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Fluvastatin (FLV) is a hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor
often used to lower total and low-density lipoprotein (LDL) cholesterol and for the
prevention of adverse cardiovascular events. This drug as well as melittin (MEL), the
major component of honeybee venom (Apis mellifera), has shown antineoplastic activity,
then representing promising approaches for cancer therapy. However, adverse effects
related to the use of FLV and MEL have been reported and very few studies have been
carried out to obtain an optimized formulation allowing for combining the two drugs and
then maximizing the anticancer activity, then minimizing the needed dosage. In the present
study, an optimized formulation in terms of minimized particle size and maximized zeta
potential was investigated for its cytotoxic potential in humanOVCAR3 ovarian cancer cells.
FLV-MEL nano-conjugates, containing a sub-toxic concentration of drug, demonstrated an
improved cytotoxic potential (IC50 � 2.5 µM), about 18-fold lower, compared to the free
drug (IC50 � 45.7 µM). Cell cycle analysis studies demonstrated the significant inhibition of
the OVCAR3 cells proliferation exerted by FLV-MEL nano-conjugates compared to all the
other treatments, with a higher percentage of cells accumulating on G2/M and pre-G1
phases, paralleled by lower percentage of cells in G0/G1 and S phases. The synergistic
antineoplastic activity of FLV andMEL combined in the optimized formula was also showed
by the marked pronecrotic and pro-apoptotic activities, the latter mediated by the
modulation of BAX/BCL-2 ratio in favor of BAX. Our optimized FLV-MEL formulation
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might therefore represents a novel path for the development of specific and more effective
antineoplastic drugs directed against ovarian cancer.

Keywords: fluvastatin, melittin, nano-conjugates, apoptosis, cytotoxicity, ovarian cancer

INTRODUCTION

Cancer represents the second leading cause of death globally,
accounting for almost 10 million deaths, and involves different
molecular mechanisms leading to deregulated proliferation of
cells (Sung et al., 2012). These uncontrolled cells do not respond
appropriately to the signals regulating the physiological cell
behavior; instead they grow and multiply “irrationally” and, in
the worst scenario, spread to a different body part from where the
tumor started forming metastases (Cooper and Hausman, 2000).
Numerous intrinsic and non-intrinsic cancer risk factors have
been identified including spontaneous DNAmutations, smoking,
nutrient intake, and hormone levels (Wu and Zhu, 2018).

According to the information available on Continuous Update
Project (CUP) (https://www.wcrf.org/) and Global Cancer
Observatory (GCO) (https://gco.iarc.fr/), ovarian cancer
currently represents the 8th most common cause of cancer in
women and the 18th most commonly occurring cancer overall.
Despite the huge amount of research in the field, late diagnosis is
still one of the main issues connected with this cancer type,
especially because the symptoms are very hard to spot, in part
explaining why only 35% of women will live for 10 or more years
after diagnosis (Dong et al., 2014). Furthermore, among all the
gynecologic tumors, this type of cancer is considered to be the
deadliest (Chobanian and Dietrich, 2008; Chandra et al., 2019).
Treatment modalities of ovarian cancer often include debulking
surgery and chemotherapy, while radiotherapy is rarely used
(Chandra et al., 2019). Unfortunately, unwanted side effects
due to the high toxicity and/or the length of the therapy have
been related to the abovementioned treatments. Based on the
above, we investigated a new possible strategy to treat ovarian
cancer through the formulation of a molecule with known
pharmacological application in other diseases (the so-called
drug repurposing), therefore shortening the required
preclinical toxicological studies necessary before their approval
(Pushpakom et al., 2019).

Since their approval by Food and Drug Administration (FDA),
statins, such as fluvastatin (FLV), have been mainly used to treat
and/or prevent cardiovascular diseases (CVD) and to maintain
low-density lipoprotein (LDL) cholesterol in the blood at
physiological levels (Zhou and Liao, 2009; Islam et al., 2017).
In the case of CVD, such as coronary heart disease and heart
attack, these drugs are not able to cure these pathological
conditions; instead they can help prevent them getting worse
or recurring in people who have been identified as subjects with a
high risk of developing them. Preclinical in vitro and in vivo
studies have also suggested the use of statins for the treatment of
different types of ovarian cancer (Couttenier et al., 2017;
Akinwunmi et al., 2019). FLV is one of the
hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase
inhibitors mainly used for the treatments of dyslipidemia and

coronary artery disease (Aoki et al., 2012). In addition to these
activities, FLV has shown antineoplastic, antimetastatic, and toxic
effects in different experimental models for cancer (Zhang et al.,
2010; Salis et al., 2016; Fahmy, 2018).

