IO

@)
SClL

where science
meets business

Research Article

Received: 6 June 2022 Revised: 9 November 2022 Accepted article published: 23 November 2022 Published online in Wiley Online Library: 9 December 2022

(wileyonlinelibrary.com) DOI 10.1002/ps.7296

Automated detection of the yellow-legged
hornet (Vespa velutina) using an optical sensor
with machine learning

Mark Williams,” Joao Encarnacao,”

Cayetano Herrera,®
Bastian Faulhaber,® José Antonio Jurado-Riverad

Nduria Roura-Pascual,¢
and Mar Leza?

Abstract

BACKGROUND: The yellow-legged hornet (Vespa velutina) is native to Southeast Asia and is an invasive alien species of concern
in many countries. More effective management of populations of V. velutina could be achieved through more widespread and
intensive monitoring in the field, however current methods are labor intensive and costly. To address this issue, we have
assessed the performance of an optical sensor combined with a machine learning model to classify V. velutina and native
wasps/hornets and bees. Our aim is to use the results of the present work as a step towards the development of a monitoring
solution for V. velutina in the field.

RESULTS: We recorded a total 935 flights from three bee species: Apis mellifera, Bombus terrestris and Osmia bicornis; and four
wasp/hornet species: Polistes dominula, Vespula germanica, Vespa crabro and V. velutina. The machine learning model achieved
an average accuracy for species classification of 80.1 + 13.9% and 74.5 + 7.0% for V. velutina. V. crabro had the highest level of
misclassification, confused mainly with V. velutina and P. dominula. These results were obtained using a 14-value peak and val-
ley feature derived from the wingbeat power spectral density.

CONCLUSION: This study demonstrates that the wingbeat recordings from a flying insect sensor can be used with machine
learning methods to differentiate V. velutina from six other Hymenoptera species in the laboratory and this knowledge could
be used to help develop a tool for use in integrated invasive alien species management programs.

© 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Supporting information may be found in the online version of this article.
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or RNA from terrestrial hematophagous parasites,'® remote sens-
ing'” or citizen science projects®'® Automated monitoring
approaches using sensors have the potential to be more cost

effective and provide more timely results than existing manual

1 INTRODUCTION

The yellow-legged hornet Vespa velutina Lepeletier, 1836 is an
invasive alien species accidentally introduced in Europe from Asia
in 2004." For the affected regions, the control of V. velutina repre-
sents both an economic cost,>* and an ecological impact whose
full extent is still being investigated.*> The monitoring of popula-

tions of V. velutina can assist the management of incursions and 1 —

provide a better understanding of the spatio-temporal patterns
of the species.’

The population distribution and dynamics of V. velutina are cur-
rently assessed through the trapping of adults”® or by nest loca-
tion® although these approaches are labor intensive, and
trapping can have a negative impact on non-target insects.”'°
Various automated methods are being trialed to monitor
V. velutina, including radiotelemetry,”" harmonic radar,'? thermal
imaging'® and drones.'

In general terms, a wide range of methods is available to moni-
tor biological diversity, such as: analysis of environmental DNA'>
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or laboratory methods and could also be used to complement
existing methods.

Acoustic and vibrational-based methods are an important tool
for monitoring biodiversity'®?° and might also be used to monitor
V. velutina. The approach generally uses a digital recorder in the
field to collect animal sounds that are species specific, to derive
estimates of species abundance and diversity at spatial and tem-
poral scales.?>?" Acoustic technology has been used in studies
of marine mammals,?? birds,*® frogs®* and insects.**?” In many
cases, remote monitoring of animal sounds can outperform
skilled observers.?® It has also been used to monitor invasive alien
species, such as red-billed leiothrix Leiothrix Ilutea (Scopoli,
1786),%° cane toad Bufo marinus (Linnaeus, 1758),3° coconut rhi-
noceros beetle Oryctes rhinoceros (Linnaeus, 1758),' red palm
weevil Rhynchophorus ferrugineus (Olivier, 1791)*? and tiger mos-
quito Aedes albopictus (Skuse, 1894).33

In the case of flying insects which emit a sound as they fly, acous-
tic methods are often used to determine the insect wingbeat fre-
quency, since wingbeat frequency can be species specific.®®
However, it can be difficult to obtain acceptable quality audio
recordings of free flying insects in the field due to the presence
of background noise***> and where swarms of insects are present.

