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a b s t r a c t

Objective: Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based
slow waves, accumulates in specific brain regions that are more active during prior waking experience.
We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic
brain injury (mTBI).
Methods: We developed a method to automatically detect individual slow waves in each EEG channel,
and validated this method using simulated EEG data. We then used this method to quantify EEG-based
slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified
coherence index that accounts for information from multiple channels was calculated as a measure of
slow wave synchrony.
Results: Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly
more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to
sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude
ratios and significantly more EEG slow waves while awake compared to age-matched control subjects.
We then quantified the global coherence index of slow waves across several EEG channels in human
subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control
subjects while awake, but not during sleep. EEG global coherence was significantly correlated with se-
verity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale).
Conclusion and implications: Taken together, our data from both mouse and human studies suggest that
EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker
for the diagnosis and prognosis of mTBI and post-concussive symptoms.

Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Traumatic brain injury (TBI) is a worldwide problem and a major
cause of disability among affected individuals. Mild, moderate or
severe TBI often results in persistent sleep disturbances, which can
significantly contribute to cognitive impairment, disability, and
delay functional recovery (Baumann et al., 2007; Kempf et al., 2010;
Makley et al., 2008, 2009). An estimated 42 million people
access article under the CC BY-NC
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worldwide suffer a mild TBI (mTBI) each year, and many of these go
on to experience significant sleep-wake disturbances (Kimura et al.,
1985; Mollayeva et al., 2016). However, the exact nature and me-
chanisms underlying sleep-wake disturbances in TBI are still un-
clear, and only recently have been the subject of descriptive and
experimental studies (Lim et al., 2012, 2013; Rowe et al., 2014;
Skopin et al., 2015; Nakase-Richardson et al., 2013). Furthermore, in
mTBI, the clinical assessment currently lacks objective markers to
confirm the diagnosis and aid in the prognosis of those who go on
to develop persistent post-concussive symptoms.

A well-established mouse model of mTBI, lateral fluid percus-
sion injury (FPI), exhibits similar pathology and behavioral deficits
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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to those reported after human TBI (Dixon et al., 1987; McIntosh
et al., 1989). Our previous work established persistent changes in
the sleep-wake cycle in mice following FPI, including, most no-
tably, greater time spent in non-rapid eye movement (NREM)
sleep and the inability to maintain continuous bouts of wakeful-
ness (Lim et al., 2013). Human studies also report increased sleep
times following TBI, which may reflect increased sleep pressure
(Sommerauer et al., 2013; Imbach et al., 2015). Regional slow
waves have been implicated in sleep pressure, particularly during
wakefulness (Hung et al., 2013; Vyazovskiy et al., 2011). Here, we
propose a new method utilizing quantitative analysis of the sleep-
wake EEG, focusing on slow waves associated with chronic mTBI.

Previous studies applying quantitative EEG (QEEG) to TBI have
primarily examined spectral power or frequency changes during
sleep; for example, noting enhanced beta power during non-rapid
eye movement (NREM) sleep (Arbour et al., 2015). Several studies
have indicated somewhat conflicting findings of less delta power
during NREM sleep (Cote et al., 2015; Khoury et al., 2013) versus
increased delta power during NREM sleep (Imbach et al., 2015;
Parsons et al., 1997), with significant variability among subjects
with mTBI, likely reflecting heterogeneity of the disease (Williams
et al., 2008). QEEG analyses during wakefulness in subjects with
mTBI have shown attenuated posterior alpha or focal irregular
slow wave activity or theta activity over the temporal region, in-
creased delta power, and reduced alpha power (Schneider and
Hubach, 1962; Nuwer et al., 2005; Courjon and Scherzer, 1972;
Gosselin et al., 2009). Our method represents a novel approach
from earlier QEEG methods in several ways: 1) we specifically
counted the number of slow waves across a high-resolution time
domain, instead of averaging amplitudes over a large time scale, 2)
our method calculates a ‘global coherence measure’ of slow waves
across multiple channels, as opposed to traditional coherence
metrics which compare only pairs of channels, and 3) we com-
pared QEEG of slow wave counts across both sleep and waking
states, which to our knowledge, has not been done before in TBI.

In order to quantify slow waves and global slow wave co-
herence in sleep and wakefulness after mTBI, we first examined
EEG power spectral analyses comparing amplitude ratios across
frequency bands in both mouse and human subjects after mTBI.
Next, we designed and validated a method to quantify EEG slow
waves. We then quantified slow waves in the sleep-wake EEG from
both mouse and human subjects with mTBI. Finally, we designed a
method to quantify the coherence of slow waves across multiple
EEG channels in human subjects, and correlated this global co-
herence index with TBI symptom severity in individual subjects.
The current experiments were designed to assess the utility of EEG
slow wave counts and coherence during sleep and wakefulness in
the diagnosis and prognosis of mTBI.
2. Materials and methods

2.1. Animals

Animal experiments were performed on 10 week old, 25 g,
male C57BL/6J mice (Jackson Laboratory). The animals were
housed in a room that was maintained at an ambient temperature
of 2371 °C with a relative humidity of 2575% and that was on an
automatically controlled 12-h light/12-h dark cycle (lights on at
07:00 hours, illumination intensity E100 lx). The animals had free
access to food and water. Animal experiments were performed in
accordance with the guidelines published in the National In-
stitutes of Health Guide for the Care and Use of Laboratory Ani-
mals and approved by the local IACUC committee.
2.2. Fluid percussion injury and EEG/EMG sleep-wake recordings