Melittin (MEL), a small water-soluble cationic peptide
composed by 26 amino acids, is the major component of
honeybee venom (Apis mellifera) (Soman et al., 2009).
Although many publications have reported the anticancer
activity of this peptide both in vitro and in vivo, its clinical
use is disputed due to its non-specific cytotoxicity and hemolytic
activity, especially when used at high doses (Shaw and Kumar,
2019). Since MEL is also able to exert other relevant biological
activities such as antibacterial, antiviral, and anti-inflammatory
activity (Lyu et al., 2019), the development of optimized
formulations in which MEL, at very low concentration, is
combined with other antineoplastic drugs to obtain a
synergistic anticancer activity can be of the utmost importance.

The aim of the present work was to investigate the cytotoxic
and pro-apoptotic efficacy of a sub-toxic concentration of FLV on
human OVCAR3 ovarian cancer cells after its optimized
formulation to MEL nano-conjugates. This specific cell line
was selected because it represents an appropriate model
system in which to study drug resistance (Sakhare et al., 2014;
Afonso de Lima et al., 2020) as well as the toxic potential of statins
alone or in combination with other antineoplastic drugs against
ovarian cancer (Scoles et al., 2010; Casella et al., 2014; Abdullah
et al., 2019; Yarmolinsky et al., 2020). A two-level, three-factor
(23) full factorial design was employed for the preparation and
optimization of FLV-MEL nano-conjugates. The optimized FLV-
MEL formula, containing a sub-toxic concentration of FLV, was
then examined in OVCAR3 cells for the determination of half-
maximal inhibitory concentration (IC50) values, cell cycle,
apoptosis and necrosis analysis, BAX and BCL-2 proteins, and
mitochondrial membrane potential (MMP) determination.

MATERIAL AND METHODS

Materials and Reagents
FLV was a kind gift of The Egyptian International Pharmaceutical
Industries Company (EIPICO, Cairo, Egypt). When not otherwise
specified, the chemicals, all of analytical grade, were supplied by
Thermo Fisher Scientific Inc. (Pittsburgh, PA, United States) or
Sigma-Aldrich Corporate (St. Louis, MO, United States).

Experimental Design for Preparation and
Optimization of FLV-MEL Nanoconjugates
A two-level, three-factor (23) full factorial design was employed
for the preparation of FLV-MEL nano-conjugates. FLV
concentration (mM, X1), MEL concentration (mM, X2), and
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pH (X3) were studied as independent variables, whereas particle
size (PS, nm, Y1) and zeta potential (ZP, mV, Y2) were selected as
responses (dependent variables) (Table 1).

The combination of the levels of the independent variables
yielded a total of eight formulations as depicted in Table 2.
Analysis of variance (ANOVA) test was employed to assess the
effects and interactions of the variables on the responses at 95%
level of significance using Design-Expert® Software Version 12
(Stat-Ease Inc., Minneapolis, Minnesota, United States). The
equations describing the selected factorial model and process
order for each response were generated in terms of coded
factors.

The desirability function that consolidates all the investigated
responses to anticipate the optimum levels of the independent
variables was calculated to select the optimal formulation. The
desired goals were set at minimizing the particle size and
maximizing the magnitude of the zeta potential (Table 1).

Determination of IC50 by MTT Assay
OVCAR3 ovarian cancer cells were cultured as described
elsewhere (Alhakamy et al., 2020). The IC50 values of
OVCAR3 ovarian cancer cells, untreated (considered as a
control) or treated with MEL, pure FLV (FLV-R), or FLV-
MEL nano-conjugates for 24 h, were measured through the
metabolism of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] to a formazan salt as previously
described (Caruso et al., 2017; Awan et al., 2020), with slight
modifications. Briefly, OVCAR3 cells (1 × 105 cells) were seeded
into a 96-well tissue culture plate and incubated in a humidified

environment (5% CO2, 37°C) in order to ensure the complete
attachment of the cells. The day of the experiment, cells were
treated for a period of 24 h at the end of which the MTT protocol
was applied. The absorbance at 569 nm in each well was read by
using a Spark® multimode microplate reader (Tecan Group Ltd.,
Seestrasse, Maennedorf, Switzerland). The IC50 for each of our
experimental conditions (MEL, FLV-R, or FLV-MEL nano-
conjugates) was calculated based on the curves obtained
measuring the variation of cell viability (%) as a function of
increasing concentrations (0.39, 1.56, 6.26, 25 µM, and 100 µM)
of MEL, FLV-R, or FLV-MEL nano-conjugates.