To address the limitations of acoustic methods, optical methods
have been used in which a light source and a light sensor are used
to illuminate an individual flying insect and to detect the light
reflected and scattered, or attenuated, by the insect in flight. 3672
38 Under similar conditions, the fundamental wingbeat frequency
reported by an optical sensor and by an acoustic sensor should be
similar when both sensors are designed to detect the wingbeat of
the flying insect.

Our study is designed to assess the hypothesis that the flights of
V. velutina may be automatically differentiated from the flights of
other Hymenoptera species based on features derived from the
wingbeat recordings of a flying insect sensor. The other Hyme-
noptera species are: Apis mellifera Linnaeus, 1758, Bombus terres-
tris (Linnaeus, 1758), Osmia bicornis (Linnaeus, 1758); Polistes
dominula (Christ, 1791), Vespula germanica (Fabricius, 1793) and
Vespa crabro Linnaeus, 1758 which are likely to coexist in the field
with the invasive V. velutina. Our overall aim is to contribute to the
development of an automatic system to monitor populations of
V. velutina in the field.

2 MATERIAL AND METHODS

2.1 Data collection

Individuals from seven Hymenopteran species were collected in
the field: three bee species (A. mellifera, B. terrestris and

O. bicornis) and four wasp/hornet species (P. dominula,
V. germanica, V. crabro and V. velutina) as shown in Table 1.

The insects were collected during 2019 and 2022 in the Balea-
ric Islands and Catalonia, Spain. For the six social Hymenoptera
species, only individuals of the worker caste were collected
because it is the most populous caste and the one whose mem-
bers are most likely to be found outside the nest. For the solitary
Hymenoptera species (O. bicornis) only males were collected
because they are more abundant than females during breeding
season. The insects were carefully collected and transported to
the laboratory in an entomological tent (25 X 25 x 25 cm) in less
than 1 h.

In the laboratory, individuals were transferred to a larger ento-
mological tent (60 x 60 x 60 cm), after rejecting any insects with
signs of damage to their body or wings. The tent contained a fly-
ing insect optical sensor developed by Irideon S.L. (Barcelona,
Spain) which automatically recorded the wingbeat waveform of
each insect as it flew through the sensor (Fig. 1(A)). For practical
reasons, all individuals of the same species were introduced into
the tent at a time, so each individual could give rise to zero, one,
or more than one recording per session. Vespa velutina and
V. crabro were each recorded in two separate sessions, but each
individual was used in one recording session only. Each recording
session lasted about 1 h and was ended when all individuals in
the tent had stopped flying.

The sensor contained an optical emitter panel and an optical
receiver panel, which faced each other across a distance of
19.7 cm, through which insects could fly. The optical emitter com-
prised a two-dimensional (2D) array of 940 nm wavelength infra-
red light emitting diodes (LEDs), and the optical receiver
comprised a 2D array of 940 nm photodiodes. The emitter and
receiver panels each had an active area of 10.2 x 7.1 cm. The vol-
ume of space bounded by the emitter and receiver panels was
equal to 10.2 x 7.1 X 19.4 cm (or 1405 cm?) and is referred to as
the sensing volume. The sensor had the following design attri-
butes: a well-defined sensing volume with a relatively even
response to an insect flying anywhere within the sensing volume,
negligible sensitivity to insects flying outside of the sensing vol-
ume, and good immunity to background acoustic noise. The basic
operating principle of the optical sensor is illustrated in Fig. 1(B).
Further details about the sensor technology can be found in the
references®® “°,

