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Simple Summary: Different types of cells with tumor-initiating cell (TIC) activity contribute to
colorectal cancer (CRC) progression and resistance to anti-cancer treatment. In this study, we aimed to
understand whether different cell types exist within a patient-derived tumor culture, distinguishable
by different patterns of their gene expression. By mRNA sequencing of patient-derived CRC cultures
at the single-cell level, we defined expression programs that closely resemble differentiated cell
populations of the normal intestine. Here, cell type-associated subpopulations showed differences in
functional properties such as cell growth and energy metabolism. Subsequent functional analyses
in vitro and in vivo demonstrated that metabolic states are linked to TIC activity in primary CRC
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cultures. We also show that TIC activity is dependent on oxidative phosphorylation, which may
therefore represent a target for novel therapies.

Abstract: Intra-tumor heterogeneity of tumor-initiating cell (TIC) activity drives colorectal cancer
(CRC) progression and therapy resistance. Here, we used single-cell RNA-sequencing of patient-
derived CRC models to decipher distinct cell subpopulations based on their transcriptional pro-
files. Cell type-specific expression modules of stem-like, transit amplifying-like, and differentiated
CRC cells resemble differentiation states of normal intestinal epithelial cells. Strikingly, identified
subpopulations differ in proliferative activity and metabolic state. In summary, we here show at
single-cell resolution that transcriptional heterogeneity identifies functional states during TIC differ-
entiation. Furthermore, identified expression signatures are linked to patient prognosis. Targeting
transcriptional states associated to cancer cell differentiation might unravel novel vulnerabilities in
human CRC.

Keywords: colorectal cancer; tumor-initiating cells; tumor heterogeneity; patient-derived cancer
models; single-cell RNA-sequencing; tumor metabolism; transcriptional programs; tumor cell differ-
entiation

1. Introduction

In many tumor entities, tumor formation and progression are driven by a cellular
subfraction with tumor-initiating cell (TIC) activity [1–3]. In colorectal cancer (CRC),
the TIC compartment is organized as a functional cellular hierarchy with extensively
self-renewing long-term TICs driving serial tumor propagation in vivo. Long-term TICs
generate highly proliferative, short-lived tumor transient-amplifying cells with limited or
no self-renewal capacity giving rise to the bulk of post-mitotic tumor cells [4]. Remarkably,
this functional heterogeneity within individual CRCs is not primarily driven by genetic
events, suggesting that epigenetic or extrinsic factors contribute to functional cellular
heterogeneity [5].

Lineage-tracing experiments demonstrate that in CRC the population of highly self-
renewing TICs expresses LGR5 and generates progeny differentiating towards mucosecreting-
and absorptive-like phenotypes [6]. Thus, CRCs harbor a subfraction of stem-like TICs and
maintain a hierarchical organization reminiscent of the normal intestinal epithelium [7].
Moreover, a gene signature specific for intestinal stem cells has been suggested to predict
disease relapse [8], indicating a potential clinical relevance of stem-like TICs for CRC
patients. However, prospective validation in an independent cohort is still not available.

Recent evidence suggests that the epigenome of an individual CRC is already formed
by the cell-of-origin. Methylation analyses demonstrate maintenance of the cell-of-origin
differentiation state during tumor progression, and identified three CRC subclasses of
intestinal crypt differentiation of the cell-of-origin. Importantly, patients with a stem-like
methylation signature showed significantly reduced overall survival [9].

While the hierarchical organization of normal and malignant stem cell systems has
previously been thought to be fixed and unidirectional, evidence for plasticity in these
systems is accumulating [10–12]. Lineage-tracing experiments in CRC highlight that more
differentiated cells can repopulate a free stem-like niche and acquire TIC activity upon
ablation of the active stem-like population [6,13,14]. Similarly, pronounced plasticity drives
pancreatic cancer by clonal succession of transient TIC activity [15].

Current understanding of TIC heterogeneity in CRC is mainly derived from serial syn-
geneic or xenogeneic transplantation models, where TICs have been retrospectively identi-
fied by interpreting the kinetics of genetically marked or pre-enriched bulk cells [4,8,16–18].
While this allowed deep insights into functional heterogeneity within tumors, such retro-
spective experimental strategies from bulk samples hamper direct assignment of transcrip-
tional states in individual cells.
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To characterize molecular underpinnings of functional CRC intra-tumor heterogene-
ity at the single-cell level, we here asked whether distinct functional programs within
individual cells from patient-derived CRC models can be assigned to specific cellular
subpopulations.

2. Results
2.1. Transcriptional Heterogeneity of Patient-Derived CRC Spheroid Cultures

To assess whether heterogeneous transcriptional programs can be detected in CRC
tumor spheroids at the single-cell level, we performed single-cell RNA-sequencing (scRNA-
seq) using a nanowell platform [19]. As patient-derived spheroid cultures contain purely
tumor cells, thereby allowing to study tumor cell heterogeneity in high resolution, and reca-
pitulate the histology of the original tumor after xenotransplantation into immunodeficient
NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice [4], we sequenced 12 three-dimensional tumor
spheroid cultures (P1–P12) derived from primary tumors (n = 6 patients) or metastases
(n = 6 patients) of 12 different CRC patients. These patient tumors and derived spheroids
cover known subtypes (microsatellite stable or microsatellite instable tumors) and driver
mutations (loss of APC and/or TP53, activating mutations in KRAS; Table 1). On average,
389 cells (range: 141–736) were sequenced per patient, resulting in 4663 single-cell profiles
with an average of more than 4000 detected genes per cell (Table 2).

Table 1. Patient overview. Patient-derived colorectal cancer spheroids (P1–P12), organoids (O1–O3), xenografts (X1, X2),
and primary colorectal cancer samples (T1–T3) used for single-cell RNA-sequencing. X indicates mutation, - indicates wild
type. f, female; m, male; met, metastasis; MS, microsatellite; MSI, microsatellite instable; MSS, microsatellite stable; N/A,
not available.

Patient Sex Origin Site Stage (UICC) MS status TP53 APC KRAS

P1 m liver met Rectum IV MSS X X X
P2 m lung met Caecum IV MSS X X X
P3 f liver met Rectum IV MSS X X X
P4 f liver met Ascending colon IV MSI X X X
P5 f primary Transverse colon IV MSS - - -
P6 f primary Caecum IV MSS X - -
P7 m liver met Sigmoid IV MSS - X X
P8 m liver met Caecum IV MSS X - -
P9 m primary Rectum IV MSS X - X

P10 m primary Sigmoid IIIB MSS N/A N/A N/A
P11 m primary Rectum and caecum IIIB MSS - - -

P12 m primary Rectum and transverse
colon II MSI X X X

O1 f liver met Sigmoid IV MSS X X X
O2 f liver met Caecum IV MSS X X X
O3 f liver met Ascending colon IV MSI - X -
X1 m primary Rectum I N/A N/A N/A N/A
X2 m primary Ascending colon II MSI N/A N/A -
T1 m primary Sigmoid III N/A N/A N/A N/A
T2 m primary Ascending colon IV N/A N/A N/A N/A
T3 m primary Ascending colon IVa MSS N/A N/A X
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Table 2. Single-cell RNA-sequencing analysis. Top: Colorectal cancer (CRC) spheroids (P1–P12). Cultures with an LGR5
score (=LGR5 read counts/cell number) >1 are considered LGR5+. Bottom: patient-derived organoids (PDOs; O1–O3),
patient-derived xenografts (PDXs; X1, X2), and tumors (T1–T3). Cell numbers for X1 and X2 indicate human cells. Cell
numbers in brackets indicate epithelial cells used for analysis of T1–T3. Hs, Homo sapiens; Mm, Mus musculus; QC,
quality control.

CRC Spheroids

Patient Mean Reads Per Cell Cell Number after QC Mean Detected Genes
Per Cell LGR5 Score

P1 348,016 325 3535 12.85
P2 261,595 309 4072 0.23
P3 460,471 551 4537 6.43
P4 1,061,813 263 4186 87.72
P5 334,099 502 3943 4.61
P6 1,276,856 141 5116 0.03
P7 359,362 434 4335 10.18
P8 190,170 197 4174 3.38
P9 527,407 464 4354 0.00
P10 391,680 736 3418 3.35
P11 505,439 308 4036 1.43
P12 454,258 433 3977 0.00

CRC PDOs, PDXs, Tumors

Sample Mean Reads Per Cell Cell Number after QC Mean Detected Genes
Per Cell (Hs)

Mean Detected Genes
Per Cell (Mm)

O1 120,218 5550 5542 -
O2 169,086 3003 5425 -
O3 73,415 8785 4176 -
X1 238,836 1475 1841 2281
X2 237,891 1070 4598 2415
T1 1,333,884 362 (136) 3646 -
T2 847,472 538 (77) 4090 -
T3 623,942 724 (40) 2474 -

Unsupervised clustering of single-cell profiles [20] revealed grouping of cells according
to the patient-of-origin (Figure 1a). Hierarchical clustering based on the top 10 differentially
expressed genes per patient showed that cells primarily cluster, with one exception, by the
tumor site they originate from, but not by microsatellite status (Figure 1a,b).

Within individual patient-derived spheroids, top differentially expressed genes
(Wilcoxon rank sum test: adjusted p-value < 0.05; log fold-change > 0.25) between patients
contained WNT signaling components and downstream targets (e.g., FRZB, DKK1, TCF4,
SOX2) and normal tissue-associated differentiation markers (e.g., MUC12, MUC17, SPINK1,
SPINK4, DEFA5, DEFA6; Figure 1b). Thus, beyond patient tumor-specific alterations, differ-
entiation state-associated expression programs can be attributed to transcriptional profiles
derived from single CRC cells.
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Figure 1. Identification of transcriptional subpopulations by single-cell RNA-sequencing (scRNA-seq). (a) Two-dimensional
t-distributed stochastic neighbor embedding (tSNE) visualization of scRNA-seq expression profiles. (b) Hierarchical
clustering and heatmap visualization of single-cell gene expression using the top 10 differentially expressed genes per
patient (n = 12). CPM, counts-per-million; MS, microsatellite; MSI, microsatellite instable; MSS, microsatellite stable. (c)
Principal component analysis of scRNA-seq data corrected for inter-patient variability. Left: Gene set enrichment analysis
(GSEA) for the first principal component (PC1; hallmark gene sets). Gene sets are ranked by false discovery rate (FDR) q
values. Right: Heatmap showing gene expression magnitude of the top 30 genes with highest and lowest PC scores for PC1.
OXPHOS, oxidative phosphorylation. (d) Heatmap reflecting hierarchical clustering of core meta-signature scores of eight
LGR5+ CRC spheroid cultures determined by non-negative matrix factorization. Brackets indicate marker genes for specific
signatures. TA, transit-amplifying; Tdiff, terminally differentiated.