Cell Cycle Analysis
The analysis of cell cycle in OVCAR3 under our experimental
conditions was performed by using flow cytometry as
previously described (Alfaifi et al., 2020; Fahmy and
Aldawsari, 2020). Briefly, OVCAR3 cells, previously seeded
in 96-well plates (3 × 105 cells/well), were treated with MEL,
FLV-R, or FLV-MEL nano-conjugates for 24 h. Untreated
cells were considered as a control. MEL, FLV-R, or FLV-MEL
nano-conjugates were used at a sub-toxic concentration
(IC10). At the end of the treatment, cells were separated
(centrifugation), fixed (70% cold ethanol), centrifuged again,
washed (PBS), and stained (propidium iodide + RNase
staining buffer). As a last step, each sample was analyzed
by using a FACS Calibur flow cytometer (BD Bioscience,
United States).

Annexin V—Propidium Iodide Staining
A dual staining technique was employed to study the impact of
our different experimental conditions on the percentage of
apoptotic (early or late stages) or necrotic OVCAR3 cells
(Hsiao et al., 2016; Alfaifi et al., 2020). OVCAR3 cells,
previously seeded in 96-well plates at the density of 3 ×
105 cells/well, were treated with MEL, FLV-R, or FLV-MEL
nano-conjugates for 24 h. Untreated cells were considered as a
control. MEL, FLV-R, or FLV-MEL nano-conjugates were
used at a sub-toxic concentration (IC10). Cell staining was
accomplished by using Annexin V-FITC Apoptosis Kit (BD
Bioscience, CA, United States) using the manufacturer’s
suggested protocol, allowing for identifying both early and
late phases stages of apoptosis as well as differentiating
apoptosis from a cell death that occurred by necrosis. The

TABLE 1 | Independent variables and responses used in 23 full factorial
experimental design for the formulation and optimization of FLV-MEL nano-
conjugates.

Independent variables Levels

(−1) (+1)

X1: FLV concentration (mM) 1.00 2.00
X2: MEL concentration (mM) 1.00 5.00
X3: pH 5.50 9.00
Responses Desirability constraints
Y1: particle size (nm) Minimize
Y2: zeta potential (mV) Maximize

Abbreviations: FLV, fluvastatin; MEL, melittin.

TABLE 2 | Experimental runs and the observed responses of FLV-MEL nano-conjugates prepared according to 23 factorial design.

Experimental run # Independent variables PS ± SD ZP ± SD

FLV concentration (mM) MEL concentration (mM) pH

F-1 2.00 5.00 5.50 138.11 ± 2.23 11.10 ± 0.54
F-2 2.00 1.00 5.50 180.21 ± 2.72 0.05 ± 0.01
F-3 2.00 5.00 9.00 604.36 ± 4.89 6.50 ± 0.12
F-4 1.00 1.00 9.00 544.31 ± 3.99 0.87 ± 0.04
F-5 1.00 5.00 9.00 597.78 ± 3.12 12.76 ± 0.31
F-6 2.00 1.00 9.00 638.19 ± 4.27 0.05 ± 0.02
F-7 1.00 1.00 5.50 127.25 ± 1.89 0.20 ± 0.03
F-8 1.00 5.00 5.50 160.70 ± 1.69 17.41 ± 0.42

Abbreviations: FLV, fluvastatin; MEL, melittin; PS, particle size; ZP, zeta potential.
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well-known ability of propidium iodide to penetrate damaged/
dead cells only was exploited to distinguish between the two
types of cell death.

BAX and BCL-2 Proteins Determination
The quantitative determination of BAX and BCL-2 proteins was
carried out after 24 h treatment by using Human BAX ELISA kit
(DRG Instruments GmbH,Marburg, Germany) and Zymed® Bcl-
2 ELISA Kit, respectively, according to the manufacturers’
instructions (Fahmy and Aldawsari, 2020; Md et al., 2020).
Untreated cells were considered as a control. MEL, FLV-R, or
FLV-MEL nano-conjugates were used at a sub-toxic
concentration (IC10).

Mitochondrial Membrane Potential
MitoProbe™ TMRM Assay Kit was used to monitor the changes
inMMP occurring in OVCAR3 cells, previously seeded in 96-well
plates (1 × 105 cells/well) and exposed to MEL, FLV-R, or FLV-
MEL nano-conjugates for 24 h, as previously described (Awan
et al., 2020). Untreated cells were considered as a control. MEL,
FLV-R, or FLV-MEL nano-conjugates were used at a sub-toxic
concentration (IC10).

Statistical Analysis
The IBM SPSS® statistical (Ver. 25, SPSS Inc., Chicago, IL, United
States) or Graphpad Prism (Ver. 8, San Diego, CA, United States)
software was used for cell-free and OVCAR3 cells’ experiments,
respectively. For multiple comparisons, one-way or two-way
ANOVA followed by Tukey’s post hoc test was employed.
Each set of experiments is reported as means ± standard
deviation (SD) of at least four independent experiments. The
statistical significance was set up at p-values <0.05.