The analog output signal of the optical sensor was acquired
by an analog to digital converter (ADC) to digitize the signal.
When a flying insect entered the sensing volume, it automat-
ically triggered a single recording of 106.7 milliseconds in
duration, comprising 1024 discrete ADC samples taken at a
rate of 9603 samples per second. The duration of each

Table 1. Main characteristics of the seven Hymenopteran species used in this study, including the number of insects collected and the number of
recordings made for each species
Species Sex Caste No. individuals No. flight records Date of collection
Bees Apis mellifera Female Worker 126 178 24-11-2021
Bombus terrestris Female Worker 11 121 26-02-2019
Osmia bicornis Male - 79 120 23-02-2021
Wasps/Hornets Polistes dominula Female Worker 42 108 10-02-2020
Vespa crabro Female Worker 10 91 20-10-2021
Vespa velutina Female Worker 30 117 11-10-2021
Vespula germanica Female Worker 22 200 09-10-2019
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Figure 1. (A) Photo showing the optical sensor inside of the entomological tent. The optical sensor comprises an optical emitter module facing upwards
and an optical receiver module facing downwards, with the modules separated by four white plastic posts, each with a length of 20 cm, such that insects
may fly between the emitter and receiver modules. The black plastic cover on the emitter module is transparent to the infrared wavelengths used by the
sensor. Beneath that cover is a 2D array of collimated optical emitters which project their light beams upwards towards the optical receiver module. The
optical receiver module contains a 2D array of downward facing optical receivers also covered by black plastic which is not visible in the photo. The sens-
ing volume is given by the 2D area common to both the emitter and receiver (71 cm?) multiplied by the distance between the black plastic covers
(19.4 cm). (B) illustrates the basic operation of each optical emitter-receiver in which a LED (1) emits a diverging beam of light (2), which falls upon a lens
(3) that form a collimated beam of light (4), which after a certain distance, falls upon a second lens (5) that forms a converging beam (6), which focuses
onto a photodiode (7). When an insect (7) flies through the collimated beam (4), it casts a shadow (8) upon the photodiode (7) i.e., the sensor uses the so-
called optical extinction mode of operation. As the insect flaps its wings within the collimated beam (4), the light falling on the photodiode (7) is mod-
ulated, allowing determination of various wingbeat features of the flying insect. In the sensor, 24 optical emitter-receiver pairs are used to cover the
2D area described. (C) Example of a recorded flight with the ADC sample number (0 to 1023) on the x-axis, and amplitude on the y-axis with a range
of [-1, 1] which corresponds to the full-scale range of the analog to digital converter (ADC) used to digitize the analog output of the optical receiver.
The low frequency signal which corresponds to the body of the insect is not visible in the waveform due to a high-pass filter in the sensor, which also
attenuates the impact of ambient light and electronic offset voltages. (D) The power spectral density (PSD) plot for the recording shown in (B), with fre-
quency (Hz) on the x-axis and power (dB) on the y-axis. The fundamental, 2nd harmonic, 3rd harmonic, and 4th harmonic peaks for this PSD plot are indi-
cated as F1, F2, F3, F4 respectively, and the 1st, 2nd and 3rd valleys are indicated as V1, V2, V3 respectively.

recording was long enough to provide acceptable frequency
resolution. Longer recording times would have increased the
possibility of more than one insect being recorded simulta-
neously. The sensor automatically added a timestamp to each
recording.

After each recording session, each wingbeat recording was
downloaded from the sensor and processed using a Python
script (Python version 3.7.9) written by Irideon to produce a
playable audio (WAV) file from which a series of features were
extracted by the same script. Figure 1(C) shows the plot for a
typical V. velutina WAV file, by way of example. The WAV wave-
form is not very informative on its own but can be processed to
yield more informative data as will be described. The complete
dataset contains 935 recordings as shown in Table 1.