2.2. Distinct Cell Types and Cell States in Individual CRC Spheroids

To identify heterogeneous gene expression programs shared across patients in single
cells from individual tumor spheroid cultures, we corrected for inter-patient variability by
calculating relative expression levels for each patient individually [21,22]. Principal com-
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ponent analysis (PCA) of the combined dataset revealed an anti-correlated transcriptional
pattern independent of patient origin with genes either involved in cell growth, prolifera-
tion, and oxidative phosphorylation (OXPHOS), or hypoxia and glycolysis. Notably, the
hypoxia/glycolysis signature contains intestinal differentiation markers (e.g., TFF3, FABP1,
KRT19; Figure 1c), indicating an association of distinct metabolic states with tumor cell
differentiation and proliferation, as recently described for the normal intestinal crypt [23].

As the activation of continuous gene expression programs may not be captured by
discrete clustering, we adapted a previously described computational approach based on
non-negative matrix factorization (NNMF) [24,25] to more precisely identify transcriptional
programs heterogeneously expressed across patients (Figure 1d, Figure S1a–e). In order
to focus on tumors that display preserved hierarchical organization, we focused on the
eight cultures with detectable LGR5 transcript levels (LGR5 score = total LGR5 transcript
counts/cell number > 1; Table 2), as LGR5 represents an established marker for intestinal
stem cells and CRC TICs, whereas the phenotype and the role of potential LGR5-negative
stem cells and TICs are much less defined [8,14,26,27]. Thus, four cultures with very low or
non-detectable LGR5 transcript abundance were excluded for this analysis. We identified
13 heterogeneous gene expression programs that could be classified into two partially
overlapping categories: one (A) linked to ‘cell types’ or lineages analogous to the normal
intestinal epithelium, and the other (B) associated with ‘cell states’ (Figure S1f).

Category A identified distinct cells harboring marker expression similarities to normal
intestinal stem cells (e.g., LGR5, AXIN2), Paneth cells (e.g., DEFA5, DEFA6), or transit-
amplifying (TA) cells (e.g., PA2G4, CCND1) in the healthy human intestine, suggesting that
distinct cell types can be identified based on individual gene expression programs. As the
analyzed cells derive from the colon and only resemble the cell types of the normal intestine,
we refer to these cell type-associated subpopulations as stem-like, Paneth-like, TA-like,
and terminally differentiated (Tdiff)-like. Category B comprised expression programs
enriched for genes involved in cell cycle regulation (e.g., CDK1, MKI67), immune/stress
response (e.g., CEACAM6, CXCL2), or metabolic functions (e.g., OXPHOS (e.g., PRDX3,
ATP5O), fatty acid metabolism (e.g., CES2, RETSAT), and hypoxia/glycolysis (e.g., HILPDA,
VEGFA)). Similar to PCA results (Figure 1c), one expression program (Tdiff) was enriched
for both, genes associated with hypoxia/glycolysis and differentiation markers (e.g., TFF3,
KRT20; Figure S1f).

Next, each individual cell was scored for inferred expression programs using the
averaged expression of the top genes per factor identified by NNMF. To reduce redundancy,
signatures showing similar enrichment and clustering patterns were combined, resulting
in eight meta-signatures (Figure S1a–f, Table S1). Clustering of meta-signature scores
allowed identification of discrete and overlapping transcriptional programs (Figure 1d).
Similar to PCA, cell cycle, OXPHOS, and TA signatures showed a pronounced overlap,
indicating a highly proliferative cell fraction—potentially corresponding to the TA-like
compartment—driven by MYC and characterized by high OXPHOS. In contrast, stem-
like, Paneth-like, and Tdiff-like cells did not show significant overlap with the cell cycle
signature (Figure 1d), suggesting reduced or absent proliferative activity. This indicates
that scRNA-seq and matrix factorization analysis are capable of distinguishing functionally
distinct cell populations based on transcriptional profiles.

To analyze the cell type composition in all eight LGR5+ cultures individually, we
used the NNMF-inferred signature scores (stem, TA, Paneth, Tdiff) to assign cells to one
of the four cell types which allowed us to assess the extent of active cell type-specific
transcriptional programs. Despite different cell type compositions, we observed presence
of stem-like, TA-like, and Tdiff-like cells in all, and rare, but detectable Paneth-like cells
in six out of the eight LGR5+ cultures (Figure S1g). This indicates that individual CRC
tumors display similar cellular diversity resembling normal intestinal cell types even with
different clinico-pathological features (Table 1).

We next assessed whether the signatures identified in our patient-derived in vitro
models can also be identified in patient tumors. We therefore applied our signatures
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(Table S1) on publicly available expression data of colon adenocarcinoma (COAD) patients
(The Cancer Genome Atlas (TCGA) cohort; n = 328 patients) [28]. Correlations among cell
type and cell state signatures in the spheroid scRNA-seq data (Figure 1d) were detectable
in patient whole transcriptome data. Clustering of the TCGA cohort based on signature
expression resulted in six clusters of patients (cl1–cl6) with different combinations of low or
high expression of individual signatures. Significantly different progression-free survival
(p = 0.043) and numerically decreased overall survival (p = 0.059) were observed between
groups of clusters, indicating a relevance of signature expression for patient prognosis
(Figure 2a–c, Table S2).

We further compared the association of cl1–cl6 with consensus molecular subtypes
(CMS1–CMS4) [29,30]. CMS1 tumors were mostly represented in cl3 (49%), CMS2 tumors
displayed mostly cl2 (37%) and cl4 (24%), CMS3 tumors were predominantly found in cl1
(36%). CMS4 tumors were spread across cl4 (14%), cl5 (43%), and cl6 (20%). CMS4 has been
shown to have poor progression-free survival [30]. Accordingly, cl4, cl5, and cl6 (33%, 60%,
and 65% CMS4 contribution, respectively) showed the worst progression-free survival. cl6
comprised the majority of patients with the shortest overall survival of CMS4, whereas cl4
displayed worse progression-free survival than cl1, cl2, and cl3 but similar overall survival
(Figure 2c,d).

In line with previously published data reporting an intestinal stem cell-specific gene
signature linked to LGR5 and EPHB2 expression related to CRC relapse [8], high expression
of our stem signature defined by 200 genes (Table S1) in the TCGA cohort displayed
decreased progression-free survival (p = 0.068) compared to patients with low expression
(Figure 2e).

Taken together, our six clusters exhibit a better prognostic value for progression-
free survival (p = 0.043) than previously reported subtypes linked to cancer-associated
fibroblasts [31] (p = 0.15), CMSs [29,30] (p = 0.18), or our stem signature alone (p = 0.068).
Indeed, when our clusters were added to multivariable clinico-molecular survival models,
we still observed a significant discriminative contribution by our cluster combinations in
predicting recurrence, but no significant contribution was appreciated when adding CMSs
or cancer-associated fibroblasts to our model. On the other hand, incorporating stroma cells
like cancer-associated fibroblasts can substantially improve the overall survival prediction
(Table S2). These results underscore the relevance of combinations of cell type and cell state
signature expression for COAD outcome, and demonstrate a prognostic value of cell type
and cell state signatures inferred from spheroid single-cell transcriptomes.
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Figure 2. Analysis of single-cell RNA-sequencing (scRNA-seq) signature expression in The Cancer Genome Atlas (TCGA)
colon adenocarcinoma (COAD) cohort. (a) Heatmap reflecting signature expression in the identified clusters of patients
(cl1–cl6). Rows correspond to scRNA-seq signatures (n = 13). Columns correspond to TCGA COAD samples (n = 328).
Clusters are further classified according to consensus molecular subtypes (CMS1–CMS4). NA, not assigned; OXPHOS,
oxidative phosphorylation; TA, transit-amplifying. (b) Cell type and cell state signature expression levels defining cl1–cl6.
Hyp, hypoxia. (c) Kaplan–Meier survival curves displaying progression-free survival (PFS) and overall survival (OS) for
cl1–cl6. p-Values of the comparison cl6 + cl5 + cl4 versus cl3 + cl2 + cl1 for PFS and cl6 + cl5 versus cl4 + cl3 + cl2 + cl1 for OS.
(d) Representation of CMS1–CMS4 within cl1–cl6 and of cl1–cl6 within CMS1–CMS4. Numbers indicate amount of patients
classified under individual categories. Numbers marked in red highlight dominant combinations. Patients not assigned to a
CMS (n = 19 patients) were excluded. (e) PFS and OS of TCGA COAD patients with high versus low expression of the stem
signature. Shaded areas indicate 95% confidence intervals.
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2.3. Cell Cycle and Proliferative Activity of Human CRC Cells

scRNA-seq suggests the existence of cell types with different proliferative activity
within individual spheroid cultures and stem-like, TA-like, and Tdiff-like subpopulations.
We therefore asked whether subfractions of cells with different cell cycle and proliferative
activity exist within CRC tumors in vivo and whether they are functionally relevant.

To assess proliferative heterogeneity of tumor cells, we utilized a genetic label-
retaining strategy based on expression of tetracycline-regulated (Tet-off) histone 2B (H2B)
green fluorescent protein (GFP) [32] (Figure S2a). Upon doxycycline addition, nuclear H2B-
GFP expression is suppressed and subsequently diluted with each cell division, allowing
identification of subpopulations according to proliferative history.

To evaluate whether proliferatively inactive cells within established tumors possess
TIC capacity, we transduced tumor spheroid cultures derived from seven different patients
with an H2B-GFP-encoding lentiviral vector prior to xenotransplantation into NSG mice
(n = 14; 1–4 mice per culture). After successful tumor formation, H2B-GFP expression
was suppressed by doxycycline administration for two weeks. Analysis of H2B-GFP
expression in established tumors by flow cytometry revealed presence of fast (GFP–),
slow (GFPlow), and rare dividing (GFPhigh) cell fractions, demonstrating proliferative
heterogeneity of CRC cells in vivo. To assess whether heterogeneously proliferating cell
fractions are associated with TIC activity, cells from 12 out of 14 primary xenografts
were sorted into fast, slow, and rare dividing subfractions and serially transplanted into
secondary mice (n = 33). Importantly, all subfractions contained cells with TIC activity
irrespective of transplanted cells’ proliferative history prior to re-transplantation (fast: 5/12;
slow: 4/9; rare: 5/12 mice with tumors), showing that TIC activity is not strictly linked to
proliferative active cell fractions but also present in proliferatively inactive populations
within tumors (Figure S2a–c). In summary, these data show that proliferatively inactive
TICs exist within established tumors in vivo. We therefore conclude that within individual
tumors, TIC activity can be present in cells with heterogeneous proliferative activity and is
therefore not restricted to a specific proliferative state of individual cells.