Fluid percussion injury in combination with EEG/EMG im-
plantation in mice (n¼12) was performed as previously described
(Lim et al., 2013). Mice were divided into two groups: TBI (surgery
and fluid percussion injury) and sham. The fluid percussion brain
injury (FPI) protocol was carried out over two days as previously
described (Lim et al., 2013). Briefly, a craniotomy was performed
with a trephine (3-mm outer diameter) over the right parietal area
between bregma and lambda, just medial to the sagittal suture
and lateral to the lateral cranial ridge. The dura remained intact
throughout the craniotomy procedure. A rigid Luer-loc needle hub
(3-mm inside diameter) was secured to the skull over the opening
with Loctite adhesive and subsequently cyanoacrylate plus dental
acrylic. The next day, the animal was briefly placed under iso-
flurane anesthesia (500 mL/min) via nose cone, and respiration
was visually monitored. When the animal was breathing once per
two seconds, the nose cone was removed, the cap over the hub
removed, and dural integrity visually confirmed. The hub was
topped off with isotonic sterile saline, and a 32-cm section of high-
pressure tubing extending from the FPI device attached to the
Luer-loc fitting of the hub (Department of Biomedical Engineering,
Virginia Commonwealth University, Richmond, VA). The animal
was then placed on its left side and observed. Once normal
breathing resumed and just as the animal regained its toe pinch
withdrawal reflex, a 20-ms pulse of saline was delivered onto the
dura. A pressure gauge attached to an oscilloscope was used to
ensure delivered pressures between 1.4 and 2.1 atm, which have
been previously shown to generate a mild brain injury (McIntosh
et al., 1989; Dixon et al., 1988; Carbonell et al., 1998). Immediately
after injury, the hub was removed from the skull and the animal
was placed in a supine position. The animal was then re-
anesthetized with isoflurane for scalp closure. Sham animals re-
ceived all of the above, with the exception of the fluid pulse. The
animal was placed onto a heating pad until ambulatory and then
returned to the home cage.

After five days of recovery, mice were connected to lightweight
recording cables in individual cages. Sleep recordings were in-
itiated after 24 h of acclimation to the cables and continued for
five days. Baseline sleep was analyzed on the first and fifth days to
ensure stable sleep/wake activity across days. Therefore, the fifth
day of recording corresponded to post-TBI day 13. On recording
day four, mice were sleep deprived using gentle handling for three
hours, from 10:00 to 13:00 (Zeitgeber Time, or ZT 3-5), which is a
time of heightened sleep pressure in mice. Gentle handling was
accomplished by providing the mice with materials such as bed-
ding, nestlets, pieces of paper towels, aluminum foil, and saran
wrap, and occasionally stroking the mice with a soft paintbrush, as
previously described (Lim et al., 2013). During this enforced wa-
kefulness, wake was electrographically confirmed using a combi-
nation of EEG and electromyographic (EMG) signals during the
entire three-hour period. An experimental timeline is provided in
Fig. 1.

2.3. Human subjects

Normal Group: The source of the data for this cohort consisted
of polysomnography (PSG) records from a previous research study
where polysomnography data (including EEG) were obtained from
subjects without documented sleep disorders, as well as patients
with varying degrees of obstructive sleep apnea (NIH
1R43HL076986-01A1). Following IRB approval and obtaining in-
formed consent, each subject underwent a sleep study at the
General Clinical Research Center (GCRC) of Case Western Reserve
University (located within the facilities of University Hospitals of
Cleveland, UHOC). PSG studies were performed according to



Fig. 1. Experimental timeline for mouse EEG studies.

Table 1
Polysomnography characteristics in age-matched human subjects with mTBI and
healthy control subjects.

Controls mTBI

Age (years) 32.973.0 32.573.1
TST (min) 396.1716.2 400.4717.7
Sleep latency (min) 19.173.4 7.571.3 **

Sleep efficiency (%) 88.171.7 90.872.4
WASO (min) 33.776.3 22.178.4
N2 (%) 52.072.6 52.774.5
N3 (%) 13.772.9 16.175.9
REM (%) 19.671.3 12.272.5 *

AHI (events/hr) 1.870.4 7.271.7 **

Human subjects did not significantly differ in the following parameters: age, total
sleep time, sleep efficiency, wake after sleep onset (WASO), or percentages of NREM
stage N2 or N3 sleep. Subjects in the mTBI group showed shorter sleep latency,
lower percentages of REM sleep, and mildly elevated AHI compared to controls.
Numbers listed as mean (SEM).
TST¼total sleep time, WASO¼wake after sleep onset, N2¼NREM stage N2 sleep,
N3¼NREM stage N3 sleep, REM¼rapid eye movement sleep, AHI¼apnea-hy-
popnea index, SEM¼standard error of the mean.

* po0.05, Student's t-tests.
** po0.01, Student's t-tests.
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standard clinical practices that included the attachment of bio-
potential and physiological surface electrodes/sensors such as EEG
(electroencephalogram), EOG (electrooculogram), EMG (electro-
myogram), ECG (electrocardiogram), as well as respiratory sensors
(airflow) and pulse oximetry. Following the conclusion of the
study, sleep staging was manually performed by a certified PSG
technician, based on visual observation of the EEG, EOG, and chin
EMG for each 30-second epoch duration, according to the standard
clinical criteria (American Academy of Sleep Medicine (AASM) The
AASM Manual, 2014), and again confirmed by a second in-
dependent scorer (MHM). The PSG records and the corresponding
sleep staging of eight male and female subjects with apnea-hy-
popnea index (AHI) of o5 respiratory events/hour (considered
clinically in the normal range) were randomly selected to re-
present the normal group. The average age of these subjects was
32 years old.

Mild TBI: The source of the data for this group consisted of PSG
records from Veterans with mTBI admitted to an inpatient re-
habilitation program at the Tampa VA. Mild TBI was diagnosed by
a neuropsychologist according to standard clinical criteria ac-
cording to the USA Department of Veterans Affairs (2009). The
3-week program encompassed a comprehensive individualized
evaluation of physical, cognitive, and mental health symptoms.
The treatment phase of the program provided intensive therapy
for post deployment/combat related injuries encompassing both
physical and mental health symptoms. Among the evaluation and
treatment protocols, and by recommendation of the sleep medi-
cine staff, a number of these individuals were referred to the
hospital's sleep laboratory for a comprehensive sleep evaluation.
Overnight polysomnography was administered by certified sleep
laboratory staff, and included the standard sleep montage EEG
with bio-potential and physiological surface electrodes/sensors
such as EEG, EOG, EMG, ECG, as well as respiratory sensors (air-
flow) and finger pulse oximetry. Following the conclusion of the
study, standard sleep staging analysis was manually performed by
a certified PSG technician, according to AASM criteria, as described
above, and confirmed by a second independent scorer (MHM).
Human subjects with mTBI were on average 32 years old, 58.3
months out from their injuries at the time of their poly-
somnography (range, 8–106 months), and displayed other relevant
characteristics as shown in Table 1. All mTBI subjects were as-
sessed by a licensed neuropsychologist at the Tampa VA (TK). All
subjects met criteria for chronic mTBI. There were no significant
differences in outcome (i.e., Neurobehavioral Symptom Inventory
scale scores) as a result of time interval from injury. Other studies
have focused on QEEG in chronic TBI with similar time intervals
since injury (Leon-Carrion et al., 2009). PSG conditions were
identical between groups and lasted the standard length of a ty-
pical sleep study, e.g. approximately from 22:00 to 06:00 (8 h
duration of recordings).