RESULTS

Experimental Design of FLV-MEL
Statistical Analysis of the Factorial Design
Establishing the formulation and process variables that could
have impact on the drug delivery system features is necessary.
Factorial design shows a privilege regarding this aspect as it can
analyze the influence of different variables synchronously. In the
present study, the variables and their levels were chosen based on
preliminary trials. ANOVA was calculated using Type III-partial
sum of squares as the design includes only numeric factors. For
each response, the predicted R2 value fairly agreed with the
adjusted R2 value for the selected factorial model and process
order. Adequate precision was greater than 4 (Table 3), indicating

appropriate signal to noise ratio, thus, proving the eligibility of
the selected model to navigate the experimental design space
(Jaswir et al., 2019; Aldawsari and Badr-Eldin, 2020).

Effect of Variables on Particle Size (Y1)
The particle size of the prepared FLV-MEL nano-conjugates
ranged from 127.25 ± 1.89 to 604.36 ± 4.89 nm (Table 2).
According to the factorial design, the factorial model with
main effects process order was significant (model F-value �
49.97; p � 0.0013). There is only 0.13% chance that an F-value
could occur due to noise. The equation representing the main
effects in terms of coded factors was generated as follows:

Y1 � 366.21 + 23.79X1 + 8.96X2 + 214.79X3.

ANOVA using sum of squares Type III-partial showed that
pH (X3, p � 0.0003) has a positive significant impact on the
particle size as evidenced by the positive sign of the term X3

coefficient and presented in the Pareto chart, Figure 1A.
The individual effects of the studied factors on the particle size

are graphically illustrated in Figure 2. As evident, the size
increases with increasing pH value.

Effect of Variables on Zeta Potential (Y2)
Zeta potential contributes to the charge stabilization of
nanoparticulate systems. All the prepared FLV-MEL nano-
conjugates showed positive zeta potential ranging from 0.05 ±
0.01 to 17.41 ± 0.42 (Table 2). According to the factorial
design, the factorial model with two-factor interaction (2FI)
process order was significant (model F-value � 855.79; p �
0.0262). There is only 2.62% chance that a F-value could occur
due to noise. The equation representing the main effects and
interactions in terms of coded factors was generated as follows:

Y2 � 6.12 − 1.69X1 + 5.83X2 − 1.07X3 − 1.45X1X2

− 0.078X1X3 − 1.24X2X3.

ANOVA using sum of squares Type III-partial showed that
both FLV (X2, p � 0.0338) and MEL (X3, p � 0.0098)
concentrations have significant impact on the zeta potential
presented in the Pareto chart (Figure 1B). In addition, the
interactions terms X1X2 (p � 0.0395) and X2X3 (p � 0.0461)
correspond to the interaction between MEL concentration and
either FLV concentration or pH, respectively.

The individual effects of the studied factors and the 2FI on the
zeta potential are graphically illustrated in Figure 3.

As evident, the zeta potential values increase with decreasing
drug and increasing MEL concentrations. The effect of MEL was
more pronounced on the zeta potential as evidenced by its higher

TABLE 3 | Statistical analysis output of responses data of the 23 factorial design used for formulation of FLV-MEL nanoconjugates.

Responses Process order p-value R2 Adjusted R2 Predicted R2 Adequate precision Significant factors and
interactions

Y1: particle size (nm) Main effects 0.0013 0.9740 0.9545 0.8960 14.02 X3
Y2: zeta potential (mV) 2FI 0.0262 0.9998 0.9986 0.9875 72.91 X1, X2, X1X2, X2X3

Abbreviations: FLV, fluvastatin; MEL, melittin; 2FI, two-factor interaction.
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coefficient in the coded equation. Moreover, the effect of the drug
was prominent at higher MEL concentration rather than lower
one as shown in the interaction graph. The effect of MEL could be
attributed to its cationic nature.

Selection of the Optimized FLV-MEL
Nano-Conjugates
Desirability function was utilized for optimal FLV-MEL nano-
conjugates selection according to the predetermined goals for the
responses. It was found that beads prepared at FLV concentration
of 1 mM, MEL concentration of 5 mM, and pH of 5.5 met the
required criteria with a desirability value of 0.988. Thus, this
formulation was selected for further studies. The proposed
formulation was prepared and evaluated for particle size and
zeta potential giving results of 136.6 nm and 16.32 mV,
respectively. The results were in good agreement with the
predicted values with residual percentage of less than 3.32 and
1.89%, respectively.