2.4. Divergent Cell Type-Associated Energy Metabolic Preferences

Prominent heterogeneously expressed transcriptional programs in individual spheroid
cells were related to energy metabolism. Whereas a glycolysis/hypoxia signature could be
assigned to Tdiff-like cells (Figure S1f), OXPHOS strongly overlapped with MYC-target
and cell cycle signatures, both identifying cells belonging to the putative TA-like cell
compartment (Figure 1c,d). Thus, we hypothesized that metabolic preferences distinguish
functionally distinct cell subpopulations and focused on these for further validation.

Consistently, we observed clearly overlapping TA-like, OXPHOS, and cell cycle signa-
tures (Figure 1d), but no obvious association between stem-like and OXPHOS or cell cycle
signatures. Of note, in the normal intestinal epithelium, intestinal stem cells actively cycle
and constantly produce progeny, but their relative abundance compared to non-cycling
Tdiff cells is very low [33]. Thus, we reasoned that differential metabolic trends in stem-like
and Paneth-like cells could be masked by much higher or lower expression of individual
metabolic signatures in highly cycling cells or the rare dividing Tdiff-like subpopulation.
To overcome this, we performed pairwise comparisons of cell state signatures across CRC
subpopulations that resemble normal intestinal cell types as identified by differential
NNMF signature expression.

Cell cycle scores were strongly increased in TA-like cells compared to stem-like,
Paneth-like, and Tdiff-like cells (p < 0.000001; respectively). The greatest differences in
metabolic states existed between Tdiff-like and TA-like subpopulations, demonstrating that
the majority of TA-like cells had high OXPHOS scores, whereas Tdiff-like cells showed high
scores for hypoxia and glycolysis, but low scores for OXPHOS. Albeit less pronounced,
similar and highly significant differences were detectable for stem-like and Paneth-like
cells. In comparison to Paneth-like cells, stem-like cells showed increased OXPHOS scores
and decreased glycolysis/hypoxia scores (p < 0.000001, respectively; Figure 3a).
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In addition to the overall high OXPHOS scores, the stem-like signature was associated
with enhanced expression of OXR1 and PON2. Being essential for protection against
oxidative stress, these genes may counteract higher reactive oxygen species (ROS) levels
resulting from enhanced OXPHOS rates [34,35]. Another gene included in the stem-like
signature is MAP2K6—an essential p38 signaling component [36] known to be associated
with high OXPHOS levels in intestinal stem cells [23] (Figure S1f, Table S1).

Collectively, these results demonstrate an association between tumor cell differentia-
tion and metabolic identities in this three-dimensional in vitro CRC model.
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Figure 3. Cell state scores for cell type-specific cell subsets inferred by non-negative matrix factorization. (a–d) Cell
cycle, oxidative phosphorylation (OXPHOS), and glycolysis/hypoxia scores (signatures G2/M, OXPHOS_2, and Hy-
poxia/Glycolysis_2, respectively) for cells of (a) spheroids (n = 8 LGR5+ cultures), (b) patient-derived organoid (PDO;
O1), (c) patient-derived xenograft (PDX; X1), and (d) merged tumor epithelial cells (T1–T3) classified under active cell
type-specific meta-signatures: stem-like (spheroids: n = 467; PDO: n = 944; PDX: n = 667; primary: n = 124), Paneth-like
(spheroids: n = 357; PDX: n = 189), transit-amplifying (TA)-like (spheroids: n = 554; PDO: n = 3,967; PDX: n = 100; primary:
n = 49), terminally differentiated (Tdiff)-like cells (spheroids: n = 486; PDO: n = 639; PDX: n = 424; primary: n = 80). p-Values
were calculated based on the Mann–Whitney Test (two-tailed). * p < 0.05; ** p < 0.01; **** p < 0.0001; ns, not significant.
Dashed lines indicate medians. Upper and lower dotted lines indicate 75% and 25% percentiles, respectively.



Cancers 2021, 13, 1097 12 of 32

2.5. Cell States in Patient-Derived CRC Organoids, Xenografts, and Primary Tumors

To assess whether cell types and transcriptional programs identified in tumor spheroids
are present in other LGR5+ CRC models and patient tumors, we analyzed three patient-
derived organoids (PDOs; O1–O3), two patient-derived xenografts (PDXs; X1, X2), and cells
from three primary tumor samples (T1–T3) by droplet-based scRNA-seq [37,38] (Table 1).
3003–8785 cells passed quality control per PDO. A mean of 4176–5542 genes per cell were
detected. For the PDXs, 1475 (X1) and 1070 cells (X2) passed quality control, with a mean
of 1841 and 4598 detected human genes per cell, respectively (Table 2).

To distinguish functionally distinct subpopulations, LGR5 levels were determined and
sufficient levels detected in O1, O3, and X1. Since the absolute cell numbers after quality
control in the primary tumors were low (T1: 362; T2: 538; T3: 724 cells), the three primary
samples were merged and analysis focused on epithelial cells only (total: 253 cells). As
observed in spheroids, clustering of cells from LGR5+ PDO, PDX, and primary tumor cells
revealed subpopulations of stem-like, TA-like, or Tdiff-like cells. Additionally, a prominent
fraction of Paneth-like (deep crypt secretory-like, REG4+) cells [39] was detected in the
PDX (Figure S3a–c).

Importantly, applying the signatures identified by NNMF of spheroid scRNA-seq
data (Table S1) revealed similar trends for heterogeneous metabolic states associated with
distinct cell types, that is, OXPHOS in stem-like and TA-like, and glycolysis/hypoxia in
Tdiff-like cells (Figure 3b–d). This shows that transcriptional states and cellular composition
identified in spheroids are representative of further patient-derived CRC models as well as
patient tumors.

2.6. Spatial Distribution of OXPHOS and Distinct Cell Types in CRC Spheroids

To analyze spatial organization of metabolic states, we stained spheroids with mito-
chondrial live-dyes for visualization of mitochondrial membrane potential (MMP) and
OXPHOS activity. Histological examination of spheroids (n = 3 cultures) revealed crypt-like
structures formed by partially polarized cells around lumina, morphologically showing
some degree of differentiation. Cells within individual spheroids demonstrated highly
heterogeneous MMP, with MMPhigh cells consistently localized at outer ‘budding’ regions
of spheroids and around crypt-like structures (Figure S4a).

Multiplexed RNA fluorescence in situ hybridization (FISH) for intestinal cell type
markers LGR5 (stem-like), DEFA5 (Paneth-like), and FABP1 (Tdiff-like) resulted in discrete
staining of individual cells by either a single or none of the markers, indicating existence
of distinct intestinal cell types in all three patient cultures. Cellular subtypes also showed
tendencies for spatial localization. DEFA5+ cells were primarily detectable in inner regions
of spheroids. LGR5+ cells preferably localized towards outer regions. Frequently, DEFA5+

cells were identified in proximity to LGR5+ cells (Figure 4a,b). In the intestinal crypt,
LGR5+ cells reside at the crypt base [27,40], and—in line with our observations—imaging
of intestinal organoids has shown localization of LGR5+ cells close to Paneth cells [41].
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Figure 4. Spatial distribution of metabolic activity and distinct cell types in individual colorectal cancer (CRC) spheroids.
(a) Histological sections of CRC spheroids co-stained for representative lineage-specific marker genes by RNA fluorescence
in situ hybridization (FISH). Left: Overview images. Scale bar, 50 µm. Right: Magnified images representing dashed box
regions in overview images (4× digital zoom). Scale bar, 10 µm. DEFA5: Paneth-like, FABP1: terminally differentiated-like,
LGR5: stem-like cells. Colored arrowheads mark associated subtypes in magnified images. Images represent z projections
from 10 µm slices and DNA is counterstained by 6′-diamidino-2-phenylindole (DAPI). (b) Histological section of a spheroid
(P1) stained for cell type-specific marker genes (RNA-FISH) and mitochondria (Mitotracker). Top left: Merged overview
image. Scale bar, 50 µm. Bottom left: Magnification of dashed region in top left image (4× digital zoom). Scale bar,
10 µm. Center and right: Single channels. Scale bar, 10 µm. Images represent z projections from 10 µm slices and DNA is
counterstained by DAPI. (c,d) Fraction of Mitotracker ‘ON’ cells as determined by automated image analysis pipeline. (c)
LGR5+ or DEFA5+ cells (total number of cells analyzed: P1: n = 7379; P4: n = 2670; P5: n = 2213). (d) LGR5+ or FABP1+ cells
(total number of cells analyzed: P1: n = 3403; P4: n = 1580; P5: n = 1601).

To correlate MMP with specific cell types, we combined mitochondrial staining and
multiplexed RNA-FISH, showing DEFA5+ and FABP1+ cells to be largely excluded from
MMPhigh regions, whereas LGR5+ cells were primarily located in MMPhigh regions. Match-
ing our scRNA-seq results, quantitative image analysis in thousands of single cells revealed
that the fraction of LGR5+ cells located in MMPhigh regions is indeed much higher compared
to DEFA5+ and FABP1+ cells in all examined cultures (n = 3; Figure 4c,d, Figure S4b,c).

Hence, in situ RNA fluorescence microscopy further confirmed cell type-specific
metabolic preferences of putative stem-like, Paneth-like, and Tdiff-like cell subtypes in
CRC. In addition, metabolic activities of cellular subtypes are associated with specific
spatial localization within spheroids.

2.7. Heterogeneous Energy Metabolism in Patient Tumors

Identification of cell type-specific metabolic preferences in patient-derived CRC cul-
tures raised the question whether heterogeneously expressed metabolic signatures can be
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identified directly in CRC patient tumors. To address this, we analyzed primary tumors
(n = 25 patients) and liver metastases (n = 25 patients) by immunohistochemistry for ex-
pression of LDH-A and CA9 (Figure S5a,b) as marker genes of hypoxia/glycolysis and
Tdiff signatures (Figure S1f, Table S1).

Within the majority of examined specimens, immunohistochemical analysis revealed
that only subfractions of all cells express LDH-A and CA9, indicating existence of metabolic
heterogeneity within individual patient tumors. Despite high expression of the proliferation
marker MKI67, previously reported to preferentially mark TA-like cells [42], regions of CA9
expression were largely overlapping with MKI67− areas in most patient tumors, suggesting
that tumor cells with expression of the hypoxia/glycolysis signature were indeed less
proliferative, and actively cycling TA-like cells might prefer OXPHOS to generate energy
(Figure S5c).