Retrospective analysis of PSG records was performed under IRB
approval (#Pro00003124) from University of South Florida and
Tampa VA. Eight consecutive male subjects with mTBI were
identified who underwent diagnostic PSG and whose respiratory
events were in the range not to require treatment for sleep apnea
(i.e., they were not initiated onto continuous positive airway
pressure therapy). Of these, 4 of 8 had an AHI 45 events per hour.
De-identified EEG channel recordings from each of the 8 subjects'
PSG tests were further analyzed in MATLAB. Sleep stages included
in analyses were Wake, NREM stage N1, and NREM stage N2.
NREM stage N3 and REM were not included, as not every subject
had these stages during the PSG recording.

Individuals with mTBI underwent the Neurobehavioral Symp-
tom Inventory (NSI) scale, which is used within the Veterans Af-
fairs (VA) system. The NSI is a validated, self-report measure of
symptoms commonly associated with Post-Concussion Syndrome
(Cicerone and Kalmar, 1995). The NSI consists of 22 items or
symptoms, and patients are asked to rate the degree by which
each of the 22 symptoms has affected their daily functioning on a
Likert Scale (0¼None, 1¼Mild, 2¼Moderate, 3¼Severe, 4¼Very
Severe). NSI scores are then calculated for each of the 4 domains,
Physical (‘Somatic’), Cognitive, Affective and Sensory (‘Vestibular’),
and tallied for a total NSI score.

2.4. Data analysis: EEG and sleep/wake scoring

For mouse studies, polygraphic records were scored offline by
an experienced and blinded scorer for non-rapid-eye movement
(NREM) and rapid-eye-movement (REM) sleep and wakefulness
(W) in 4-second epochs across the five days of recording as pre-
viously described (Lim et al., 2013). A separate algorithm for arti-
fact removal was applied post-hoc to raw continuous EEG data as
described below.

Human PSG studies were scored by a blinded, certified PSG
technician, and staging was again confirmed by an independent
scorer (MM) (as described in Section 2.1).

2.5. Data analysis: EEG spectral analysis

Each EEG file associated with mouse and human PSG records
underwent spectral analysis that computed the power spectral
density for each channel using Welch's averaged, modified peri-
odogrammethod (MATLAB, Mathworks, Inc.). The EEG records were
divided into four-second segments (overlapped by one second),



Fig. 2. EEG signal post-processing steps in simulated and physiologic mouse EEG datasets.
(A) Sample artifact rejection using automated algorithm designed to detect 15 consecutive samples within 55 binary units of the amplifier maximum (or minimum) from raw
EEG trace. In this example, deep minima between 4 and 8 s would be removed from the data. (B) Sample raw EEG trace lasting 12 s, or 3 epochs, from a mouse during
enforced wakefulness. All epochs during enforced wakefulness were confirmed as wake on the basis of combined EEG and EMG criteria. (C) Butterworth filter applied to the
sample raw EEG trace from panel A. (D) Identification of zero crossings (� symbols) and minima (open circles) exceeding the threshold (dashed line), set at three times the
median amplitude of all minima during REM sleep. (E) Cumulative averages of simulated slow-wave counts for n¼6 traces generated from an uncorrelated Gaussian noise
sample showing effects of post-processing steps (i.e., filters and zero crossings/minima identification) on noise alone. Data represent cumulative counts of the minima
exceeding the threshold for each trace over three consecutive hours. (F) Actual EEG data collected from sham-injured mice during 3 hours of enforced wakefulness, showing
effects of post-processing steps (i.e., artifact rejection, filters, zero crossings/minima identification) on physiologic EEG. Note that sham control mice show a similar (but not
identical) accumulation of slow wave counts compared to simulated EEG data, indicating a that high-amplitude minima in sham mice are distributed similar to those
produced by random noise. (G) Histogram of simulated EEG data of a single trace showing the distribution of minima values and the threshold (dashed line) set at three
times the median amplitude of the minima during the preceding hour. (H) Histogram of physiologic EEG data from a single sham control mouse showing the distribution of
minima values and the threshold (dashed line) set at three times the median peak height during REM sleep. The amplitude bins in both histograms are normalized such that
�1 indicates the median amplitude of the corresponding reference. Only minima above this threshold were included in slow wave counts.
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where each four-second segment was windowed with a Hamming
window and power spectral density computed with a resolution of
0.25 Hz. From the power spectral density of each segment, the
average power was computed for the following frequency bands:
Delta (δ): 1–3.5 Hz; Theta (θ): 4–7.5 Hz; Alpha (α): 8–12 Hz; Sigma
(s): 13-16 Hz; Beta (β): 16.5–25 Hz; and Gamma (γ): 30–35 Hz.

For mouse files, wake epochs were used from ZT 13.5 to ZT 15.5
(the two-hour period of most heightened wakefulness, at lights-
off). For human subjects files, because these were overnight PSG
files, wake epochs were used from the first 60 seconds of the start
of recording from the central electrode (C3) and compared to state
N2 NREM sleep (also from C3).

2.6. Data analysis: EEG slow wave analysis

For the mouse studies, each EEG file for a given mouse un-
derwent a series of post-processing steps involving artifact
removal, signal filtering and frequency bandwidth isolation as
follows (see Fig. 2 for illustration):

First, artifact removal was accomplished by detecting ‘clipping’
events, defined as 15 raw EEG samples (�60 milliseconds) in a row
being within 55 units of the amplifier maximum (or minimum). The
unit is about 1/4000 of the maximum signal range on the 12-bit
recorder utilized in the experiments. Each clipping event, such as
shown in Fig. 2A, was used to invalidate a corresponding 4-s epoch.
The number of such epochs varied across the mice, but never ex-
ceeded 7% of all epochs, whereas the average fraction of invalidated
epochs was about 1%. However, the removal of such epochs was
essential, since the subsequent analysis focused on high-amplitude
events representing less than 1% of all the epochs.

Second, a moving average of three data samples was applied to
the recorded signal to smooth out any extremely high frequency
spikes, as previously described (Hung et al., 2013). The three data
sample moving average filter applied at the sampling frequency of
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256 Hz is equivalent to removing frequencies greater than 80 Hz
(i.e., far outside the frequency band of interest between 1 and
8 Hz).