Optimized FLV-MEL Nano-Conjugates
Display a Strong Cytotoxic Activity in
OVCAR3 Ovarian Cancer Cells
Once the optimized formula was obtained, the next aim was to
investigate the pharmacological activity and the toxic potential
(expressed as IC50) of MEL, FLV-R, or FLV-MEL nano-
conjugates treatments (24 h) on OVCAR3 cells. The results
obtained by carrying out the MTT assay showed that the
highest IC50 value, indicating the lowest toxic potential,
belonged to the free drug (FLV-R, IC50 � 45.7 ± 0.4 µM);
this IC50 value was even higher than that observed for MEL
treatment (IC50 � 34.5 ± 4.0 µM; p < 0.001 vs. FLV-R;
Figure 4).

The lowest IC50 value, corresponding to the highest toxic
potential, was observed in OVCAR3 cells treated for 24 h with

FLV-MEL nano-conjugates (IC50 � 2.5 ± 0.3 µM; p < 0.001 vs. all;
Figure 4).

FLV-MEL Nano-Conjugates Treatment
Inhibits the Proliferation of OVCAR3 Cells
Figure 5 reports the effects of MEL, FLV-R, or FLV-MEL nano-
conjugates treatments (24 h) on OVCAR3 cell cycle phases.

The % values for untreated OVCAR3 cells (control) were
51.4 ± 1.3% for G0/G1, 34.9 ± 1.1% for S, 13.7 ± 0.9% for G2-M,
and 2.7 ± 0.1% for pre-G1 phases, clearly depicting quick
proliferative properties. FLV-R treatment has not led to any
significant changes compared to untreated cells, except in the
case of pre-G1 phase (13.3 ± 1.1%; p < 0.001 vs. control).
Interestingly, MEL, even when not conjugated with the drug,
was able to induce significant cell cycle changes regarding all the
phases (p < 0.001) compared to both untreated and OVCAR3
cells treated with FLV-R. Worth of note are the effects on the cell
cycle phases induced by the optimized formula; in fact, the
treatment with the optimized FLV-MEL was able to
significantly inhibit the proliferation of OVCAR3 cells with a
greater extent compared to all the other treatments (p < 0.001 vs.
all), with % values for G0/G1, S (the only one similar to FLV-
MEL), G2-M, and pre-G1 phases equal to 29.8 ± 1.2%, 27.5 ±
0.9%, 42.6 ± 1.9%, and 29.2 ± 1.6%, respectively.

The Conjugation of FLV to MEL (FLV-MEL)
Strongly Enhances the Proapoptotic
Potential of the Drug
In order to shed more light on the enhanced antiproliferative
effect of FLV-MEL and investigate whether it was also
accompanied by pro-apoptotic activities, the impact of the
different treatments on the percentage of OVCAR3 cells
undergoing apoptosis or necrosis was examined. As showed in
Figure 6, the treatment with MEL alone was able to significantly

FIGURE 1 | Standardized Pareto Chart for the (A) particle size and (B) zeta potential of FLV-MEL nano-conjugates.
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increase the percentage of OVCAR3 cells in early (5.6 ± 0.4%; p <
0.001) and late (12.5 ± 0.3%; p < 0.001) apoptotic stages, as well as
of cells undergoing necrosis (1.5 ± 0.1%; p < 0.05) compared to
untreated (control) cells.

The treatment with the free drug (FLV-R) did not show the
same pro-apoptotic ability ofMEL against OVCAR3 cells, while it
was able to significantly (p < 0.001) increase the percentage of
cells undergoing necrosis (2.5 ± 0.1%) compared to control cells.
As expected based on the results reported in Figure 5, the
treatment of OVCAR3 cells with FLV-MEL nano-conjugates
significantly increased the percentage of cell population in
both early (7.9 ± 0.5%) and late (18.1 ± 0.1%) stages of
apoptosis, in necrosis (3.1 ± 0.3%), and in apoptosis +
necrosis (total) (29.1 ± 0.2%) compared to all the other
experimental conditions (Figure 6), clearly showing the

enhanced pro-apoptotic activity of FLV following the
combination with MEL in the optimized formula.

As a Part of Their Pro-Apoptotic Activity
FLV-MEL Nano-Conjugates Modulate BAX
and BCL-2 Protein Levels
The expression of BAX protein is related to pro-apoptotic events,
while the expression of BCL-2 protein is linked to antiapoptotic
activities (Alhakamy andMd, 2019; Faramarzi et al., 2019). Figure 7
depicts the modulation of BAX protein levels in OVCAR3 cells
determined by the different experimental conditions.

All the treatments, including FLV-R, were able to significantly
(p < 0.001) enhance BAX protein levels compared to control cells.
MEL treatment significantly enhanced the expression of BAX

FIGURE 2 | Main effects of FLV (X1), MEL concentration (X2), and pH (X3) on particle size of FLV-MEL nano-conjugates.
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protein even if compared to FLV-R (p < 0.001). The highest effect
was observed for OVCAR3 cells treated for 24 h with FLV-MEL
nano-conjugates (p < 0.001 vs. all the other experimental
conditions).

