i.e., connectivity during S-B, or the difference between S-B and N-B).

sCPM inputs: feelings of stress. Feelings of stress were assessed every minute for
the 2 baseline runs and the 6 Stressor/Neutral condition runs throughout the scans.
As with brain connectivity, we used relative feelings of stress to specifically probe

stressor-induced responses while accounting for biases in self-reports of subjective
stress. Ratings were matched to the brain connectivity inputs (i.e., if the con-
nectivity was S-B, self-reports were also S-B). For prospective models, connectivity
from the Early epoch (relative to Baseline) was used to predict feelings of stress
during the Late epoch (relative to Baseline).

sCPM feature selection. For every LOO loop, clusters (i.e., model features) were
selected if they showed above-threshold Spearman correlations with behavior. In
most cases, this threshold was p < 0.05. If no clusters met this criterion (as when
behavior was randomly permutated), we used the top X most predictive clusters
determined by rank-ordering coefficients per cluster from strongest to weakest,
computing differences between successive coefficients, and selecting all X clusters
with correlations above the largest drop in predictive power (i.e., largest difference
between successive coefficients).

sCPM feature consistency. We ran nonparametric tests to determine whether the
same networks were consistently identified across dimensions of subjective feelings
of stress. Similar to the nonparametric tests used to assess model predictive power,
ratings were randomly shuffled 1000x with all ratings per participant linked per
shuffle (i.e., all stress/arousal ratings for subject A were paired with brain con-
nectivity from subject B). All predictive models were generated per iteration (mean
arousal, late arousal, etc.) and clusters selected on every LOO fold were stored. This
created null distributions of the number of models for which each cluster was
selected. P values were computed by comparing the number of models for which
each cluster predicted the true behavior to this null distribution.

Multiple comparisons correction. Models were trained to predict aspects of
subjective stress (arousal, stress, PSS scores) from functional connectivity defined
using hippocampal seeds (full, aHPC, pHPC) during Stressor image runs (all six or
early only), relative to the immediately preceding baseline or the difference between
stress-baseline and neutral-baseline. In other words, per subjective stress measure,
12 models were trained and tested using LOO cross-validation. With strict Bon-
ferroni correction (0.05/12= 0.0042), nonparametric p values from 2/5 models
survive. However, as the predictive models in each set are not independent (e.g.,
maps from full hippocampus/aHPC/pHPC are not independent) this correction is
overly strict. To ensure that predictions were robust and reliable, we assessed the
consistency of features (functional connections) selected during model training
(Fig. 5). If model predictions were driven by noise, we would not expect the same
features to be selected in multiple networks. Instead, features were consistently
selected across models.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. The source data underlying Figs. 1d, 2c–d, f–g, i, 3, 4
and Supplementary Figs. 1, 2c–g, 3c–f, i, k are provided as a source data file.

Code availability
Predictive models were generated using a modified version of publicly available
connectome-based predictive modeling (CPM) code (accessible at https://github.com/
YaleMRRC/CPM).
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