Third, a basic Fermi window function ( )( ) = + −
−

f n e1 5
1n

50 ,

where n is the sample number, was applied as a multiplicative
correction to gradually attenuate the first two seconds (512 sam-
ples) of each recorded signal, a negligible amount of data from the
3- to 24-h analysis files. However, without this windowing, a
ringing artifact was observed with the application of the Butter-
worth Filter (see next step) due to the discontinuous nature of the
initial data points.

The fourth step in post-processing involved isolating the 1–
8 Hz frequency band of interest by numerically applying a 4th
order Butterworth band-pass filter (see Fig. 2C). The frequency
range of 1–8 Hz was chosen because of its non-overlap with tra-
ditional waking EEG frequencies in the alpha range (9–13 Hz) and
higher. This range has been applied to human sleep EEG data be-
fore for the quantification of slow waves in local sleep (Hung et al.,
2013). The Butterworth Filter was chosen primarily for its flatness
of the amplitude response within the pass band. Signal amplitude
is a characteristic that is vital to our subsequent stages of peak
quantification (see next steps, and validation in Fig. 2E–H).

Subsequent post-processing steps included the following: The
resulting filtered data signal from each mouse was analyzed for
negative troughs in the EEG signal using modifications to methods
previously described (Hung et al., 2013). Positive transients showed
downwards whereas negative transients go up. In the first step, zero
crossings were located and the absolute minima between each pair
of consecutive zero crossings were identified (thereby avoiding in-
advertent quantification of multiple local minima of the same
trough) for NREM and wake states for each individual mouse. Values
of the filtered signal amplitude at the minima for NREM and wake
states were then normalized to the median value of such minimal
amplitudes during REM sleep during the previous hour (for the 3-h
data set) or the first 12 h (of the 24-h data set) for each individual
mouse. Unlike human sleep data, individual normalization is ne-
cessary in animal studies due to the individual differences between
mice in hardware, impedance, amplification and gain of each re-
cording. The ideal normalization factor is an immutable constant.
REM sleep was chosen as the baseline for normalization for several
reasons. In mice, REM is relatively monochromatic (i.e. a single
frequency, usually 7–8 Hz and constant within an individual animal),
and the amplitude remains fairly constant and consistent within a
single animal across our 5 days of recording. In contrast, NREM,
wake, and total power all change with varying conditions (i.e., light
or dark, sleep deprivation or recovery sleep). Thus, the amplitudes
during REM sleep are the best representation of the signal strength
of the whole brain of the mouse, and therefore it is an ideal factor
with which to normalize prior to comparing slow wave counts
against other mice. Also, the percentage of REM sleep does not
significantly differ between TBI and shammice (Lim et al., 2013), and
predominant EEG frequencies in REM sleep in the theta range (5–
8 Hz) are included within our frequency analysis range of 1–8 Hz.

Based on REM sleep of the individual animal, we next set a
relative voltage threshold above which to count slow waves. Any
metric that is based on median or average (e.g., the 50th percen-
tile) will likely capture a significant amount of noise or random
events in addition to the signal of interest (e.g., slow waves). Here,
we attempt to identify rare slow wave events with the deepest
minima, which are concentrated within the tail of a given dis-
tribution. In our simulated data model, in which EEG data for six
‘mice’ was created using independent random signal values from a
Gaussian distribution, a threshold set at three times the median
amplitude of minima during REM sleep was applied (see Fig. 2G).
This threshold was high enough to remove most noise, but still
low enough to capture enough of the deepest slow waves to be
meaningful. The purpose of generating the simulated data (es-
sentially a dataset of random numbers) was to establish a
benchmark for the number of rare events that are detectable due
to chance; therefore, the 3x cutoff falls within the desired balance
of signal:noise.

All mice in the study experienced at least 50 epochs of REM
sleep (and on average, over 150 epochs) during the 1-h baseline
period from 09:00 to 10:00 on recording Day 4. Using the simu-
lated data as a guide, a threshold value for the physiological data
was set at three times the median amplitude of the minima
quantified during REM sleep for each mouse, and only the values
exceeding the threshold (i.e., the deepest minima) for each mouse
were counted as slow waves (see Fig. 2H). Only the deepest
minima were counted because previous work has established that
slow waves with the deepest minima correspond to longer periods
of cortical silence from larger groups of neurons (Vyazovskiy et al.,
2009; Buzsaki et al., 2012).

EEG slow wave counts were analyzed from the following per-
iods for each mouse: 1) over 24 hours of spontaneous NREM sleep
(07:00 to 07:00), 2) over 24 h of spontaneous wakefulness (07:00
to 07:00), and 3) experimentally-enforced wakefulness (10:00 to
13:00).

For EEG from human subjects, the same method as described
above was employed for detection of negative troughs within the
frequency range specified for mice. It again should be noted that,
in human EEG, normalization is not necessary due to standardi-
zation of scalp electrodes and use of absolute voltage scales.
Therefore, for human EEG wave counts, voltages were not nor-
malized, and a percentage threshold (75th percentile and above)
was applied above which slow waves were selected for analysis.
This percentage threshold approach is similar to what has been
done previously for human EEG slow wave counts (Hung et al.,
2013). As these were attended overnight studies performed in an
AASM-accredited sleep laboratory, EEG-related artifacts were
usually immediately corrected by the sleep technician, thus
minimizing the number of EEG-related artifacts. Furthermore,
within the analyzed PSG records, the slow wave algorithm that
was applied rejected the slow waves in which the magnitude ex-
ceeded the threshold set for artifact (‘clipped’ traces).

Determination of the threshold (values below which a trough
was counted as a ‘slow wave’) was based on the 75th percentile of
all negative troughs from each individual's awake data (Hung
et al., 2013).

