
molecules

Article

Functional Analysis of the GPI Transamidase Complex by
Screening for Amino Acid Mutations in Each Subunit

Si-Si Liu 1 , Fei Jin 2, Yi-Shi Liu 1, Yoshiko Murakami 3,4, Yukihiko Sugita 5,† , Takayuki Kato 5 ,
Xiao-Dong Gao 1, Taroh Kinoshita 3,4 , Motoyuki Hattori 2 and Morihisa Fujita 1,*

����������
�������

Citation: Liu, S.-S.; Jin, F.; Liu, Y.-S.;

Murakami, Y.; Sugita, Y.; Kato, T.;

Gao, X.-D.; Kinoshita, T.; Hattori, M.;

Fujita, M. Functional Analysis of the

GPI Transamidase Complex by

Screening for Amino Acid Mutations

in Each Subunit. Molecules 2021, 26,

5462. https://doi.org/10.3390/

molecules26185462

Academic Editor: Hideyuki Takeuchi

Received: 19 July 2021

Accepted: 1 September 2021

Published: 8 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education,
School of Biotechnology, Jiangnan University, Wuxi 214122, China; lss6442021@163.com (S.-S.L.);
liuyishi@jiangnan.edu.cn (Y.-S.L.); xdgao@jiangnan.edu.cn (X.-D.G.)

2 State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development,
Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Neurobiology,
School of Life Sciences, Fudan University, Shanghai 200438, China; jinf16@fudan.edu.cn (F.J.);
hattorim@fudan.edu.cn (M.H.)

3 Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Osaka, Japan;
yoshiko@biken.osaka-u.ac.jp (Y.M.); tkinoshi@biken.osaka-u.ac.jp (T.K.)

4 WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Osaka, Japan
5 Institute for Protein Research, Osaka University, Suita 565-0871, Osaka, Japan;

sugita.yukihiko.8w@kyoto-u.ac.jp (Y.S.); tkato@protein.osaka-u.ac.jp (T.K.)
* Correspondence: fujita@jiangnan.edu.cn; Tel.: +86-510-851-97071
† Current address: Hakubi Center, Institute for Frontier Life and Medical Sciences, Kyoto University,

Kyoto 606-8306, Japan.

Abstract: Glycosylphosphatidylinositol (GPI) anchor modification is a posttranslational modification
of proteins that has been conserved in eukaryotes. The biosynthesis and transfer of GPI to proteins
are carried out in the endoplasmic reticulum. Attachment of GPI to proteins is mediated by the
GPI-transamidase (GPI-TA) complex, which recognizes and cleaves the C-terminal GPI attachment
signal of precursor proteins. Then, GPI is transferred to the newly exposed C-terminus of the proteins.
GPI-TA consists of five subunits: PIGK, GPAA1, PIGT, PIGS, and PIGU, and the absence of any
subunit leads to the loss of activity. Here, we analyzed functionally important residues of the five
subunits of GPI-TA by comparing conserved sequences among homologous proteins. In addition,
we optimized the purification method for analyzing the structure of GPI-TA. Using purified GPI-TA,
preliminary single particle images were obtained. Our results provide guidance for the structural
and functional analysis of GPI-TA.

Keywords: glyco-diosgenin; GPI-anchored proteins; GPI-transamidase; protein purification; single particle

1. Introduction

Protein anchoring by glycosylphosphatidylinositol (GPI) is a conserved posttransla-
tional modification in eukaryotes [1–4]. More than 150 proteins such as adhesion molecules,
receptors, ligands, hydrolytic enzymes, and prion proteins are in the form of GPI-anchored
proteins (GPI-APs) on the cell surface in mammalian cells. GPI confers unique properties
to proteins. For example, GPI-APs are associated with lipid rafts and dynamic membrane
domains composed of sphingolipids and cholesterol [5]. The association with lipid rafts
regulates polarized transport, signal transduction, and endocytosis [6–9].