2.8. Heterogeneous Energy Metabolism in Patient-Derived Models

To assess whether cellular subfractions with distinct OXPHOS activities can be iden-
tified in viable cells, we used an MMP dye for flow cytometry allowing distinction of
cells with different mitochondrial activity based on fluorescence intensity. Indeed, hetero-
geneous fluorescence intensities allowed separation of populations with different MMP
(MMPlow, MMPhigh; Figure 5a).

To understand whether heterogeneous metabolic activity is relevant in patient CRC
tumors, we determined OXPHOS activity of two freshly purified patient tumors and a
patient tumor expanded as PDX in vivo by flow cytometry-based MMP analysis. In all
samples, two cell populations with distinct MMP were identified (Figure 5a), indicating
that heterogeneous mitochondrial activity also exists in PDXs and patient tumors.

This finding was further supported by proteomic analysis of MMPlow and MMPhigh

populations of LGR5+ (i.e., LGR5 score > 1) spheroid cultures (P1, P4, P7, P11) which
revealed differentially abundant proteins between the two populations. Interestingly, three
proteins contributing to the stem-like signature (PROX1, GRN, DEFA6; Table S1) were
significantly higher abundant in MMPhigh compared to MMPlow (Figure S5d).

2.9. Increased Spheroid and Tumor Formation Capacity in OXPHOSHigh Cells

scRNA-seq data suggested that subfractions of MMPlow and MMPhigh spheroid cells
preferentially harbor Tdiff-like and Paneth-like (MMPlow) or stem-like and TA-like tumor
cells (MMPhigh). As spheroid and tumor forming capacity is supposed to be restricted to
stem-like tumor cells [43], we calculated spheroid-forming cell (SFC) frequencies in vitro
and TIC frequencies in vivo by limiting dilutions of sorted MMPlow and MMPhigh cell
fractions.

SFC frequencies were strongly increased in MMPhigh cell fractions compared to
MMPlow fractions or bulk spheroid cells in four out of five cultures (Figure 5b). Spheroid
cells (P1) sorted according to JC-1 aggregation—a different MMP indicator—also demon-
strated increased SFC frequency in the MMPhigh subpopulation (MMPhigh: 1/26; MMPlow:
1/46; Figure S5e).

As increased mitochondrial OXPHOS is linked to enhanced ROS levels [23], we further
assessed the association of SFC frequency and OXPHOS by staining spheroid cells (P4) with
a live-dye fluorescent upon ROS oxidation. In vitro limiting dilutions revealed substantial
enrichment of SFCs in the sorted ROShigh compared to the ROSlow subpopulation (ROShigh:
1/9; ROSlow: 1/117; Figure S5f).



Cancers 2021, 13, 1097 15 of 32

Cancers 2021, 13, x 13 of 31 
 

 

 
Figure 5. Association of tumor-initiating cell (TIC) activity and mitochondrial membrane potential (MMP). (a) Top: 
Heterogeneous MMP staining (Mitotracker) of spheroid cells assessed by flow cytometry (representative plots shown). 
Colored cell populations indicate sorted fractions. Bottom: Heterogeneous MMP staining pattern in tumor cells. Axis scale 
numbers are representative for all plots. PDX, patient-derived xenograft. (b) Spheroid-forming cell (SFC) frequencies of 
MMP sorted spheroid cells (P1, P4: n = 3; P5: n = 2; P2, P10: n = 1) determined by in vitro limiting dilutions. SFC frequencies 
were calculated based on sphere formation 5–7 days after seeding and normalized to bulk (P1, P4, P5: n = 2; P2, P10: n = 
1). (c) Experimental layout of co-cultivation experiments. x- and y-axis are displayed biexponentially. Results for a 
representative spheroid culture (P1) are shown. Axis scale numbers are representative for all plots. EGFP, enhanced green 

Figure 5. Association of tumor-initiating cell (TIC) activity and mitochondrial membrane potential (MMP). (a) Top:
Heterogeneous MMP staining (Mitotracker) of spheroid cells assessed by flow cytometry (representative plots shown).
Colored cell populations indicate sorted fractions. Bottom: Heterogeneous MMP staining pattern in tumor cells. Axis scale
numbers are representative for all plots. PDX, patient-derived xenograft. (b) Spheroid-forming cell (SFC) frequencies of
MMP sorted spheroid cells (P1, P4: n = 3; P5: n = 2; P2, P10: n = 1) determined by in vitro limiting dilutions. SFC frequencies
were calculated based on sphere formation 5–7 days after seeding and normalized to bulk (P1, P4, P5: n = 2; P2, P10:
n = 1). (c) Experimental layout of co-cultivation experiments. x- and y-axis are displayed biexponentially. Results for a
representative spheroid culture (P1) are shown. Axis scale numbers are representative for all plots. EGFP, enhanced green
fluorescent protein. (d,e) Composition of (d) MMPlow and MMPhigh cells or (e) EGFP– and EGFP+ cells in the MMPlow and
MMPhigh subpopulations over time. t0: before, t1: directly after, t2: 21 days after sort. (f) Results of limiting dilutions in vivo.
Left: Overview of dose (D) and response (R). Right: TIC frequencies of MMP sorted spheroid cells. TIC frequencies were
calculated based on tumor formation seven weeks (P1: n = 42 mice) or five weeks (P4: n = 48 mice) after transplantation.
Freq, frequency; T, tested.
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We then asked whether MMPhigh cells exhibit a growth advantage in competition
with MMPlow cells. Spheroid cultures (P1, P4, P5) were transduced with a lentiviral vector
encoding for enhanced green fluorescent protein (EGFP) under the control of the human
phosphoglycerate kinase (PGK) promoter in order to allow follow up of sorted populations
by assigning presence or absence of EGFP expression to the metabolic state at the time
of sort. To achieve this, ~40–50% EGFP+ cultures were stained for MMP (t0) and cells
were sorted as co-cultures of MMPhighEGFP+ and MMPlowEGFP– spheroid cells (1:1 ratio;
t1). After three weeks (t2), despite similar relative contributions of MMPlow and MMPhigh

fractions, co-cultures were nearly completely EGFP+, indicating a growth advantage of
MMPhigh compared to MMPlow cells (Figure 5c–e).

To quantify TIC frequency in MMPhigh and MMPlow subpopulations in vivo, spheroid
cultures (n = 2) were sorted according to MMP. Descending cell numbers of each population
were subcutaneously injected into NSG mice. For P1, 42 mice with four different dilutions
(103–106 cells), for P4, 48 mice with five different dilutions (3 × 101–3 × 105 cells) were
transplanted. For all mice where endpoint criteria have not been reached before, tumor for-
mation was assessed simultaneously at defined endpoints (P1: seven weeks; P4: five weeks
after transplantation). Importantly, in both tested cultures, calculated TIC frequencies were
substantially increased in MMPhigh compared to MMPlow cells (P1: 1/46,535 vs. 1/211,305;
P4: 1/249 vs. 1/2089 for MMPhigh vs. MMPlow, respectively; Figure 5f), demonstrating
strong enrichment of stem-like tumor cells in the MMPhigh population.

Cell type-specific metabolic preferences might represent a targetable metabolic vul-
nerability in CRC. To test this hypothesis, we assessed the impact of carbonyl cyanide
m-chlorophenyl hydrazine (CCCP), a drug perturbing adenosine triphosphate synthesis
by transporting protons across the mitochondrial inner membrane [44], on SFC frequency
(n = 3 spheroid cultures). Upon 4 h pretreatment with 25 µM CCCP, a lower SFC fre-
quency of CCCP compared to dimethyl sulfoxide (DMSO) treated cells was observed for
all cultures tested (P1: 1/19 vs. 1/14; P4: 1/18 vs. 1/9; P5: 1/68 vs. 1/14 for CCCP vs.
DMSO treated, respectively; Figure S5g), indicating sensitivity of stem-like cells towards
OXPHOS inhibition.

3. Discussion

We here analyzed functional CRC intra-tumor heterogeneity at single-cell level and
demonstrate that distinct functional programs within individual CRC cells can be assigned
to specific cellular subpopulations.

In healthy tissues including normal intestine, functional cellular heterogeneity is estab-
lished by differentiation processes of stem and progenitor cell populations, which control
the tissues’ functionality in a demand-dependent manner [27]. Similarly, in CRC and other
solid tumors as well as in hematological malignancies, functional heterogeneity of tumor
and non-tumor cells in the surrounding microenvironment exists and acts as driver of
tumor progression [31,45]. Although the majority of tumor cells in CRC cycles actively, we
identified proliferatively inactive cells in patient-derived cultures and within established
xenograft tumors in vivo—in line with recent data on the healthy intestine [46]. Neverthe-
less, these cells eventually can re-enter the cell cycle and exhibit TIC activity, suggesting
that cells escape from a quiescent state, possibly driven by cellular plasticity as described
before for CRC [47]. Accordingly, slow or non-cycling cells were suggested to exhibit
increased chemoresistance and drive relapse following initial successful therapy [17,48].

This has striking parallels to the normal intestine, where ablation of stem cells under
pathological conditions (e.g., irradiation) can be compensated by a reserve pool of stem cells
that are rare during homeostasis but can regenerate all different cell populations including
stem, progenitor, and differentiated cell types upon activation, thereby maintaining a
functional intestine after tissue injury [49].

The complex composition of different subpopulations within normal and malignant
intestinal epithelium and their dynamic interactions are poorly understood. Their character-
ization has been hampered by the dependency of experimental approaches on purifying cell
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populations, which cannot fully distinguish between or comprehensively capture distinct
cell types and intermediates and might fail to detect rare and poorly characterized cell pop-
ulations. Recent studies shed light on this complexity by utilizing single-cell approaches
to detect and characterize rare cell types in the normal intestine and CRC [42,46,49–53].
We here demonstrate that scRNA-seq further allows the identification of cell type-specific
expression modules in CRC and enables identification of functional states during TIC
differentiation based on transcriptional heterogeneity.

In line with observations in other entities, transcriptional programs across multiple
CRC patients were dominated by inter-patient heterogeneity, most likely due to individual
genetic and epigenetic alterations [21,25,54]. Interestingly, most patient-derived spheroid
cells clustered according to primary tumor or metastasis site, suggesting either a stable
effect of tumor environment on transcriptional programs or selection of tumor cells with
specific expression profiles.