A completely opposite pattern compared to the BAX protein
trend was observed for BCL-2 protein levels (Figure 8).

As clearly showed in Figure 8, all the treatments have
demonstrated the ability to significantly (p < 0.001)
decrease the levels of BCL-2 protein compared to control

cells (p < 0.01 for MEL; p < 0.05 for FLV-R; p < 0.001 for FLV-
MEL). Once again, the highest effect, with a synergistic
activity of MEL with FLV, was observed when treating
OVCAR3 cells with FLV-MEL nano-conjugates (p < 0.001
vs. control and FLV-R; p < 0.01 vs. MEL).

FIGURE 3 | Main effects (A–C) and interactions (D–F) of concentration FLV (X1), MEL concentration (X2), and pH (X3) on zeta potential of FLV-MEL nano-
conjugates.

FIGURE 4 | IC50 of the MEL, FLV-R, and FLV-MEL in the OVCAR3
cells. Data are the mean of 4 independent experiments ± SD. The post hoc
Tukey test was used for multiple comparisons. ###Significantly different vs.
MEL (p < 0.001). ΦΦΦSignificantly different vs. FLV-R (p < 0.001).

FIGURE 5 | Impact of MEL, FLV-R, or FLV-MEL treatments on OVCAR3
cell cycle phases. Data are the mean of 4 independent experiments ± SD.
The post hoc Tukey test was used for multiple comparisons. ***Significantly
different vs. control (p < 0.001). ###Significantly different vs. MEL
(p < 0.001). ΦΦΦSignificantly different vs. FLV-R (p < 0.001).

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 11 | Article 6421717

Badr-Eldin et al. Synergistic Antineoplastic Activity of FLV-MEL Nano-Conjugates

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


The Cytotoxic Activity of FLV-MEL
Nanoconjugations Does not Depend on the
Modulation of MMP
In order to investigate whether the observed antiproliferative and
pro-apoptotic activities of FLV-MEL nanoconjugations were also
paralleled by changes in MMP, the variations of the percentages
of MMP induced by the different treatments compared to control
cells were assessed. Interestingly, neither FLV-R nor FLV-MEL
were able to induce detectable alterations inMMP as compared to
control, while the treatment with MEL in absence of the drug was
able to significantly decrease the MMP (%) (p < 0.001 vs. all the
other experimental conditions; Figure 9).

DISCUSSION

FLV is an approved drug, belonging to statins family, able to inhibit
HMG-CoA reductase and often prescribed and used for the
prevention of adverse cardiovascular events as well as to lower
total and LDL cholesterol (Aoki et al., 2012; Adams et al., 2018). This
drug (Zhang et al., 2010; Salis et al., 2016; Fahmy, 2018) as well as
MEL, the major component of honeybee venom of Apis mellifera
(Soman et al., 2009), has been shown to exert antineoplastic and
toxic effects against different experimental models for cancer, then
representing promising approaches for drug discovery processes in
cancer. However, adverse effects related to the use of FLV or MEL
have been reported, especially in the case when MEL is used at high
doses (Saeed and Khalil, 2017; Ramsamooj and Preuss, 2019; Shaw
and Kumar, 2019; Ward et al., 2019). The development of an
optimized formulation of MEL and FLV in terms of particle size

FIGURE 6 | Impact of MEL, FLV-R, or FLV-MEL treatments on the
percentage of apoptotic or necrotic OVCAR3 cells. Total � apoptosis +
necrosis; Early � early apoptotic phase; Late � late apoptotic phase. Data are
the mean of 4 independent experiments ± SD. The post hoc Tukey test
was used for multiple comparisons. ***Significantly different vs. control
(p < 0.001). ###Significantly different vs. MEL (p < 0.001). ΦSignificantly
different vs. FLV-R (p < 0.05). ΦΦΦSignificantly different vs. FLV-R (p < 0.001).

FIGURE 7 |Modulation of MEL, FLV-R, or MEL-FLV treatments on BAX
protein concentrations in OVCAR3 cells. Data are the mean of 4 independent
experiments ± SD. The post hoc Tukey test was used for multiple
comparisons. ***Significantly different vs. control (p < 0.001).
###Significantly different vs. MEL (p < 0.001). ΦΦΦSignificantly different vs.
FLV-R (p < 0.001).