2.7. Data analysis: global coherence index

A measure of co-occurrence of slow waves among the bi-
hemispheric occipital and central EEG channels was defined and
applied to the human data. This ‘Global Coherence Index’ was
based on relative time of occurrences of slow waves in each EEG
channel and was computed as follows: For each wake and sleep
state, consecutive time intervals of 0.1 second duration (bins) were
defined, and the occurrence of slow wave peaks in each EEG
channel was marked as either "1" (if a slow wave peak appeared in
that bin) or "0" (no slow wave peak occurred). This was followed
by summing the counts for all four channels (O1, O2, C3, C4) for
every bin resulting in a number ranging from 0 (no peaks in any
channels) to 4 (all four EEG channels had a peak). Subsequently,
each bin was assigned the value 1 if there were either no peaks in
the bin or all four channels had peaks, or assigned the value 0 if
there were 1, 2, or 3 peaks present. These 0 or 1 values then were
averaged across the 600 bins (each bin was 0.1 s, with 60 s ana-
lyzed in total), and converted to percentages.
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2.8. Statistical procedures

As there have been no prior publications performing this type
of EEG individual slow wave quantification in human subjects with
TBI, sample sizes for the human subjects studies were determined
using power analyses based on the data from our preliminary
experiments using mice. Our mouse data comparing TBI with
sham control mice during wakefulness showed a Cohen's effect
size of 1.9, based on the difference of the mean values of the theta:
alpha ratios, divided by the square root of the mean of the var-
iances of the two groups. Using a power level of 0.9 and an alpha
probability of 0.05, our minimum sample size for a two-tailed t-
test is n¼7 per group. We thus analyzed n¼8 human subjects
with TBI and n¼8 age-matched control subjects.

Statistical calculations and analyses were performed using the
open-source program R (Version 2.15.2, The R Foundation of Sta-
tistical Computing) (Team, 2012) and MATLAB (MathWorks, Inc.).
Where appropriate, all data were analyzed using Two-way ANOVA,
Fig. 3. EEG amplitude ratios during the awake state significantly differ between TBI an
(A) Averaged theta:alpha amplitude ratios in mice with TBI (open circles) compared to s
alpha amplitude ratios during the awake state, but not during (C) NREM sleep, compared
comparisons). (D) Averaged theta:beta amplitude ratios in human subjects with mTBI
(E) Human subjects with mTBI show significantly higher theta:beta amplitude ratios du
*po0.01 (Student's t-test, Bonferroni-adjusted for multiple comparisons). Data in (B), (C)
the gray boxes represents the median value, and the whiskers represent the 25th and 7
Student's t-tests and Pearson's correlations. Statistical significance
was defined at the po0.05 confidence level when comparing
different treatment groups. In the case of multiple (44) compar-
isons (i.e., cross-frequency coupling analyses), Bonferroni correc-
tions were applied to the p-value cutoff for significance. All data
are presented as group means7SEM.
3. Results

3.1. EEG amplitude analyses

In order to quantify the EEG-based changes in sleep and wa-
kefulness after TBI, we first examined EEG amplitudes by com-
puting spectral power across frequency bands during sleep and
wakefulness in mice after either fluid percussion injury or sham
control injury. EEG amplitudes were then examined as a ratio
between two different frequency band pairs.
d sham injured mice, and also between human subjects with mTBI and controls.
ham control mice (black circles). (B) Mice with TBI show significantly higher theta:
to sham-injured mice. *po0.01 (Student's t-test, Bonferroni-adjusted for multiple
(open circles) compared to age-matched healthy control subjects (black circles).

ring the awake state, but not during (F) NREM sleep, compared to control subjects.
, (E) and (F) are represented as Tukey Box and Whiskers plots, where the line within
5th percentile values plus 1.5 times the interquartile difference.
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During the awake state, the theta:alpha amplitude ratio was
significantly higher in TBI compared to sham-injured mice
(p¼0.0095, t¼10.79, Student's t-test with significance set at
po0.01 based on Bonferroni adjustment for multiple compar-
isons) (Fig. 3A and B). During NREM sleep, the theta:alpha am-
plitude ratio was not significantly different (p¼0.023, t¼7.49,
Student's t-test with significance set at po0.01 based on Bonfer-
roni adjustment for multiple comparisons) (Fig. 3C), nor were any
other frequency band pair combinations significantly different
between groups (data not shown).

Next, we applied the same amplitude ratio analysis to sleep-
wake EEG from human subjects after mTBI. Unlike mice, theta:
alpha amplitude ratio did not significantly differ between groups
during the awake state (p¼0.79, t¼0.27, Student's t-test). How-
ever, mTBI patients did show significantly increased theta:beta
amplitude ratio while awake (p¼0.00005, t¼33.73, Student's t-
test with significance set at po0.01 based on Bonferroni adjust-
ment for multiple comparisons) (Fig. 3D and E). In contrast, during
NREM sleep, the theta:beta amplitude ratio did not significantly
differ between groups (p¼0.11, t¼2.82, Student's t-test) (Fig. 3F),
nor were any other frequency band pair combinations significantly
different between groups (data not shown).

Taken together, both mouse and human spectral analyses in-
dicate that theta amplitude, coupled to faster frequencies such as
alpha (mouse) or beta (human) amplitudes, is increased after brain
injury and particularly during wakefulness.
Fig. 4. EEG slow wave counts in awake mice fluctuate over the 24-hour light:dark cycle
slow wave counts per hour during wake, superimposed upon percentage time spent a
number of EEG slow wave counts per hour while awake, superimposed upon percenta
(C) Comparison of the total slow wave counts over the 24-h light:dark cycle across during
during the dark phase in mice with TBI. *po0.05, Two-way ANOVA, Bonferroni post-hoc
period from ZT3-6 (10:00a.m. to 13:00p.m.), a period notable for heightened sleep press
wake epochs from 9:00 to 10:00 am, and were corrected for the percentage of wake dur
enforced waking in mice with TBI compared to sham control mice. *po0.05, Two-way
interaction between Hour and Injury.
3.2. EEG slow wave counts during sleep and wake states in mice

Next, we applied our method for EEG slow wave quantification
to EEG from brain-injured and sham-injured mice. During a 24-h
period of continuous EEG recording of baseline sleep-wake states,
slow wave counts were calculated for each 30 minute bin, cor-
rected for individual differences in the relative amounts of NREM
or wake states per bin, and then plotted as group averages su-
perimposed upon percentage time spent in NREM or wake states
(Fig. 4A and B for wake, and Fig. 5A and B for NREM).

During spontaneous wakefulness, TBI mice showed sig-
nificantly more EEG slow waves compared to sham control mice,
particularly during the dark phase when mice are typically more
awake (p¼0.02, t¼2.809, Student's t-test) (Fig. 4C). Sham control
and TBI mice did not significantly differ in the total amounts of
EEG slow waves during spontaneous NREM sleep (p40.05,
t¼1.701, Student's t-test) (Fig. 5C). These data indicate that the
increase in EEG slow waves after TBI is particularly salient during
the awake state.