Gene sets most heterogeneously expressed within individual spheroids and PDOs in-
cluded genes specifically expressed in distinct cell types of the normal intestinal epithelium
(e.g., a gene set including LGR5 for stem-like, a gene set including KRT20 for Tdiff-like
cells) [55]. This further supports the notion that, in CRC, there exist functionally distinct
cell types that phenotypically reflect those of the normal intestinal epithelium [6,8]. Still, in
contrast to the normal intestinal epithelium where distinct cellular subpopulations can be
discriminated in high resolution by scRNA-seq technologies [55], gene expression within
identified subfractions of CRC was less distinct. However, individual subfractions shared
transcriptional traits, potentially reflecting continuous cell type transitions after malignant
transformation comparable to reports on hematopoietic stem cell differentiation [56]. In
glioblastoma, bulk RNA-sequencing of individual tumors was used to analyze transcrip-
tional heterogeneity and identified different tumor subtypes, while scRNA-seq revealed
different proportions of cell types within individual tumors underlying transcriptional
heterogeneity rather than distinct homogeneous tumor subtypes [54]. This is in line with
our data showing cellular diversity of cell types and cell states within individual patient
tumors. Of note, four out of 12 spheroid cultures did not meet inclusion criteria for NNMF
analysis due to low LGR5 scores. Accordingly, previous findings show that, while LGR5+

tumor cells can be detected in tumors from all CRC subtypes independent of their cellular
composition [53], up to a third of individual CRCs tumors may lack detectable LGR5 lev-
els [14]. Furthermore, LGR5 plasticity has recently been shown to drive CRC metastasis [57].
In the presented study, we only focused on patient-derived cultures with high expression
of LGR5. Future analyses of the hierarchical organization of LGR5– cultures and existing
cellular subpopulations in comparison to the cellular subpopulations and cellular states
described in this study could further widen the understanding of cellular heterogeneity
in CRC.

Our approach to decipher transcriptional programs heterogeneously expressed in
functionally distinct CRC cell subfractions identified heterogeneous gene expression pro-
grams related to cell cycle, immune response, and metabolic states like OXPHOS and
glycolysis. Given the considerable functional and proliferative differences between distinct
cell populations, cell-to-cell variability in energy turnover and demand appears likely.
A recent study has linked decreased biosynthetic capacities to differentiation [58]. As
OXPHOS can be more efficient in energy production [59], highly proliferative TA-like
tumor cells might prefer OXPHOS over glycolysis to generate energy. Even though such
cell type-specific metabolic identities are known from the normal intestinal epithelium [23],
distinct metabolic preferences within normal and malignant stem cell systems are not
uniform across different tissue types and tumor entities, and are not necessarily correlated
with proliferation activity in general. For example, TICs in hepatocellular carcinoma [60],
breast cancer [61], osteosarcoma [62], and nasopharyngeal carcinoma [63] rely on glycolysis
for tumor formation, while TICs in pancreatic ductal adenocarcinoma [64], glioma [65], and
acute myeloid leukemia [66] prefer OXPHOS. Importantly, tumor cells can also alternate
between glycolysis and OXPHOS, thereby adapting to metabolic challenges [67].
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Here, we were able to assign the metabolic demand of OXPHOS to functionally
relevant stem-like and TA-like cells and observed substantial enrichment of self-renewing
and proliferating SFCs and TICs in OXPHOShigh cell subfractions. As a consequence,
inhibition of OXPHOS impaired spheroid formation in vitro identifying OXPHOS as a
novel druggable target in CRC. Since high OXPHOS levels were detected in stem-like and
TA-like cell compartments, targeting OXPHOS as treatment strategy might eliminate the
most self-renewing and proliferating cell types simultaneously.

Interestingly, stem-like tumor cells demonstrated overexpression of OXR1 and PON2,
both involved in protection against ROS accumulating as co-product of OXPHOS [34].
Further studies are needed to address whether expression of OXR1 and PON2 may be
involved in a mechanism by which this long-lived and thus vulnerable population of
stem-like tumor cells protects itself against ROS-mediated damage.

In our proteomic analysis, proteins significantly higher abundant in the MMPhigh

subpopulation included PROX1, one of the top markers of the stem signature and usually
expressed in the enteroendocrine lineage [51]. Interestingly, PROX1 has been reported to be
positively correlated with LGR5 expression in CRC [43] and linked to stem cell maintenance
and metastasis [68,69]. Another protein significantly more abundant in MMPhigh was
DEFA6, a protein expressed in normal Paneth and Paneth-like tumor cells [70]. Its moderate
expression in the stem-like cell population might reflect a continuous rather than a stepwise
process underlying transition from stem-like to Paneth-like cell subsets (and potentially
vice versa) in CRC. While Paneth cells constitute the niche for LGR5+ cells in the small
intestinal epithelium, this function is performed by REG4-expressing deep crypt secretory
cells in the colon [39,71,72]. REG4 was also included in the NNMF Paneth-like signature,
suggesting that both cell types might contribute to this signature.

Of note, the expression signatures identified by scRNA-seq of patient-derived CRC
spheroids have shown a prognostic relevance for CRC patients comparable to previously
reported subtypes linked to cancer-associated fibroblasts [31] or CMSs [29], indicating that
cell types and cell states might indeed be biologically distinct and of potential clinical
relevance for CRC patients.

In summary, we here show that distinct functional cell states during TIC differentiation
can be identified by single-cell transcriptomes. Targeting differentiation of cancer cells
and associated transcriptional states might represent a novel therapeutic strategy for
human CRC.

4. Materials and Methods
4.1. Primary CRC Spheroids and Organoids

Human CRC samples (male and female patients) were obtained from Heidelberg
University Hospital in accordance with the Declaration of Helsinki. Informed consent on
tissue collection was received from each patient, as approved by the University Ethics
Review Board on 19 May 2009 (323/2004) and 7 June 2013 (S-649/2012). Tumor sample
processing and purification procedures were described previously [4,73,74].

For generation of three-dimensional spheroid cultures, cells freshly isolated from
patient material or PDXs were cultivated in ultra-low attachment flasks (Corning, Corning,
NY, USA) in serum-free culture medium (Advanced DMEM/F-12 supplemented with
0.6% glucose, 2 mM L-glutamine (all ThermoFisher, Waltham, MA, USA), 5 mM HEPES,
4 µg/mL heparin (all Sigma-Aldrich, St. Louis, MO, USA), 4 mg/mL bovine serum albumin
(PAN-Biotech, Aidenbach, Germany)). Growth factors (20 ng/mL epidermal growth factor,
10 ng/mL fibroblast growth factor basic (all R&D Systems, Minneapolis, MN, USA)) were
added twice per week.

To dissociate tumor spheroids, cells were pelleted, resuspended in 0.25% trypsin-EDTA
(ThermoFisher, Waltham, MA, USA), and incubated for 10–30 min at 37 ◦C. The reaction
was stopped by adding 20% fetal bovine serum (PAN-Biotech, Aidenbach, Germany) in
phosphate-buffered saline (PBS; ThermoFisher, Waltham, MA, USA). Cells were pelleted,
resuspended in medium, and filtered through a 40 µm cell strainer (Corning, Corning, NY,
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USA). To avoid secondary cell culture artifacts, like hypoxic cores in large spheroids [75],
cultures were dissociated at defined, pretested time points 6–14 days before individual
experiments.

For generation of three-dimensional organoid cultures, purified cells were seeded
in 10 µL drops of Cultrex reduced growth factor basement membrane extract (R&D Sys-
tems, Minneapolis, MN, USA) into not-treated 6-well plates (Corning, Corning, NY, USA).
Organoids were cultured as previously described with minor modifications [76,77] and
in the absence of WNT, R-spondin and Noggin, thereby selecting for tumor cells with
activation of WNT/β-catenin signaling and inhibition of BMP signals [78,79]. In brief,
cells were cultured in serum-free culture medium (Advanced DMEM/F-12 supplemented
with B-27 supplement, 2 mM L-glutamine, 100 µg/mL streptomycin, 100 U/mL penicillin
(all ThermoFisher, Waltham, MA, USA), 10 mM HEPES, 10 mM nicotinamide, 1.25 mM
N-acetyl-L-cysteine, 1 µM SB 202190, 500 nM A 83-01, 10 nM gastrin, 10 nM prostaglandin
E2 (all Sigma-Aldrich, St. Louis, MO, USA), 100 µg/mL primocin (InvivoGen, San Diego,
CA, USA)). 20 ng/mL of epidermal growth factor was added three times per week and
medium was exchanged weekly. After seeding, 10 µM Y-27632 (StemCell Technologies,
Vancouver, BC, Canada) was added. To dissociate tumor organoids, cells were taken
up in 0.25% trypsin-EDTA diluted 1:1 in PBS and incubated for 10–20 min at 37 ◦C. To
enhance dissociation, organoids were mechanically disrupted by pipetting. The reaction
was stopped by adding 20% fetal bovine serum in PBS. Cells were washed twice with PBS
before reseeding.

Spheroid and organoid cultures were authenticated using Multiplex Cell Authentica-
tion by Multiplexion (Heidelberg, Germany) as described [80]. The SNP profiles matched
known profiles or were unique. The purity of spheroid and organoid cultures was vali-
dated using the multiplex cell contamination test by Multiplexion (Heidelberg, Germany)
as described recently [81]. No mycoplasma, SMRV or interspecies contamination was
detected. To assure pure epithelial cell content and exclude contaminations with murine
or hematopoietic cells, established cultures were tested for EPCAM, H2kd, and CD45
expression by flow cytometry.

4.2. Laboratory Animals

Male and female immunodeficient NSG mice purchased from The Jackson Laboratory
(Bar Harbor, ME, USA) were further expanded in the Centralized Laboratory Animal
Facilities of the DKFZ, Heidelberg. Animals were group-housed in standard individually
ventilated cages with wood chip embedding (LTE E-001, ABEDD, Vienna, Austria), nesting
material, autoclaved tap water and ad libitum diet (autoclaved mouse/rat housing diet
3437, Provimi Kliba, Kaiseraugst, Switzerland). Room temperature and relative humidity
were adjusted to 22.0 ± 2.0 ◦C and 55.0 ± 10.0%, respectively, in accordance with Ap-
pendix A of the European Convention for the Protection of Vertebrate Animals used for
Experimental and Other Scientific Purposes from 19 March 1986. According to FELASA
recommendations, all animals were housed under strict specific pathogen-free conditions.
The light/dark cycle was adjusted to 14 h lights on and 10 h lights off with the beginning
of the light and dark period set at 6 am and 8 pm, respectively. The age of transplanted
mice was at least seven weeks. All animal experimentation performed in this study was
conducted according to national guidelines and was reviewed and confirmed by an institu-
tional review board/ethics committee headed by the responsible animal welfare officer.
The Regional Authority of Karlsruhe, Germany finally approved the animal experiments as
the responsible national authority (approval numbers G228/12 (29 January 2013), G49/14
(26 June 2014), G233/15 (17 November 2015)).