GPI biosynthesis and transfer to proteins are carried out on the endoplasmic reticulum
(ER) membrane. The synthesis of GPI is started from phosphatidylinositol (PI) by the
stepwise addition of sugars, a fatty acid, and ethanolamine-phosphates (EtNPs). GPI
precursor proteins, which have an N-terminal signal sequence for ER translocation and a
GPI attachment signal peptide at the C-terminus, are separately synthesized (Figure 1A).
Once the proteins are translocated into the luminal side of the ER, the N-terminal signal
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sequence is cleaved by signal peptidases, and the C-terminal GPI attachment signal peptide
is recognized by GPI-transamidase (GPI-TA), which transfers a GPI to the proteins [10].

Mammalian GPI-TA is a multi-subunit complex consisting of five subunits: PIGK,
GPAA1, PIGT, PIGS, and PIGU (Figure 1B). PIGK is the catalytic subunit of GPI-TA, and is
homologous with members of the cysteine protease family with transaminase activity [11].
PIGK likely cleaves the GPI attachment signal between ω and ω + 1 sites and forms the
thioester bond on the catalytic Cys residue to generate an enzyme–substrate intermediate.
GPI is then transferred to the newly exposed C-terminus of the protein. This reaction may
be mediated by GPAA1, which is structurally similar to M28-type aminopeptidase [3,12].
GPAA1 is proposed to catalyze the formation of an amide bond between theω-site and the
bridging EtNP on the GPI complete precursor [13]. Mammalian PIGK and PIGT form an
intermolecular disulfide bond that stabilizes GPI-TA formation. The loss of this disulfide
bond reduces the activity of GPI-TA [14]. Through sequence homology analysis, PIGT
is predicted to form an open-ring β-propeller structure with an additional α-helical N-
terminal hook that can embrace another subunit [15,16]. PIGU is homologous with other
GPI biosynthetic enzymes (such as PIGW and PIGM), suggesting that it recognizes the
lipid portion of GPI [17]. Lacking PIGU, other subunits (PIGK, GPAA1, PIGT and PIGS)
still form a complex, but have no activity. PIGS is an indispensable subunit of GPI-TA
activity, although its role is unclear.

Mutations in the GPI-TA genes PIGK [18], GPAA1 [19], PIGT [20], PIGS [21], and
PIGU [22] have been reported to cause inherited GPI deficiencies (IGDs), which are char-
acterized by intellectual disability, seizures, hypotonia, and facial deformities [23]. In
addition, somatic PIGT mutations in hematopoietic stem cells cause a type of paroxys-
mal nocturnal hemoglobinuria (PNH) that has autoinflammatory features such as aseptic
meningitis [24,25]. On the other hand, dysregulated overexpression of GPI-TA subunits
is known to promote various cancers including bladder cancer, lymphoma, and breast
cancer [26]. Therefore, understanding the molecular and structural bases of GPI-TA is of
great significance for the development of therapies for diseases.

Due to the complex structure of GPI-TA, which consists of five subunits with mul-
tiple transmembrane domains, its structure is difficult to investigate. To date, only low-
resolution structures of subunits yPIGK (24–337) [27], yPIGS (38–467) [27], and yGAA1
(170–247) [28] from S. cerevisiae have been observed; however, a high-resolution structure
of GPI-TA has not been solved. The molecular mechanism of GPI-TA is also the most
incomprehensible aspect of GPI biosynthesis. Based on the above reasons, we explored the
important amino acid residues of the five subunits of GPI-TA by comparing conserved se-
quences and homologs, and then optimized the purification method of the GPI-TA complex
for cryo-EM structure analysis. The results provide important information for acquiring a
high-resolution structure of GPI-TA and understanding the molecular mechanism.

2. Results and Discussion
2.1. Exploration of Functionally Important Residues of the GPI-TA Complex

GPI-TA consists of five subunits: PIGK, GPAA1, PIGT, PIGS, and PIGU (Figure 1B).
We previously constructed human embryonic kidney 293 (HEK293)-based knockout (KO)
cell library defective in genes required for GPI biosynthesis [29]. The library contains KO
cells defective in each GPI-TA subunit gene (PIGK-KO, GPAA1-KO, PIGT-KO, PIGS-KO,
and PIGU-KO). To clarify the functionally important residues of each subunit, the KO cells
were used to analyze the rescue of GPI-APs (CD55 and CD59) expression by transfection of
the mutant constructs.