2.2 Feature extraction

Using the Python script, each WAV file recording was processed to
extract its power spectral density (PSD). A PSD is the measure of
the signal's power content versus frequency in which the measur-
able frequency range is segmented into a series of discrete ranges
referred to as bins. PSDs are used in numerous applications
including the analysis of vibration and noise.*' Each PSD was cal-
culated using Welch's method*? with a segment length of
512 ADC samples and an overlap of 50% to give the power per
bin from 0 Hz to 4801.5 Hz in 256 bins, with a bin width of
18.756 Hz. As part of Welch's method, a window function (Hann
window) was applied to each segment to reduce spectral leakage
(side lobes) in the PSD due to the segmentation. The window
function minimized spectral leakage due to a recording being
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Figure 2. Mean fundamental frequency and fundamental peak power
and standard deviation for the seven Hymenoptera species in this study.

terminated whilst the insect was still flying in the sensing volume.
The powers in the PSD were corrected to compensate for the non-
flat frequency response of the sensor and for insects which flew
through the sensing zone before the end of the recording length
(106.7 milliseconds). The PSD plot for a typical V. velutina record-
ing is shown in Fig. 1(D).

From each PSD, the Python script extracted a series of machine
learning features. A feature refers to an individual measurable
property or characteristic extracted from a recording. The concept
of feature is related to that of an explanatory variable used in sta-
tistical techniques. The features used in this work are illustrated in
Fig. 1(D) and are described below.

(1) Wingbeat fundamental frequency in Hertz (Hz), referred to as
F1 (Hz) was estimated using a combination of the following
pitch determination methods*?: autocorrelation, cepstrum
and harmonic product spectrum. The wingbeat fundamental
frequency is the frequency at which the insect flaps its wings.
In cases where F1 (Hz) could not be determined with confi-
dence, the recording was rejected from the data set.

(2) Fundamental peak power in decibels (dB) referred to as F1
(dB) is the power at F1 (Hz).

(3) A 14-value 'PSD peak and valley feature’ comprising the frequen-
cies and powers of the wingbeat fundamental frequency and
the 2nd, 3rd, and 4th harmonics, and the frequencies and pow-
ers of the PSD valleys, which lie midway between each of the
peaks, as depicted in Fig. 1(D). By definition, the harmonics fre-
quencies are at integer (whole number) multiples of the funda-
mental frequency. The harmonic frequencies were estimated
by calculating: F2 =2 X F1; F3 =3 X F1; and F4 = 4 X F1. The
PSD was then searched to find the maximum (peak) power
within a small frequency range close to each of the estimated
harmonic frequencies. The final values for each harmonic fre-
quency were taken as the frequency at the corresponding peak
power. The valley frequency and powers were calculated by
searching the PSD for the minimum power (valley) approxi-
mately midway between the peaks on either side of the valley.
A 2-value feature comprising only F1 (Hz) and F1 (dB).

An 8-value feature comprising F1 (Hz) and the seven peak and val-
ley powers, referred to as ‘F1 (Hz) with peak and valley powers'.

GRS

2.3 Statistical analysis and classification of species using
machine learning

For each species, the mean and standard deviation of the funda-
mental frequency and power were calculated to enable compari-
sons to be made. Differences in fundamental frequency and
power between the seven species were assessed using a
Kruskal-Wallis test and a Pairwise Wilcoxon Rank Sum Test with
Holm adjustment, post hoc.

We also assessed the performance of a machine learning model to
classify each of the seven Hymenopteran species using each of the
five features described. The Random Forest machine learning algo-
rithm with permutation parameter importance was used to develop
the model. This algorithm generates multiple decision trees on a set
of training data, each of them built over a random extraction of the
observations from the dataset and a random extraction of the fea-
tures, and the results obtained are combined in order to obtain a sin-
gle model that is more robust and less prone to overfitting
compared to the results of each tree separately.** The ranger pack-
age® implementation of the Random Forest algorithm was used.