4.3. scRNA-seq of Spheroids

To generate single-cell suspensions, cells were trypsinized as described. Trypsinization
was enhanced by applying shear forces with a pipette every 5 min. After stopping the
reaction, cells were washed twice with PBS and filtered through a 15–20 µm cell strainer
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(PluriSelect, Leipzig, Germany). To count and test for cell viability using an automated
cell counter (Countess, ThermoFisher, Waltham, MA, USA), single-cell suspensions were
stained with Hoechst and propidium iodide (ReadyProbes Cell Viability Imaging Kit,
ThermoFisher, Waltham, MA, USA) for 10 min at room temperature. Only samples with at
least 85% viability were used for further processing. For isolation of single cells, reverse
transcription, and cDNA amplification, the Rapid Development Kit (Wafergen, Fremont,
CA, USA; compare: SMARTer iCELL8 3′ DE Reagent Kit, TakaraBio, Kusatsu, Japan) for in-
chip reverse transcription-PCR amplification with the iCELL8 system (TakaraBio, Kusatsu,
Japan) [19] was used. The cell suspension was diluted to 25 cells/µL. Cells were dispensed
from a 384-well source plate into a nanowell chip (SmartChip v1/v2 kit, TakaraBio, Kusatsu,
Japan; P7: v2; others: v1) containing uniquely barcoded oligo-dT primers for each well,
resulting in up to 30% of wells containing single cells following Poisson distribution. Wells
were imaged using an automated fluorescence microscope (BX43, Olympus, Shinjuku,
Japan) and image processing was performed using CellSelect (TakaraBio, Kusatsu, Japan).
Additional manual curation for multiplets and dead cells was performed. 50 nL RT/Amp
solution was dispensed into nanowells (master mix: 56 µL 5 M betaine (Sigma-Aldrich,
St. Louis, MO, USA), 24 µL 25 mM dNTP mix (TakaraBio, Kusatsu, Japan), 3.2 µL 1 M
magnesium chloride (ThermoFisher, Waltham, MA, USA), 8.8 µL 100 mM dithiothreitol,
61.9 µL 5× SMARTScribe first-strand buffer, 33.3 µL 2× SeqAmp PCR buffer, 4.0 µL 100 µM
RT E5 oligo, 8.8 µL 10 µM Amp primer (all TakaraBio, Kusatsu, Japan), 1.6 µL 100% Triton X-
100 (ThermoFisher, Waltham, MA, USA), 28.8 µL SMARTScribe reverse transcriptase, 9.6 µL
SeqAmp DNA polymerase (all TakaraBio, Kusatsu, Japan)). In-chip RT/Amp amplification
was performed for 18 amplification cycles (Bio-Rad, Hercules, CA, USA; modified for
iCELL8 chips). Libraries were pooled, concentrated (DNA Clean&Concentrator-5, Zymo
Research, Irvine, CA, USA), purified (0.6× Ampure XP beads, Beckman Coulter, Brea, CA,
USA), and assessed for DNA quality (Bioanalyzer and High Sensitivity DNA Kit, Agilent,
Santa Clara, CA, USA). Next generation sequencing libraries were constructed following
manufacturer’s instructions using the Nextera XT DNA Library Prep Kit (Illumina, San
Diego, CA, USA) and sequenced using NextSeq500 (Illumina, San Diego, CA, USA; high-
output mode, paired-end; v1 chip: 21 × 70 bp; v2 chip: 24 × 67 bp).

4.4. scRNA-seq of Tumors, PDXs, PDOs

To generate single-cell suspensions, cells were trypsinized as described. After stopping
the reaction, cells were washed with PBS and filtered through a 40 µm cell strainer. Cells
were washed, resuspended in PBS supplemented with 0.05% bovine serum albumin, and
filtered through a 20 µm cell strainer. Single-cell suspensions were loaded following the
Chromium Single Cell 3′ Library Kit v2 (10× Genomics, Pleasanton, CA, USA) protocol
to generate cell and gel bead emulsions. Reverse transcription, cDNA amplification, and
sequencing library generation were performed according to manufacturer’s protocol. Each
library was sequenced in one lane of the NextSeq500 (Illumina, San Diego, CA, USA;
high-output mode, paired-end, 26 × 49 bp).

4.5. Preprocessing and Analysis of iCELL8 Data

scRNA-seq data were preprocessed using an automated in-house workflow (Roddy;
https://github.com/TheRoddyWMS/Roddy). FastQC was used to evaluate read quality.
Assignment of iCELL8 library barcodes to corresponding nanowells was performed with
the Je demultiplexing suite [82]. Sequences were trimmed for primer sequences, poly-A/T
tails, and low-quality ends using Cutadapt with the ‘–nextseq-trim’ option. Mapping to
the reference genome hs37d5 was performed (STAR aligner). Quantification of mapped
BAM files was performed using featureCounts (reference annotation gencode v19). Only
scRNA-seq libraries matching the following criteria were used: (i) >100,000 reads, (ii) >1000
detected genes, (iii) <15% mitochondrial reads. Strong PCA outliers as well as libraries

https://github.com/TheRoddyWMS/Roddy
https://github.com/TheRoddyWMS/Roddy
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with top 5% of reads for every patient independently were removed. As previously
published [25], expression levels based on raw read counts were quantified as

Ei,j = log2

(CPMi,j

10
+ 1

)
, (1)

with CPMi,j as the counts-per-million for gene i in sample j. Aggregate expression of each
gene across all cells was calculated as

Ea = Ei,j = log2(mean[Ei,1...n] + 1) (2)

with genes with Ea < 3.5 being excluded to focus on highly or intermediately expressed genes.
Combined filtered and normalized data of all patients were used for evaluation

of inter-patient gene expression differences. The R package Seurat [38] was used for
identification of highly variable genes, PCA, clustering, two-dimensional visualization,
and differential expression analysis (Wilcoxon rank sum test: adjusted p-value < 0.05; log
fold-change > 0.25).

Before combining the data of all patients, relative expression levels were calculated
individually for each patient using a mean-centering approach

Eri,j = Ei,j −mean[Ei,1...n] (3)

to eliminate global inter-patient gene expression shifts.
PCA was applied and—for visualization—the top 30 genes with low and high scores

in the first principal component were clustered using average group linkage (UPGMA) by
the ‘aheatmap’ function from R’s ‘NMF’ package. Gene set enrichment analysis [83] was
performed on the top 300 genes with highest and lowest PC scores.

Transcriptional signatures shared across patients were identified using NNMF [24] of
mean-centered data of all patients defined as LGR5+ (n = 8 patients; Table 2). Analysis was
performed in MATLAB (MathWorks, Natick, MA, USA; ‘nnmf’) with a factor number of k
= 25 and negative events set to 0. To exclude patient-specific signatures, pairwise overlaps
in frequency distributions of cell scores for individual factors were determined and factors
with overlaps <50% in at least five patients were excluded. Biological relevance of factors
and their associated genes was analyzed manually and by gene set enrichment analysis [83].
Factors potentially driven by technical artifacts were excluded. Signature scores were
defined as averaged expression of the top 200 genes per factor. To reduce redundancy
for visualization, signatures showing similar enrichment and clustering patterns were
combined to meta-signatures (Figure S1a–e, Table S1).

Meta-signature scores (calculated based on the combined gene lists of the comprised
signatures) were clustered using complete linkage of Euclidean distances. NNMF anal-
ysis was repeated with various numbers of factors resulting in identification of similar
core signatures.

To test whether cell type-specific transcriptional programs (stem-like, TA-like, Paneth-
like, Tdiff-like) are active in individual cells or—in other words—to differentiate be-
tween cells that belong to the four cell type-specific subpopulations, we adapted the
above described cell scoring approach based on the expression of inferred NNMF meta-
signatures [25] and used control random gene sets as background model to control for
technical confounders as library complexity. Cell type-specific transcriptional programs
were defined as active if their expression in individual cells was >1 standard deviation
above the mean across all cells. Inferred cell state-specific signatures were scored for cells of
a particular cell type to assess the degree to which cell states are active in specific cell types.

4.6. Preprocessing and Analysis of 10x Data

For 10× 3′ libraries generated from cells derived from PDOs, PDXs, and primary
tumor samples, raw sequencing data were processed using CellRanger (10× Genomics,
Pleasanton, CA, USA; version 2.1.1). Transcripts were aligned with the 10× reference
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human genome hg19 1.2.0 and the mouse genome mm10 1.2.0. Quality control and
downstream analysis were performed with Seurat (https://github.com/satijalab/seurat;
version 3.0.0). Only cells matching the following criteria were used for downstream
analysis: PDOs: (i) >2000 detected genes, (ii) <10% mitochondrial reads; PDXs: (i) >500
detected genes, (ii) <10% mitochondrial reads for Homo sapiens, and (i) >1000 and <4500
detected genes, (ii) <10% mitochondrial reads for Mus musculus; primary tumor samples: (i)
>200 and <6000 detected genes, (ii) <15% mitochondrial reads. Only human cells from the
PDXs and epithelial cells (EPCAM+, VIL1+, CEACAM5+, VIM–, SPARC–) from the primary
tumor samples were analyzed.

Subsequent downstream analysis was performed with standard Seurat workflow,
including log-normalization and scaling as well as PCA and clustering using the top 2000
variable genes. Datasets were visualized using two-dimensional t-distributed stochastic
neighbor embedding maps [84]. The three primary tumor samples were aligned using
canonical correlation analysis implemented in Seurat [85]. In brief, this method identi-
fies pairwise correspondences between single cells across different datasets belonging to
specific biological states, termed ‘anchors’. These anchors are the basis of harmonizing
datasets. Differentially expressed genes between identified clusters were identified using
Wilcoxon rank sum test. Identified clusters were scored for cell state signatures using the
‘AddModuleScore’ function (Seurat), using gene signatures from NNMF analysis (Table S1).