FIGURE 8 | Modulation of MEL, FLV-R, or MEL-FLV treatments on
BCL-2 protein concentrations in OVCAR3 cells. Data are the mean of 4
independent experiments ± SD. The post hoc Tukey test was used for
multiple comparisons. *Significantly different vs. control (p < 0.05).
**Significantly different vs. control (p < 0.01). ***Significantly different vs.
control (p < 0.001). ##Significantly different vs. MEL (p < 0.01).
ΦΦΦSignificantly different vs. FLV-R (p < 0.001).

FIGURE 9 | Impact of MEL, FLV-R, or MEL-FLV treatments on the
variation of the MMP (%) of OVCAR3 cells. Values were normalized with
respect to control untreated OVCAR3 cells and are expressed as the percent
(%) variation of MMP. Data are the mean of 4 independent experiments ±
SD. The post hoc Tukey test was used for multiple comparisons.
***Significantly different vs. control (p < 0.001). ###Significantly different vs.
MEL (p < 0.01).
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(minimized) and zeta potential (maximized) able to exert a
synergistic anticancer activity becomes relevant and then
interesting for future translational clinical studies.

The aim of the experimental design and optimization process
was to investigate the influence of the variables on the studied
responses and to optimize their levels in order to achieve the
previously mentioned set goals. Particle size plays a crucial role in
the performance of the nanosized particulate delivery systems in
the body. Our results revealed that the size increases with
increasing pH values. FLV is a weekly acidic antilipemic agent
with pKa of approximately 4.5 (Joshi et al., 1999). The increase in
the pH value could lead to increased interaction of FLV withMEL
that could possibly increase the size of the conjugate. The zeta
potential values increase with decreasing drug and increasing
MEL concentrations. The effect of MEL could be attributed to its
cationic nature. As previously mentioned, MEL is a 26-amino
acid cationic bee venom peptide that has six positive charges and
no negative charges. Most of the positively charged residues occur
at the C-terminal segment of the molecule yielding a net charge of
+6 (Ramalingam et al., 1992; Pincus, 2001; Therrien et al., 2016).
On the other hand, as previously indicated, FLV is a weekly acidic
agent; thus, as the concentration of the drug increases, the
interaction between the negative charge of the drug and the
cationic C-terminal segments of the MEL could increase leading
to decreased overall surface charge and zeta potential of the
formed nano-conjugates.

Once the optimized formula was obtained, we carried out
in vitro experiments in which the ability of MEL to enhance the
antineoplastic activity of a sub-toxic concentration of FLV
against OVCAR3 cells, representing a well-known
experimental model to study the toxic potential of statins
alone or in combination with other antineoplastic drugs
against ovarian cancer (Scoles et al., 2010; Casella et al., 2014;
Abdullah et al., 2019; Yarmolinsky et al., 2020), was tested. The
first indication of an improved therapeutic potential of FLV-MEL
nano-conjugates comes from the data showed in Figure 4,
regarding the different values of the IC50, often used to
compare the antiproliferative activity and the toxic potential of
different anticancer agents (Schaffrath et al., 2017), under our
experimental conditions. The IC50 of FLV-MEL nano-conjugates
(2.5 ± 0.3 µM) was significantly lower than that observed for FLV
alone (FLV-R) (45.7 ± 0.4 µM) or MEL (34.5 ± 4.0 µM). This
synergistic cytotoxic effect obtained by the conjugation of FLV to
MEL (FLV-MEL nano-conjugates) is of great relevance from
different point of views. In fact, despite the widespread use of
statins for conventional (Zhou and Liao, 2009; Islam et al., 2017;
Ward et al., 2019) and non-conventional [e.g., cancer treatment
(Stancu and Sima, 2001; Koyuturk et al., 2007; Kwan et al., 2008;
Ahern et al., 2011; Manthravadi et al., 2016; Van Wyhe et al.,
2017)] therapies, clinically relevant adverse effects have been
observed even at therapeutic doses (Mach et al., 2018; Newman
et al., 2019; Ward et al., 2019); on the other hand,
notwithstanding its anticancer activity, the use of MEL in
clinical practice raises many concerns as a consequence of its
non-specific cytotoxicity and hemolytic activity when used at
high doses (Shaw and Kumar, 2019). Hence, the development of
new formulations where the synergistic antineoplastic activity of

FLV and MEL can be combined in an optimized formula offers
the potential for enhancing therapeutic effects, simultaneously
reducing the incidence of adverse drug events.

Additional proofs of the enhanced anticancer activity of
FLV-MEL nano-conjugates compared to all the other
experimental conditions were observed when examining the
effects of the different treatments on OVCAR3 cell cycle
phases (Figure 5). As clearly depicted, FLV-MEL nano-
conjugates treatment strongly inhibited the proliferation of
OVCAR3 cells, measured by the reduction of G1→S transition
as well as the inhibition of the transition from G2 to M phase.
These effects could depend on the ability of MEL to suppress
the proliferation of cancer cells (Tipgomut et al., 2018;
Ceremuga et al., 2020; Yao et al., 2020) which acts
synergistically with FLV (Hillyard et al., 2002; Garwood
et al., 2010; Hwang et al., 2017) even when used at a sub-
toxic concentration.