We adopted a train-test split procedure, in which the dataset was
divided into two subsets: the training set (70% of the full dataset)
which was used to train the model; and the test set (the remaining
30% of the full dataset, and not used previously for training) which
was used to evaluate the performance of the model, i.e; to determine
how well the model classifies the species on new data. This proce-
dure was repeated in 100 random train-test splits, which enables cal-
culation of the mean and standard deviation of the performance
metrics and of the feature importance.**

The performance of each model was evaluated using the fol-
lowing metrics: out-of-bag (OOB) error (estimated error resulting
from the model prediction using the observations from the

PSD values comprising each feature

Table 2. Mean classification accuracy (+ standard deviation) for all species and for V. veluting, for the different features, indicating the number of

Feature PSD values Mean accuracy for all species Accuracy for V. velutina
1 Fundamental frequency, F1 (Hz) 1 50.9 + 20.9% 41.7 + 8.0%
2 Fundamental peak power, F1 (dB) 1 27.2 + 89% 434 +82%
3 PSD peak and valley feature 14 80.1 + 13.9% 745 +7.0%
4 F1 (Hz) and F1 (dB) 2 60.0 + 15.9% 58.4 + 8.4%
5 F1 (Hz) with peak and valley powers (dB) 8 68.9 + 13.8% 67.5 + 8.4%
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Figure 3. Confusion matrices assessing the performance of the machine learning model that predicts the identity of seven Hymenoptera species. The x-axes indi-
cate the actual or ‘true’ species in the test set and the y-axes indicate the species predicted by the model. For each axis: Vv = V. velutina, Vg = V. germanica,
Vc=V. crabro, Pd = P. dominula, Ob = O. bicornis, Bt = B. terrestris, Am = A. mellifera. In the upper plot, the value in each column indicates the percentage of samples
in the true species (x-axis) which are classified into each of the predicted classes (y-axis). Consequently, each value on the diagonal, from the top left corner to the
bottom right corner, indicates the percentage of samples in the class which is correctly classified. Values which do not lie on the diagonal indicate the percentage of
confusion, or misclassification for the indicated classes. In the lower plot: the value in each cell indicates the standard deviation for the classification accuracy given in
the corresponding cell of the upper plot. Zero values were removed for ease of visualization.
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negative, FP (false positives) is the number of outcomes that the
model incorrectly classifies as positive, and FN (false negatives)
is the number of outcomes that the model incorrectly classifies
as negative. All statistical analyses were performed with R
(v4.0.2)*” and statistical significance was set at P < 0.05.

3 RESULTS

The mean and standard deviation of the fundamental fre-
quency and power for each species are shown in Fig. 2 (and
are listed numerically in Supporting Information Tables S1
and S2). A high degree of overlap is apparent between
V. velutina, P. dominula and V. crabro in one group, and
between V. germanica, B. terrestris and O. bicornis in another.
A. mellifera did not overlap with any of the other species stud-
ied. The standard deviations observed for each species indicate
that the described methodology has yielded a reasonably rich
and varied dataset for each.

V. velutina presented a fundamental frequency F1 (Hz) which
was statistically lower than that of the other Hymenoptera species
(Kruskal-Wallis ){2 = 707.9, df = 6, P < 0.001; Pairwise Wilcoxon
Test, P < 0.001), except for P. dominula whose fundamental fre-
quency was not significantly different to that of V. velutina
(Pairwise Wilcoxon Test, P = 0.7). V. velutina also presented a fun-
damental power (F1 dB) which was statistically higher than those
of the other Hymenoptera species (Kruskal-Wallis y* = 462.63,
df =6, P < 0.001; Pairwise Wilcoxon Test, P < 0.05).

The classification accuracy achieved using each of the different
features is shown in Table 2. The highest accuracy for all species
(80.1%) was achieved using the 14-value PSD peak and valley fea-
ture. The next highest accuracy (68.9%) was for the 8-value F1
(Hz) with peak and valley power feature. Consequently, under the
conditions of this work, which includes the use of the Random For-
est algorithm, the PSD harmonic and valley frequencies are seen to
make a substantial contribution to model accuracy even though
they are known to be highly correlated with F1 (Hz).