4.7. Patient Clustering and Survival Analysis

Cell type and cell state signatures obtained from spheroid scRNA-seq data (Table S1)
were evaluated in a patient survival analysis. Bulk transcriptomic data for COAD pa-
tients with available survival data were collected from TCGA (level 3 RNA-seq, n = 328
patients) [28] and log-transformed. For each TCGA patient, the mean expression of gene
signatures was calculated and used to cluster bulk transcriptomes by complete linkage of
Euclidean distances. Patients were grouped according to different combinations of cell type
and cell state signatures. In a new clustering process, the sample space was progressively
subdivided using the main signatures defining each cluster of patients: First, OXPHOS_1,
G1/S, G2/M, and stem signatures separate cl2 and cl3 (high) from the rest (low; Euclidean
distances). Then, hypoxia/glycolysis_1 and TNFα_2 signatures distinguish cl2 (low) from
cl3 (high; Euclidean distances). Next, fatty acid and TNFα_1 signatures separate cl1 (high)
from cl4, cl5, and cl6 (Euclidean distances). Subsequently, stem and TA signatures separate
cl6 (stemlow) from cl4 and cl5 (stemhigh; correlation). Finally, G1/S, G2/M, and OXPHOS_1
signatures also distinguish between cl4 (medium) and cl5 (low; Euclidean distances). Com-
plete linkage of Euclidean distances was used to cluster stemhigh and stemlow patients.
Kaplan–Meier survival curves were generated using ‘survival’ and ‘survminer’ libraries
in R. We performed Cox proportional hazards modeling and multivariable models with
and without cell type and cell state clusters were compared by performing analysis of
variance (ANOVA). ‘CMScaller’ [29] was used to stratify the TCGA COAD cohort. To gen-
erate the contingency table, patients that could not be assigned to a CMS (n = 19 patients)
were excluded.

4.8. Genetic Labelling of Spheroids

For tracking of cells within tumors, lentiviral vector particles encoding for tetracycline-
regulated (Tet-off) H2B-GFP were produced in HEK293T cells, concentrated by ultracen-
trifugation, and titrated on HeLa cells as described [4,5]. Patient-derived spheroid cultures
(n = 7) were transduced with a multiplicity of infection of 1–20 aiming at transduction
efficiencies of ~ 40% to avoid multiple vector integrations. Within 24 h after transduction,
4 × 105–1.7 × 106 transduced cells were transplanted under the kidney capsule of NSG
mice (n = 14, 1–4 mice per spheroid culture) anesthetized by 1.75% isoflurane (Abbott,
Chicago, IL, USA) in the breathing air. Mice were checked daily for tumor growth, and
starting two weeks prior to tumor harvesting, doxycycline (Genaxxon, Ulm, Germany) was
added to the drinking water of tumor-bearing mice to shut down H2B-GFP expression.

https://github.com/satijalab/seurat
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Mice were sacrificed, xenograft tumors were digested as described [5,73], cells were stained
with 200 nM TOTO-3 (ThermoFisher, Waltham, MA, USA) in Hank’s Balanced Salt solution
(Sigma-Aldrich, St. Louis, MO, USA) supplemented with 2% fetal bovine serum for dead
cell exclusion, and tumor cells were sorted according to GFP expression intensity (AriaII
and FACS Diva, Becton Dickinson, Franklin Lakes, NJ, USA). GFP signal was detected
in the FITC channel (488 nm laser; 505 LP, 525/50 filter). TOTO-3 signal was detected in
the APC channel (633 nm laser; 670/30 filter). Samples were gated for cells (FSC-A vs.
SSC-A), singlets (FSC-A vs. FSC-W, SSC-A vs. SSC-W), and living cells (FSC-A vs. APC-A).
Populations with high, medium, and low/absent GFP expression were sorted (SSC-A vs.
FITC-A), reanalyzed to test for sort efficiency, and serially transplanted into secondary
recipient mice (1 × 102–4.5 × 104 cells; n = 33 mice). Mice were monitored daily for tumor
formation and sacrificed when tumors reached the maximum tolerable size.

4.9. RNA-FISH

For combinatory stainings of mitochondrial activity and mRNA, undissociated
spheroids were stained for 3 h with 100 nM Mitotracker Red CMXRos solution (Ther-
moFisher, Waltham, MA, USA). For histological preparation, cells were fixed in 4% formalde-
hyde (ThermoFisher, Waltham, MA, USA) for 20 min at 4 ◦C, washed twice with PBS, and
incubated in 30% sucrose overnight at 4 ◦C. Samples were embedded (Richard-Allan Scien-
tific Neg-50 Frozen Section Medium, ThermoFisher, Waltham, MA, USA) and frozen in the
gaseous phase of liquid nitrogen. Histological sections (10 µm slices) were prepared on a
cryostat (Leica, Wetzlar, Germany) and mounted on Superfrost Plus slides (ThermoFisher,
Waltham, MA, USA). For RNA-FISH, the RNAscope Multiplex Fluorescent v2 (Bio-Techne,
Minneapolis, MN, USA) was used according to manufacturer’s instructions with probes
targeting mRNAs of LGR5, DEFA5, and FABP1. Alexa488, Atto550, or Atto647 were used as
fluorescent dyes. Cryosections were stained with 6′-diamidino-2-phenylindole (DAPI) and
mounted in SlowFade Gold Antifade solution (ThermoFisher, Waltham, MA, USA). Images
were acquired by confocal laser scanning microscopy (SP8, Leica, Wetzlar, Germany) in 15
z stacks (z range: 20 µm).

For quantitative analysis of RNA-FISH/Mitotracker imaging data, we developed a
single-cell image analysis pipeline to relate metabolic activity (Mitotracker) to intestinal
subtypes (RNA-FISH). To prepare spheroid images for further analysis, we performed
maximum intensity projection on each channel separately. For automated nuclei instance
detection and segmentation in spheroids, a deep learning object detection and instance
segmentation workflow incorporating Mask R-CNN [86] was implemented. The neural
network was initialized using pretrained models trained on the ‘Microsoft COCO: Common
Objects in Context’ dataset [87] and fine-tuned using images of nuclei acquired from various
unrelated sources. Maximum intensity projections of DAPI images were used as inputs
for the neural network to produce segmentation for each individual nucleus as outputs.
Nuclei sizes were calculated using these segmented DAPI masks, and objects smaller than
350 pixels were filtered out and excluded from subsequent analysis.

For quantification and analysis of transcript abundance of marker mRNAs specific for
stem-like (LGR5), Paneth-like (DEFA5), and Tdiff-like (FABP1) cells, maximum intensity
projections of RNA-FISH channels were binarized using ‘Maximum Entropy’ thresholding
(FIJI/ImageJ; https://imagej.nih.gov/ij/). Transcript abundance was estimated by overlay-
ing nuclei masks on maximum projected probe channels and calculating number of pixels
lying within each mask. To account for cytoplasmic fluorescence signals localized outside
of nuclei masks, we expanded nuclei before quantification by morphological dilation (two
iterations) as implemented in scikit-image (Python). To quantify mitochondrial abundance
per cell, Mitotracker signals were quantified similarly, but binarization of fluorescence
signal was based on ‘Moments’ thresholding (FIJI/ImageJ). We then performed k-means
clustering on frequency distributions of pixel counts per cell to identify and separate cells
into two distinct positive ‘ON’ (high expression/abundance) and negative ‘OFF’ (low
expression/abundance) states. k = 2 was used for mRNA probes, while k = 3 was used for

https://imagej.nih.gov/ij/


Cancers 2021, 13, 1097 24 of 32

Mitotracker signals to better capture gradual differences between cells. Finally, the fraction
of stem-like, Paneth-like, and Tdiff-like cells that are Mitotrackerhigh at the same time was
calculated by dividing the number of Mitotrackerhigh LGR5+, DEFA5+, or FABP1+ cells by
the total number of LGR5+, DEFA5+, or FABP1+ cells.

4.10. Flow Cytometry and Sorting of Metabolic Subpopulations

Spheroid cultures were dissociated into single-cell suspensions as described above.
Sorted cells were collected in culture medium supplemented with 100 µg/mL streptomycin
and 100 U/mL penicillin.

For MMP staining with Mitotracker, cells were resuspended in 25 nM Mitotracker Red
CMXRos in PBS (1 mL per 106 cells). Staining was performed for 30 min at 37 ◦C. For dead
cell exclusion, cells were stained with 200 nM TOTO-3 in PBS. Cells were resuspended in
PBS, filtered through a 35 µm cell strainer (Becton Dickinson, Franklin Lakes, NJ, USA),
and analyzed on a cell sorter (AriaII and FACS Diva). Mitotracker signal was detected in
the PE-CF594 channel (561 nm laser; 600 LP, 610/20 filter). TOTO-3 signal was detected
in the APC channel (633 nm laser; 670/30 filter). Samples were gated for cells (FSC-A vs.
SSC-A), singlets (FSC-A vs. FSC-H, SSC-H vs. SSC-W), and living cells (FSC-A vs. APC-A).
Sorting was performed based on Mitotracker signal intensity (FSC-A vs. PE-CF594-A;
Figure S6a–f).

For MMP staining with JC-1, cells were counted and resuspended in 1 µg/mL JC-1
(ThermoFisher, Waltham, MA, USA) in PBS (1 mL per 106 cells). Staining was performed
for 10 min at 37 ◦C. For dead cell exclusion, cells were stained with 200 nM TOTO-3 in PBS.
Cells were resuspended in PBS, filtered through a 35 µm cell strainer, and analyzed on a
cell sorter (AriaII and FACS Diva). JC-1 monomer signal was detected in the FITC channel
(488 nm laser; 505 LP, 525/50 filter). JC-1 aggregate signal was detected in the PE channel
(561 nm laser; 575/25 filter). TOTO-3 signal was detected in the APC channel (633 nm
laser; 670/30 filter). Samples were gated for cells (FSC-A vs. SSC-A), singlets (FSC-A vs.
FSC-H, SSC-H vs. SSC-W), and living cells (FSC-A vs. APC-A). Sorting was performed
based on JC-1 aggregate/monomer ratio (PE-A vs. FITC-A). As negative control, 50 µM
CCCP (Selleckchem, Houston, TX, USA) was added during the staining.

For ROS staining, cells were resuspended in 5 µM CellROX Deep Red Reagent (Ther-
moFisher, Waltham, MA, USA) in PBS (500 µL per 106 cells). Staining was performed
for 45 min at 37 ◦C. For dead cell exclusion, cells were stained with 1 µg/mL propidium
iodide (Sigma-Aldrich, St. Louis, MO, USA) in PBS. Cells were resuspended in PBS, fil-
tered through a 35 µm cell strainer, and analyzed on a cell sorter (AriaII and FACS Diva).
CellROX signal was detected in the APC channel (633 nm laser; 670/30 filter). Propidium
iodide signal was detected in the PE-CF594 channel (561 nm laser; 600 LP, 610/20 filter).
Samples were gated for cells (FSC-A vs. SSC-A), singlets (FSC-A vs. FSC-H, SSC-H vs. SSC-
W), and living cells (FSC-A vs. PE-CF594-A). Sorting was performed based on CellROX
signal intensity (FSC-A vs. APC-A).