PIGK is the catalytic subunit of GPI-TA and shares the sequence with members of
the cysteine protease family. Residues His164 and Cys206 are the putative active sites of
PIGK [30], and they are highly conserved in the cysteine protease family such as legumain
(UniProtKB: Q99538) [31], peptide asparaginyl ligases (UniProtKB: A0A509GV09) [32], and
vacuolar-processing enzyme beta-isozyme (UniProtKB: Q39044) [33]. We expressed the
H164A or C206S mutant PIGK construct in PIGK-KO cells. The H164A and C206S mutants
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did not restore the surface expression of CD55 and CD59 (Figure 2A–C and Figure S1A),
indicating that the two residues were critical for GPI-TA activity. It has been reported that
residue Cys92 of PIGK forms a disulfide bond with residue Cys182 of PIGT [14]. Consistent
with previous results, the cell surface expression of CD55 and CD59 was decreased by
40% and 22%, respectively, in PIGK-KO cells expressing the PIGK C92S mutant compared
with those expressing the wild-type PIGK (Figure 2A,B and Figure S1A), suggesting that
the destruction of this disulfide bond reduces the activity of GPI-TA. Alternatively, the
intermolecular disulfide bond would be important for the stability of PIGK, because the
mutant protein levels were decreased (Figure 2C).

Figure 1. GPI attachment to proteins mediated by the GPI-TA complex. (A) Schematic representation
of a GPI precursor protein that possesses an N-terminal signal peptide for ER translocation (pink)
and a C-terminal GPI attachment signal (orange). The GPI-attachment signal consists of (1)ω,ω + 1,
andω + 2 amino acid residues with short side chains (red); (2) five to ten hydrophilic amino acids
(blue); and (3) 15–20 hydrophobic amino acids at the C-terminus (orange). When a GPI precursor
protein (preproprotein) is translocated into the ER, the N-terminal signal peptide is cleaved by signal
peptidases. By reaction of the GPI-TA complex, the C-terminal GPI attachment signal is cleaved from
proprotein at theω-site, which is ligated to the preassembled GPI via an amide bond, generating a
nascent GPI-AP. The GPI moiety is remodeled during transport, and mature GPI-AP is generated.
(B) Schematic representation of the GPI-TA, which is a complex with five subunits localized on
the ER membrane. PIGK is a catalytic subunit and forms an intermolecular disulfide bond with
PIGT. GPAA1 may catalyze the formation of the amide bond between the ω-site and a bridging
ethanolamine-phosphate (EtNP) on GPI. PIGU may be related to recognizing the GPI attachment
signal or the lipid portion of GPI. The function of PIGS is still not clear.
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Figure 2. Functional analysis of mutant PIGK. (A) PIGK-KO cells were transiently transfected with both a plasmid expressing
mutant PIGK and a plasmid expressing BFP. The BFP-positive cells were gated, and the surface expression of CD55 was
analyzed by flow cytometry. (B) Mean fluorescence intensity of CD55 in PIGK-KO cells expressing wild-type PIGK-StrepII-
GST was set to 1, and the relative intensities of CD55 in PIGK-KO cells expressing mutant PIGK-StrepII-GST are displayed
as the mean ± SD from three independent experiments with p-values (unpaired Student’s t-test). ****, p < 0.0001. (C) Cell
lysates prepared from the cells used in (A) were analyzed by western blotting. Expression of wild-type or mutant PIGK-
StrepII-GST was detected. BFP was used as a control to check the transfection levels and loading. (D) PIGK homology
model generated using the Phyre2 website. The functionally important residues (H164, C206, and C92) are depicted as
green sticks, oxygen is shown in red, nitrogen is shown in blue, and sulfur is shown in yellow.