The performance of the machine learning model using the
PSD peak and valley feature is considered good: OOB error = 16.9 +

1.1%, Precision = Recall = 80.1 +24% and
f1=80.0 + 2.5%.

The confusion matrices (Fig. 3) show the relationship between
the true species identity and the species predicted by the trained
model and includes the classification accuracy for each species.
The highest classification accuracy was for V. germanica
(93.9 + 3.1%) and the lowest was for V. crabro (52.5 + 8.4%).
The accuracy for V. velutina was 74.5 + 7.0% and the mean accu-
racy for all seven species was 80.1 + 13.9%. Figure 3 indicates that
V. velutina was mostly confused with P. dominula, and to a lesser
degree with V. crabro and V. germanica. It also indicates that
V. crabro was the species most often misclassified, confused
mainly with V. velutina and P. dominula, which may be due to
the relatively high overlap of the fundamental frequencies
between these three species (Fig. 2). Figure 3. also shows a low
rate of misclassification between B. terrestris, O. bicornis and
V. germanica even though their fundamental frequency and
power features are highly overlapped (Fig. 2). Figure 3 also indi-
cates that the model shows very little confusion between the
bee species and the wasp/hornet species.

All PSD peak and valley values made a positive contribution to
the performance of the machine learning model (Fig. 4). The most
important value was fundamental frequency F1 (Hz) and the next
five most important values were also related to frequency. The
most important power value was F1 (dB) which was in 7th place
overall.

81.3 + 2.5%,

4 DISCUSSION

We recorded the flights from seven species of Hymenoptera,
including V. velutina, using an optical sensor and extracted five
wingbeat frequency and power features from the PSD of each
recorded waveform. We performed a statistical analysis of the fun-
damental wingbeat frequency and power of each species. We also
used the features in a machine learning model and assessed the
performance of the model to classify each species.

There is good agreement between the wingbeat fundamental
frequencies of our work and that of previous works for:
A. mellifera (251 Hz),*> B. terrestris (170 Hz),*® V. germanica

F1 (Hz) . F
F4 (Hz) i >
o V3D =
% F2 (H2) N l_l_;I
. F3(HD) =S
% V2 (Hz) . ==
_'; F1(dB) o
E m@m) — . - -
% V1(Hz) F= .
& V1(dB) EE
@ F2® ——-
A v2(dB) -
V3 (dB) -——
F4 (dB) — -
0.02 0.04 0.06 0.08 0.10

Relative importance

Figure 4. Box and whisker plots for the relative importance of each of the PSD peak and valley value. The boxes indicate the interquartile range (IQR)
from Q1 to Q3. The vertical line within each box indicates the median. The horizontal lines show the ‘minimum’ to ‘maximum’ range, from Q1-1.5 x

IQR to Q3 + 1.5 X IQR, with outliers shown as dots.
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(148 H2)*® and other Vespa (V. crabro = 100 Hz; V. simillima
xanthoptera = 100 Hz and V. orientalis = 125 Hz).>>*%*" Our study
was performed using insects flying in an entomological tent,
which may have affected insect flight characteristics compared
to natural flight in the field. However, the fundamental frequency
we obtained for A. mellifera (231.5 + 21.1 Hz) is similar to that
reported in another work (251.2 Hz + 45.0 Hz)*> in which the
recordings were made outdoors in a rural area. To the best of
our knowledge, the present work is the first to report the wing-
beat frequencies of V. velutina, P. dominula, and O. bicornis.

Previous studies have shown that Hymenoptera wingbeat fre-
quencies are generally inversely proportional to body size (which
depends on caste and sex)*>>* and to wing length.*®** This is con-
sistent with our findings, in which the lowest fundamental fre-
quencies correspond to V. velutina and V. crabro which are
predators of insects and are larger than bees.”®

In the present work, we assessed classification performance
using frequency and power values from the PSD in addition to
fundamental frequency. The 14-value peak and valley feature
gave the best classification performance, which was 80.1
+13.9% on average for all species and 74.5 +7.0% for
V. velutina. Other studies show comparable accuracy results for
the classification of Hymenoptera species (Gradisek et al.>?
= 82.7%; Kawakita & Ichikawa®®> = 85.3%), and for other insects,
such as mosquitoes (Fernandes et al.*® = 78.1%).