3.3. EEG slow wave counts during enforced wakefulness in mice

Given the results above showing that brain injury results in
increased EEG slow waves during spontaneous wakefulness, we
next sought to determine whether EEG slow waves could be
modulated by cumulative time spent awake. Mice were sleep-
deprived for a three-hour period from 10:00 to 13:00 (or Zeitgeber
Time ZT 3-5), a period of heightened sleep pressure. A three-hour
, and increase during a period of enforced wakefulness. (A) Average number of EEG
wake per hour, over the 24-h sleep-wake cycle in sham control mice. (B) Average
ge time spent awake per hour, over the 24-h sleep-wake cycle in mice with TBI.
the awake state for sham and TBI mice shows significantly higher slow wave counts
test for significant main effect of Phase. (D) Mice were kept awake for a short 3-hour
ure. EEG slow wave counts from Hour 0 included only the spontaneously-occurring
ing each 30-min interval. EEG slow waves significantly increased with by Hour 3 of
ANOVA, Bonferroni post-hoc test for significant main effect of Hour, and significant



Fig. 5. EEG slow wave counts during NREM sleep fluctuate over the 24-hour light:dark cycle, but do not significantly differ between TBI and sham-injured mice. (A) Average
number of EEG slow waves counts per hour during NREM sleep, superimposed upon percentage time spent during NREM sleep per hour, over the 24-h sleep-wake cycle in
sham control mice. (B) Average number of EEG slow waves counts per hour during NREM sleep, superimposed upon percentage time spent during NREM sleep per hour, over
the 24-h sleep-wake cycle in mice with TBI. (C) Comparison of the total slow wave counts over the 24-h light:dark cycle during NREM sleep between sham and TBI mice
shows no significant group differences.

M.H. Modarres et al. / Neurobiology of Sleep and Circadian Rhythms 2 (2017) 59–7066
time period was chosen because typically, naïve and sham control
mice do not show significant sleep rebound of either NREM or
REM sleep after just 3 hours of enforced wakefulness (Lim et al.,
2013; Franken et al., 1991).

Brain-injured mice showed significantly increased slow wave
counts during the third consecutive hour of sleep deprivation
compared to sham-injured mice (p¼0.0060, F(3,1419)¼5.156,
two-way ANOVA; po0.05, t¼2.691, Bonferroni post-hoc test for
Hour 3) (Fig. 4D). These data suggest that EEG slow waves can be
modulated by prior waking history, and accumulate faster in the
brain-injured mice during sustained wakefulness compared to the
uninjured brain, possibly reflecting injury-induced changes in the
sleep homeostat.

3.4. EEG slow wave counts during sleep and wake states in human
subjects

Given the results showing that brain injury in mice results in a
state-dependent increase in EEG slow waves during wakefulness,
and that these EEG slow waves are modulated by prior waking
experience, we next sought to determine whether human subjects
with mTBI also showed more EEG slow waves while awake.

Compared to age-matched control subjects, brain-injured hu-
man subjects showed significantly more EEG slow waves during
wakefulness (po0.0001, F¼117.5, two-way ANOVA; po0.001,
t¼6.54, 5.29, 5.73, 4.12, Bonferroni post-hoc tests for C3, C4, O1
and O2, respectively) (Fig. 6A). Also similar to mice, there was no
significant difference in EEG slow wave counts between groups in
NREM stage N1 sleep (p40.05, F¼2.34, two-way ANOVA;
p40.05, Bonferroni post-hoc tests) or NREM stage N2 sleep
(po0.01, F¼11.97, two-way ANOVA; p40.05, Bonferroni post-hoc
tests) (Fig. 6B and C). These data indicate that again, similar to
mice, human TBI is associated with an increase in EEG slow waves
during wakefulness.

Next, we generated traditional power spectral plots comparing
mTBI with control subjects for wake and NREM stage N2 sleep
(Supplementary material Fig. 1). The increased power density be-
tween 2 and 9 Hz range during wakefulness (but less so during
NREM sleep) in subjects with mTBI is consistent with findings
from our novel method of quantifying individual slow waves.

Sleep staging is in part defined by an increase in EEG slow
waves during the transition from wake to NREM stage N1, and
from N1 to N2 sleep (AASM, (The AASM Manual for the Scoring of
Sleep and Associated Events, 2014)). We compared the difference
in slow waves between sleep and wakefulness in mTBI and control
subjects. Control subjects showed the expected increase in EEG
slow waves in NREM stage N1 sleep compared to wakefulness,
whereas this increase was completely absent in TBI subjects
(po0.0001, F¼40.70, two-way ANOVA; po0.01, p40.05, po0.01,
po0.05, t¼3.88, 2.47, 3.66, 2.75, Bonferroni post-hoc tests for C3,
C4, O1 and O2, respectively) (Fig. 6D). Similarly, control subjects
showed the expected increase in EEG slow waves in NREM stage
N2 sleep compared to wakefulness, whereas this increase was
significantly smaller in TBI subjects (po0.0001, F¼60.33, two-way
ANOVA; t¼4.36, 3.41, 4.47, 3.30, po0.001, po0.01, po0.001,
po0.01, Bonferroni post-hoc tests for C3, C4, O1 and O2, respec-
tively) (Fig. 6E). Taken together, these data suggest that mTBI is
associated with less of a distinction between sleep and wake
states, perhaps contributing to a blurring of sleep and wakefulness.
A complementary explanation is that mTBI is associated with
disruption in the local sleep homeostat.

3.5. Global coherence of EEG slow waves in human subjects

In order to assess the degree of EEG synchrony of slow waves
across channels in mTBI, we compared the Global Coherence Index
across wake and NREM stage N2 sleep in human subjects with mTBI
and age-matched controls. Individual EEG slow waves during wake
and N2 sleep were plotted over time on a Raster plot, akin to that
typically used for spike timing in neuronal firing (Fig. 7A and C). The
Global Coherence Index (represented as the percentage of time
spent with either 0 or 4 EEG slow waves across channels) was
significantly lower in mTBI subjects compared to controls while
awake (Fig. 7B; p¼0.000008, t¼6.81, Student's t-test). Groups did
not significantly differ in their Global Coherence Index during N2
sleep (Fig. 7D; p¼0.54, t¼0.62, Student's t-test). Next, the Global
Coherence Index for each individual subject with mTBI was corre-
lated with TBI symptom severity as assessed by the self-reported
Neurobehavioral Symptom Inventory (NSI) scale. Higher coherence
indices strongly predicted more severe symptoms reported on the
NSI (Pearson's r¼0.84, R2¼0.71, p¼0.0086) (Fig. 7E). The four
subcomponents of the NSI (Vestibular, Somatic, Cognitive and Af-
fective) were each correlated with the Synchrony Index from each
individual with mTBI. Each subcomponent resulted in a strong
positive correlation, with the Cognitive component being the
strongest contributor (Pearson's r¼0.49, 0.64, 0.73, and 0.59, re-
spectively). No significant correlations existed for stage N2 sleep
(overall NSI: Pearson's r¼�0.19, R2¼0.036, p¼0.65) (Fig. 7F).