4.11. Assessment of SFC Frequency

For each sorted cell population (OXPHOSlow, OXPHOShigh), 48 wells with 10 cells,
24 wells with 100 cells, and 16 wells with 1000 cells per well were sorted into 96-well
ultra-low attachment plates (Corning, Corning, NY, USA) containing 100 µL of culture
medium (50% fresh, 50% conditioned (filtered medium of the bulk culture harvested during
collection of cells)) supplemented with 100 µg/mL streptomycin and 100 U/mL penicillin
per well. Fresh cytokines and medium were added every four days. Spheroid formation
was analyzed 5–7 days after sorting using conventional light microscopy (Axiovert 40C,
Zeiss, Oberkochen, Germany). Based on the fraction of spheroid-containing wells for each
dilution, SFC frequencies were calculated using Poisson statistics and maximum likelihood
(L-Calc, StemCell Technologies, Vancouver, BC, Canada). In vitro limiting dilution assays
upon Mitotracker staining were performed three times for MMPlow and MMPhigh subpop-
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ulations of P1 and P4, twice for P5 as well as bulk (all living, i.e., TOTO3–cells) populations
of P1 and P4, and once for P2 and P10.

4.12. Assessment of TIC Frequency

Mitotracker stained cells were sorted as described above, pelleted, resuspended in
medium, and counted. Different cell counts were pelleted, resuspended in medium, mixed
with matrigel (Corning, Corning, NY, USA), and injected subcutaneously into the flanks
of immunodeficient NSG mice. For MMPlow as well as MMPhigh fractions of P1, four
mice with 106 cells, five mice with 105 cells, six mice with 104 cells, and six mice with
103 cells were transplanted. For MMPlow as well as MMPhigh fractions of P4, three mice
with 3 × 105 cells, four mice with 3 × 104 cells, 5–6 mice with 3 × 103 cells (six mice for
MMPlow, five mice for MMPhigh), 5–6 mice with 3 × 102 cells (five mice for MMPlow, six
mice for MMPhigh), and six mice with 3 × 101 cells were transplanted. The experiments
were performed blindly until observable tumor development.

Mice were monitored daily for tumor formation and sacrificed when tumors reached
the maximum tolerable size or when experiments were ended (P1: seven weeks; P4: five
weeks after transplantation). Based on the fraction of tumor formation for each dilution,
TIC frequencies were calculated using Poisson statistics and maximum likelihood (L-Calc).

4.13. Co-Cultivation Experiments

Spheroid cultures (n = 3) were transduced with a lentiviral vector encoding for EGFP
under control of the human PGK promoter at multiplicities of infection of 0.5 (P1, P4) or
1 (P5), yielding transduction efficiencies of ~40–50%. After expansion, cells were stained
with Mitotracker and prepared for flow cytometry as described above. In addition to
Mitotracker and TOTO-3, EGFP fluorescence was detected (488 nm laser; 505 LP, 525/50
filter). Cells were gated for low and high Mitotracker signal (MMPlow, MMPhigh) as well
as for negative or positive EGFP signal (EGFP–, EGFP+). For each culture, a set of 5 × 104

MMPhighEGFP+ and 5× 104 MMPlowEGFP– cells as well as a set of 5× 104 MMPhighEGFP–

and 5 × 104 MMPlowEGFP+ cells were sorted simultaneously. To assess sorting efficiency,
sorted samples were reanalyzed by recording 1000 living cells. Sorted cells were cultivated
in 24-well ultra-low attachment plates (Corning, Corning, NY, USA). Spheroid formation
and EGFP signal for each sample set were observed by fluorescence microscopy (Axiovert
200, Zeiss, Oberkochen, Germany). After 21 days in culture, cells were dissociated, stained
with Mitotracker, and reanalyzed by flow cytometry as described.

4.14. Inhibitor Treatments

To assess SFC frequencies upon pretreatment with OXPHOS inhibitors, 5 × 105 tumor
spheroid cells (P1, P4, P5) were seeded into two wells of 6-well ultra-low attachment
plates (Corning, Corning, NY, USA). After seven days, 25 µM CCCP or DMSO (Sigma-
Aldrich, St. Louis, MO, USA) were added and cells were incubated for 4 h at 37 ◦C. Cells
were dissociated, stained with 200 nM TOTO-3 in PBS, and prepared for cell sorting as
described. Living (i.e., TOTO-3–) cells were sorted into 96-well ultra-low attachment plates
containing 100 µL of fresh culture medium supplemented with 100 µg/mL streptomycin
and 100 U/mL penicillin per well. Limiting dilution and determination of SFC frequency
were performed as described.

4.15. Immunohistochemistry

Formalin-fixed and paraffin-embedded tumor specimens of primary colorectal adeno-
carcinomas (n = 25 patients) and liver metastases (n = 25 patients) resected between 2013
and 2016 at the University Hospital Heidelberg were extracted from the archive of the
Institute of Pathology, Heidelberg University, with the support of the tissue bank of the
NCT (#2831). Tissues were used in accordance with the ethical regulations of the tissue
bank of the NCT defined by the local ethics committee. Diagnoses were made according
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to the recommendations of the World Health Organization classification of tumors of the
digestive system [88].

Immunohistochemical staining was performed as previously described [89]. In brief,
tissue sections were cut, pretreated with an antigen retrieval buffer, and stained for Ki-67,
CA9, and LDH-A using an automatic staining device (Ventana Benchmark Ultra, Roche,
Basel, Switzerland; Table S3).

4.16. Mass Spectrometry

Mass spectrometry was performed for LGR5+ (i.e., LGR5 score > 1) patient-derived
spheroid cultures (n = 4). Tumor spheroid cells were stained with Mitotracker, prepared for
sorting as described, and 5 × 105 cells of MMPlow and MMPhigh subfractions were sorted
(n = 3 independent experiments). Cell pellets were reconstituted in 100 µL 0.1% RapiGest
SF Surfactant (Waters, Milford, MA, USA) in 100 mM triethylammonium bicarbonate
(Sigma-Aldrich, St. Louis, MO, USA) and 1× protease inhibitor cocktail (cOmplete, Sigma-
Aldrich, St. Louis, MO, USA). Cells were lysed by probe-sonication twice for 15 s at
10% frequency, followed by centrifugation for 30 min at 15,000× g and 4 ◦C. 10 µg of
protein per sample were denatured for 5 min at 95 ◦C, reduced with dithiothreitol (Biomol,
Hamburg, Germany; 5 mM final concentration) for 30 min at 60 ◦C, and alkylated with
chloroacetamide (Sigma-Aldrich, St. Louis, MO, USA; 15 mM final concentration) for 30
min at 23 ◦C. Proteins were digested overnight at 750 rpm and 37 ◦C, at an enzyme/protein
ratio of 1:20 with sequencing-grade modified trypsin (Promega, Madison, WI, USA) in
double-distilled water (ddH2O). Samples were acidified by adding trifluoroacetic acid
(Biosolve Chimie, Dieuze, France; 0.5% final concentration), incubated for another 30 min
at 750 rpm and 37 ◦C, and centrifuged for 30 min at 15,000× g and 23 ◦C.

Peptides were separated using the Easy NanoLC 1200 fitted with a trapping column
(Acclaim PepMap C18, ThermoFisher, Waltham, MA, USA; 5 µm, 100 Å, 100 µm × 2 cm)
and an analytical column (nanoEase MZ BEH C18, Waters, Milford, MA, USA; 1.7 µm,
130 Å, 75 µm × 25 cm). The outlet of the analytical column was coupled directly to a
Q-Exactive HF Orbitrap mass spectrometer (ThermoFisher, Waltham, MA, USA). Solvent
A was ddH2O (Biosolve Chimie, Dieuze, France), 0.1% (v/v) formic acid (Biosolve Chimie,
Dieuze, France) and solvent B was 80% acetonitrile (ThermoFisher, Waltham, MA, USA) in
ddH2O, 0.1% (v/v) formic acid. Samples were loaded and peptides eluted with a 105 min
gradient via the analytical column as described [90].

Raw files were processed using MaxQuant (https://www.maxquant.org; version
1.5.1.2) [91] against the human Uniprot database (20170801_Uniprot_homo-sapiens_ canon-
ical_reviewed; 20,214 entries) using the Andromeda search engine with the default search
criteria: enzyme was set to trypsin/P with up to two missed cleavages. Carbamidomethyla-
tion (C) and oxidation (M)/acetylation (protein N-term) were selected as fixed and variable
modifications, respectively. Protein quantification was performed using the label-free
quantification algorithm of MaxQuant. On top, intensity-based absolute quantification
intensities were calculated with a log-fit enabled. Identification transfer between runs via
the ‘matching between runs’ algorithm was allowed with a match time window of 0.3 min.
Peptide and protein hits were filtered at a false discovery rate of 1% with a minimal peptide
length of seven amino acids. The reversed sequences of the target database were used as a
decoy database. Proteins only identified by a modification site, contaminants, as well as
reversed sequences were removed from the dataset.

Differential expression analysis was performed using limma moderated t statistics (R
package version 3.36.3; one-sample, two-sided) [92]. Here, data was first normalized based
on median label-free quantification densities per sample. Next, ratios between MMPhigh

and MMPlow cells were calculated. Significantly differentially expressed proteins were
defined to show a Benjamini–Hochberg adjusted p-value < 0.05 and an absolute log2-fold
change > 1.

https://www.maxquant.org
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4.17. Quantification and Statistical Analysis

Statistical tests and sample size used for individual experiments are described in the
corresponding figure legends or methods. The threshold for statistical significance was
defined as p < 0.05. Significance levels were denoted by asterisks: * p < 0.05, ** p < 0.01,
**** p < 0.0001. The threshold for statistical significance in univariable and multivariable
survival analyses was defined as p < 0.1.

4.18. Data and Code Availability

scRNA-seq data have been deposited at the European Genome-phenome Archive
(EGA) which is hosted at the EBI and the CRG, under accession number EGAS00001004064.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE [93] partner repository with the dataset identifier PXD018230.

Codes for analysis of scRNA-seq and RNA-FISH data are available at the github
repository (https://github.com/eilslabs/CRC_scRNAseq).

5. Conclusions

In this study, we show at single-cell resolution that transcriptional heterogeneity
identifies functional states during tumor-initiating cell differentiation in colorectal cancer.
Targeting specific transcriptional states associated with cancer cell differentiation unravels
novel potential vulnerabilities in human colorectal cancer.
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