Wingbeat fundamental frequency is the feature most used in
works pertaining to insect species classification using audio
recordings®>*° with wingbeat harmonics used to a lesser
extent.>>>° In the present work, wingbeat fundamental frequency
F1 (Hz) was found to be the most important single-value feature.

Previous studies have also assessed other features as an alterna-
tive to, or in combination with wingbeat fundamental frequency.
For example, Eyben, Wollmer, and Schuller’” provide a feature
extraction tool (openSMILE) for audio analysis, which was used
by Gradisek et al.>? to compute 1582 numerical features for bum-
blebee species classification. Features studied in comparable spe-
cies classification works include minimum and maximum
frequencies®; maximum power?3; frequency and power modula-
tions®%; full spectrogram®®>?; raw waveforms>°; spectrum octave
analysis®%; and wingbeat harmonics.>>>°

In this study, only a relatively small dataset was available to train
and test the machine learning model, but it was large enough to
achieve good levels of classification accuracy. To further improve
model performance, planned future work includes collecting and
recording more insects to increase the size of the dataset and to
improve the numeric balance within the species, caste, and sex
classes. Consideration of wingbeat frequency and recording time
stamp could be made to provide a rough indicator of individual
insects which fly though the open sensor multiple times.

The results of the present work indicate potential for the devel-
opment of an automated system to monitor populations of
V. velutina in the field to assist localized management actions
and provide information about the ecology of the species to bet-
ter understand its spatio-temporal patterns across environmental
gradients. Classification accuracy for V. velutina would probably
be higher than 74.5% if a sensor were placed in an apiary since
there would be no confusion of V. velutina with A. mellifera. Never-
theless, the presence of P. dominula or V. crabro could result in
reduced accuracy in localities where they coexists with V. velutina.

A range of attractants could be considered for use with the sen-
sor in the field, to attract target insects towards the sensor, where
needed. Potential recruitment substances for V. velutina include

baits which have been tested with that species®® and hive prod-

ucts, protein sources, and chemical substances.®’ Likewise, a sex
pheromone for attracting V. velutina males has been identified,
which could be used to attract males in autumn®? although it is
not yet available for field use.

Furthermore, given that Hymenoptera wingbeat frequency is gen-
erally inversely proportional to insect age®®; and is a strong indicator
of insect rate of metabolism and physical structure®®; and changes
during bumblebee buzz pollination,”® it might be possible to
develop new machine learning models for the optical sensor to clas-
sify such attributes and behavior, in addition to species. In addition,
differences in wing shape have been found between haploid and
diploid males in B. terrestris5> As such, it would be interesting to
determine if there are differences in wing shape between haploid
and diploid males of V. velutina which may be detectable using the
sensor. This could be of interest in an integrated invasive alien spe-
cies management program because, in Europe, diploid males of
V. velutina are sterile and haploid males are fertile.5°

The present study could be a first step in multiple avenues of
research, with potential application of the sensor in the field with
machine learning models for automated monitoring of the biodi-
versity of Hymenoptera and possibly insects in other orders, and
the monitoring of flying invasive alien and pest species. A further
potential application could be in the agro-food industry to moni-
tor pollination performed by bees and other pollinating insects.

5 CONCLUSIONS

Our study demonstrates the effectiveness of the optical sensor
and machine learning methods to identify seven common hyme-
nopteran species which demonstrated an average classification
accuracy of 80.1 + 13.9% and an accuracy of 74.5 + 7.0% for the
invasive alien V. velutina, which was the primary target species
for this work. The insects were collected in the field and recorded
in an entomological tent in the laboratory. We conclude that the
approach shows promise for the development of a system for
automatic detection of the invasive V. velutina in the field, in the
presence of common wasp and bee species.
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