Taken together, these data suggest that individuals with mTBI
have less temporal coherence of EEG slow waves while awake. The



Fig. 6. EEG slow wave counts while awake, but not during NREM sleep, are significantly greater across all channels in human subjects with mTBI. (A) Average number of EEG
slow wave counts during the first wake epochs of the overnight polysomnography are significantly increased across C3, C4, O1 and O2 channels in human subjects with
mTBI, compared to age-matched healthy control subjects. ***po0.001, Two-way ANOVA, Bonferroni post-hoc test for significant main effect of Injury. (B) Average number of
EEG slow wave counts during NREM stage N1 sleep during the overnight polysomnography did not significantly differ between in human subjects with mTBI compared to
age-matched healthy control subjects, in any channel. (C) Average number of EEG slow wave counts during NREM stage N2 sleep during the overnight polysomnography did
not significantly differ between in human subjects with mTBI compared to age-matched healthy control subjects, in any channel. (D) Control subjects showed the expected
increase in EEG slow waves in NREM stage N1 sleep compared to wake, whereas this increase was completely absent in mTBI subjects. *po0.05, **po0.01, Two-way ANOVA,
Bonferroni post-hoc test for significant main effect of Injury. (E) Control subjects showed the expected increase in EEG slow waves in NREM stage N2 sleep compared to
wake, whereas this increase was significantly smaller in mTBI subjects. **po0.01, ***po0.001, Two-way ANOVA, Bonferroni post-hoc test for significant main effect of
Injury. (F) Schematic of EEG electrode lead placement on the human scalp. C3¼ left central, C4¼right central, O1¼ left occipital, O2¼right occipital. Note that NREM stage N3
and REM were not analyzed due to the fact that not all subjects displayed these stages during polysomnography testing.
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degree of EEG slow wave coherence in mTBI while awake strongly
predicts symptom severity.

In summary, our data show that EEG slow waves can be ob-
jectively quantified in the injured brain using quantitative EEG.
Both mouse and human subjects with mTBI showed an increase in
EEG slow waves during wakefulness. Mice with mTBI showed
greater accumulation of slow waves the longer they stayed awake.
Human subjects with mTBI showed less EEG coherence of slow
waves while awake, and the degree of coherence correlated with
symptom severity. This data suggests that the presence of EEG
slow waves may reflect a novel, relatively specific, sleep-related
feature of brain dysfunction in mTBI.
4. Discussion

Our studies in both mouse and human subjects with mTBI es-
tablish an objective, automated method to quantify the number



Fig. 7. Global Coherence Index of EEG slow waves across channels in mTBI. (A) Raster plot showing temporal resolution of EEG slow waves across four channels during 60 s
of wakefulness in a representative human subject with mTBI, compared to (C) NREM stage N2 sleep. The Global Coherence Index reflects the total percentage of 0.1 s bins
containing consistent slow wave information across channels. (B) Subjects with mTBI showed significantly lower coherence indices compared to controls. ***po0.001,
Student's t-test. There was no difference between groups during NREM stage N2 sleep (D). (E) The Global Coherence Index during wakefulness is significantly correlated with
Neurobehavioral Symptom Inventory (NSI) score in human subjects with mTBI. *po0.01, Pearson's correlation, R2¼0.71. There was no significant correlation during NREM
stage N2 sleep (F).

M.H. Modarres et al. / Neurobiology of Sleep and Circadian Rhythms 2 (2017) 59–7068
and global coherence of EEG slow waves during sleep and wake
states, and show that mTBI is associated with significantly in-
creased quantity and decreased global coherence of EEG slow
wave counts during wakefulness. Taken together, our data sug-
gests that EEG slow waves and desynchrony of slow waves across
channels could represent dysregulation of the homeostat of sleep
and wakefulness after mTBI.
While other groups have applied quantitative EEG (QEEG) ap-

proaches to understanding the physiology of brain injury, these
approaches have largely relied on spectral power analyses aver-
aged over a short time period of EEG recording in the acute phase
post-TBI (Nuwer et al., 2005; Watson et al., 1995; Leon-Carrion
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et al., 2008, 2009, 2012). QEEG analyses during both sleep and
wakefulness is important given the strong association between TBI
and sleep disturbances, and the apparent interference of such
sleep disturbances with rehabilitation contributing to long-term
disability (Nakase-Richardson et al., 2007, 2013; Sherer et al.,
2008; Silva et al., 2012). One QEEG study using human subjects
after sports-related concussions within the past 12 months found
that concussions were associated with an increase in delta power
and a reduction in alpha power in the waking EEG, without sig-
nificant changes in the sleep EEG (Gosselin et al., 2009). We ap-
plied a novel method of counting individual slow waves and cal-
culated a coherence index of slow waves across multiple channels
that showed an intrusion of sleep-like EEG frequencies during
normal wakefulness in subjects with mTBI. Furthermore, our data
lends support to recent findings by others that the number of EEG
slow waves can be modulated by prior waking activity, and may be
consistent with the phenomenon of “local sleep” which displays
sleep-like activity on the spectrum of wakefulness to sleep (Vya-
zovskiy et al., 2011). While the mechanism remains unclear, de-
creased global coherence of slow waves seen in mTBI is consistent
with greater local sleep in the injured brain.