The pro-apoptotic and pronecrotic effects of the conjugation of
FLV to MEL were then investigated. As expected based on the
results regarding the changes in cytotoxicity and antiproliferative
activity of OVCAR3 cells under our experimental conditions, FLV-
MEL nano-conjugates significantly increased the percentage of cell
population in both early and late stages of apoptosis, in necrosis,
and in the total cell death (apoptosis + necrosis) compared to FLV-
R or MEL (Figure 6). These results are in agreement with previous
studies showing the ability of FLV to induce apoptosis also in
different non-neoplastic cell types such as vascular endothelial cells
(Newton et al., 2003), immune T cells (Samson et al., 2005), and
mast cells (Paez et al., 2020). It is also worthwhile to point out that
FLV pro-apoptotic activity is exerted at a very low (sub-toxic)
concentration and is due to its synergistic combination with MEL,
as demonstrated by the very low activity of the free drug (FLV-R).
The results on pro-apoptotic activity of FLV-MEL were also
strengthened by the ability of this synergistic formula to
modulate BAX (increase) (Figure 7) and BCL-2 (decrease)
(Figure 8) protein levels in OVCAR3 cells. This increased BAX/
BCL-2 ratio is in line with previous finding by Qi et al. showing the
ability of FLV to induce cell death of lymphoma cells through the
enhanced activation of pro-apoptotic members such as caspase-3
and BAX, simultaneously suppressing BCL-2 (Qi et al., 2013).

Interestingly, neither FLV-R nor FLV-MEL showed the
ability to induce any detectable changes in MMP of
OVCAR3 cells compared to untreated cells; in fact MEL
treatment only was able to significantly decrease the MMP
(%) (Figure 9). This could depend on the MEL peptide
structure and its cationic nature (six positive charges).
Among the different mechanisms regulating the proliferative
status of OVCAR3 cells, FLV-MEL could exert anticancer
effects especially by promoting pro-apoptotic/necrotic
phenomena rather than modulating the MMP.

Despite the significantly highest antineoplastic activity showed
by FLV-MEL combination, the activity of MEL alone is also
worth of mention. In fact, as showed in almost all in vitro cell
experiments, the antineoplastic activity of MEL alone used at a
sub-toxic concentration (IC10) was higher than that of the free
drug (FLV-R) and is in accordance with several recent research
studies (Sangboonruang et al., 2020; Yu et al., 2020) such as that
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carried out by Duffy et al. showing the ability of MEL to suppress
epidermal growth factor receptors 1 and 2 (EGFR and HER2)
activation in the aggressive triple-negative and HER2-enriched
breast cancer subtypes (Duffy et al., 2020). The present findings
also confirm that the combination of this natural product with
other antineoplastic drugs results in a more powerful anticancer
activity.

Conventional drug delivery system cannot deliver the
antineoplastic agents in the most effective concentration to cause
tumor cell death, and debilitating side effects occur. The combination
of two antineoplastic agents in nano-conjugates represents a novel
path to improve the therapeutic index and pharmacokinetic profile of
chemotherapeutic agents (Fernandes et al., 2018). After considering
the physicochemical properties of our FLV-MEL nano-conjugates
(size, surface properties, and stability), we believe that these nano-
conjugates, when administered intraperitoneally, can comply in a
highly efficient way with the five steps of the CAPIR cascade: blood
Circulation, Accumulation and Penetration in the tumor, cell
Internalization, and intracellular Release of the drug (Tay et al.,
2014). Future in vivo studies are required for a better understanding
of pharmacokinetic profile of FLV-MEL nano-conjugates in animal
models of ovarian cancer.

CONCLUSION

In the present study, a two-level, three-factor (23) full factorial
design was employed for the preparation of FLV-MEL nano-
conjugates as well as for their optimization, obtained minimizing
the particle size and maximizing the magnitude of the zeta
potential. The in vitro experiments carried out on OVCAR3
ovarian cancer cells clearly demonstrated the synergistic
anticancer activity of FLV-MEL nano-conjugates characterized
by an enhanced toxic (lower IC50) and antiproliferative potential.
This formulation containing a sub-toxic concentration of FLV
also pro-apoptotic pronecrotic and proapoptotic activities, the
latter mediated by the modulation of BAX/BCL-2 ratio. Our
optimized FLV-MEL formulation showing a synergistic

anticancer activity might therefore represent a novel path for
the development of specific and more effective antineoplastic
drugs directed against ovarian cancer.
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