Prior studies of sleep and wakefulness have proposed the idea
of local, use-dependent sleep as a property of bottom-up neural
networks, in essence placing sleep and wakefulness on two ends
of the same overlapping spectrum (Krueger and Obal, 1993;
Krueger and Tononi, 2011). In accordance with this, it was recently
reported that EEG frequencies in the 1–8 Hz range, which are
traditionally seen during sleep, may intrude into normal waking
EEG frequencies during prolonged wakefulness in rodents, a
coined the term ‘local sleep’ (Vyazovskiy et al., 2011). Rats showing
more slow waves during wakefulness had more errors in beha-
vioral performance, indicating a functional consequence to this
phenomenon (Vyazovskiy et al., 2011). Similar reports of slower
EEG frequencies during prolonged wakefulness have also been
reported in humans (Hung et al., 2013). Recent evidence shows
that TBI itself may also affect local neural networks in a controlled
cortical impact model of rodent TBI (Cantu et al., 2014). High-
speed biosensor imaging showed glutamate signaling was in-
creased in the injured cortex, and GABAergic interneuron im-
munoreactivity was decreased throughout the injured cortex
(Cantu et al., 2014). Thus, it is possible that the neurochemical
correlate of increased glutamate and decreased GABA may affect
neuronal energetics in a way that leads to local neuronal silencing
and local EEG slow waves. We hope that our method for quanti-
fying individual slow waves and calculating a phase-based global
coherence of slow waves might be relevant for future studies ex-
amining local sleep during wakefulness.

In our studies, mTBI in mice and humans showed several in-
teresting parallels, including persistent sleep disturbances, the
inability to maintain wakefulness, and in the current study, more
slow waves during wakefulness (Lim et al., 2013; Willie et al.,
2012). However, in the current study, there were also notable
species differences. For example, mice with TBI showed differences
in theta:alpha ratios, whereas human subjects with mTBI showed
differences in theta:beta ratios. While theta rhythm itself may be
important in distinguishing injured from non-injured brain, de-
pending on the species, there may be different coupling to slower
(e.g., alpha for mouse) versus faster frequencies (e.g. beta for
human).

It is worth discussing several caveats related to our findings.
First, the FPI model in rodents, while widely accepted and used
worldwide for over three decades, lacks the acceleration/decel-
eration mechanisms that may impact brainstem structures (in-
cluding sleep regulatory regions) seen in human TBI. However, the
fact that EEG slow waves are increased in both rodent and human
models is compelling evidence that they may share the same
underlying pathophysiological mechanisms. Secondly, EEG slow
waves are often seen with epileptiform spike-and-wave mor-
phology; therefore, EEG slow waves associated with sleep home-
ostasis must be distinguished from the epileptiform activity fre-
quently observed in post-traumatic epilepsy. We manually re-
viewed each EEG record for epileptiform abnormalities, and ex-
cluded these in the final analysis (only one mouse showed seizure
activity; no human subjects showed epileptiform activity). Third,
our mTBI cohort was selected from a group undergoing active
rehabilitation, which may carry inherent selection bias compared
to those not under active rehabilitation. Fourth, human subjects in
our studies did not consistently show NREM stage N3 or REM
sleep, possibly reflecting a “first-night effect,” and our sampling
was limited to central and occipital rather than frontal leads, thus
decreasing the ability to detect group differences within the sleep
EEG. Fifthly, in human neurophysiology studies, EEG slowing is
often viewed as a nonspecific sign of cerebral dysfunction, as focal
EEG slowing may be observed specifically over an area with a
structural lesion (Krauss, 2006; Gloor et al., 1977). However, the
vast majority of patients with mTBI (including in our cohort) have
no known structural lesion and normal neuroimaging. Focal EEG
slowing is typically found in the same electrode or localized set of
electrodes. We observed EEG slow wave intrusion into the waking
EEG across several bihemispheric electrodes in both normal con-
trol subjects as well as those with mTBI and OSA. Furthermore, our
finding that sleep deprivation increases the frequency of EEG slow
waves implies a state-dependent modulation of this phenomenon.
Thus, we propose that EEG slowing in mTBI patients is mechan-
istically different from focal EEG slowing in epilepsy/encephalo-
pathy, and may represent ‘local sleep’ – a use-dependent property
of local cortical neurons, and a potential indicator of increased
sleepiness on the spectrum of prolonged wakefulness. However,
more research into the neuronal activity and mechanisms under-
lying EEG slow waves in TBI is warranted.

In our study, subjects with mTBI showed significantly shorter
sleep latencies compared to age-matched control subjects (Ta-
ble 1), consistent with a well-described phenotype of excessive
daytime sleepiness. Other studies have suggested there may be a
higher prevalence of sleep disorders in people with TBI, and in-
deed, in our cohort of TBI subjects, a few did meet criteria for mild
OSA on the basis of the apnea-hypopnea index (AHI between 5 and
15) (Castriotta and Lai, 2001). It is possible that mild OSA could
contribute to the EEG findings in patients with mTBI, although
patients with more severe sleep apnea do not have increased EEG
slow waves (see Supplemental material). It is also possible that our
findings could in part reflect other common comorbidities in mTBI,
such as post-traumatic stress disorder (PTSD), which also affects
sleep (Ross et al., 1989). It is likely that EEG slow waves are directly
relevant to mTBI, because this finding was observed in our highly
controlled animal model of mTBI (a model which does not include
comorbid PTSD or OSA), and then later confirmed in human sub-
jects with mTBI. The strength of our translational approach not
only provides an additional screening layer to the identification of
promising biomarkers, but will also allow us to return to the an-
imal model to dissect the underlying mechanisms of EEG slow
waves in brain injury, and more importantly, develop ways to
experimentally manipulate EEG slow waves and global coherence
as a potential treatment.

Subjects with mTBI on average showed less EEG coherence
while awake compared to age-matched control subjects, yet those
mTBI subjects with the least EEG coherence had the mildest
symptoms as reported on the NSI. It is possible that this positive
correlation could reflect the tendency of those with the most se-
vere symptoms to have more microsleep episodes, a phenomenon
in which the whole brain undergoes a brief, synchronous sleep
episode lasting milliseconds to seconds. This finding warrants
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further analyses in future studies.
A subset of patients with chronic mTBI experiences persistent

post-concussive symptoms that are often severely debilitating, for
whom there are no reliable diagnostic or prognostic indicators.
The number and/or global coherence of EEG slow waves during
clinical EEG studies, either in short form (i.e., routine EEG for
20 min), or extended polysomnography, both of which are readily
clinically available, could represent a metric to potentially diag-
nose and/or predict who will go on to experience post-concussive
disability, and provide earlier, targeted interventions as appro-
priate. Future studies should examine other outcome measures in
relation to the EEG, as well as apply longitudinal follow-up.
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