We next compared the PIGK sequences among Homo sapiens (UniProtKB: Q92643),
Mus musculus (UniProtKB: Q9CXY9), Xenopus tropicalis (UniProtKB: Q05AQ6), Danio rerio
(UniProtKB: Q6IQM5), Drosophila melanogaster (UniProtKB: Q8T4E1), and Saccharomyces
cerevisiae (UniProtKB: P49018) to identify the important residues of PIGK (Figure S1B). More-
over, we constructed the PIGK homology model using the Phyre2 website [34] (Figure 2D).
Human PIGK structure was most similar to a cysteine protease legumain [31]. The residues
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that were charged and conserved among species and residues around the active center
of the homology model were selected and replaced with Ala. We prepared 21 mutant
PIGK constructs by site-directed mutagenesis, and the rescue efficiency of GPI-TA activity
in PIGK-KO cells was analyzed by transient transfection of the constructs (Figure S1C).
Unexpectedly, although 21 mutant constructs were transfected, all the constructs rescued
the expression of CD55. However, when we expressed the PIGK mutants under a minimum
promoter, some mutants such as N58A, R60A, and D204A weakened the rescue efficiency
compared with wild-type PIGK (Figure S1D). These results suggest that once PIGK is
incorporated into the complex, it could remain active, even the activity is weakened with
certain mutations, but not catalytic residue mutations.

GPAA1 has weak homology to M28 family peptidases, which usually have one or
two metal ions in tetrahedral coordination [35,36]. The GPAA1 homology model was
constructed by Phyre2 (Figure 3A). GPAA1 was structurally similar to type II glutaminyl
cyclases [37], which also belong to M28 family peptidases. Mammalian and insect type II
glutaminyl cyclases were originally believed to be Zn-dependent enzymes [38–40]. How-
ever, several lines of evidence suggest that Zn-binding is dispensable for the activity [41–45].
In particular, structural analysis of glutaminyl cyclase from the black-legged tick Ixodes
scapularis indicates that it possesses Zn ions, but that are independent of the activity [37].
For GPAA1, it is not clear whether the metal ion bindings are required for the catalytic
functions. Based on the structure of the M28 peptidases, it has been reported that Asp153
and Glu226 in human GPAA1 (UniProtKB: O43292) may be residues for Zn1, and Asp153
(shared in two zinc), Asp188, and Tyr328 may be residues for Zn2 [13,16]. The Asp153,
Glu226, Asp188, and Tyr328 residues are closely accommodated in the cavity of the GPAA1
structure (Figure 3A). Single point mutants (D153A, E226A, D188A, and Y328A) and double
point mutants (D188A, E226A) of these residues for the putative metal binding sites could
restore the CD55 expression of GPAA1-KO cells (Figure S2A,B). It should be noted that the
rescue efficiencies of those mutant constructs by transient expression were a little weaker
than that of wild-type GPAA1. These results suggest that at least these metal binding sites
are not essential for GPI-TA activity, which is consistent with the independence of Zn ions
for a GPAA1 structural homolog protein, I. scapularis glutaminyl cyclase [37] and similar
catalytic mechanisms might be considered. Instead, the mutation in the Asp250 residue of
GPAA1 (D250A) among the conserved sequences could not fully rescue CD55 expression
(Figure S2). To confirm this finding, GPAA1-KO cells were cotransfected with wild-type
GPAA1 or the D250A mutant GPAA1 together with a BFP-expressing construct. The BFP-
positive region was gated, and the expression of CD55 and CD59 was analyzed. The D250A
construct reduced GPI-TA activity without changing the protein stability (Figure 3B,C and
Figure S3). In addition, mutations in N-glycosylation sites (N203Q and N517Q) of GPAA1
did not reduce the expression of CD55 on the cell surface (Figure S2).

The PIGT Cys182 residue forms an intermolecular disulfide bond with C92 on PIGK,
as described above [14]. The C182S mutant reduced the restoration efficiency of GPI-TA
activity in PIGT-KO cells, which is consistent with the result of the PIGK C92S mutant
(Figure 4A and Figure S3). We also checked the restoration of CD55 surface expression
using constructs mutated in conserved amino acids of PIGT (Figure S4). The mutation in
Glu429 of PIGT (E429A) lost GPI-TA activity (Figure 4A and Figure S3). The expression of
E429A was reduced compared to that of the wild-type Myc-PIGT (Figure 4C), suggesting
that Glu429 is required for PIGT stability or assembly into the GPI-TA complex. In addition,
the conserved amino acids in PIGS among species were mutated and the restoration of
the activity was analyzed using KO cells (Figure S5). To analyze the importance of N-
glycosylation sites on each subunit protein, N-glycosylation sites were mutated in PIGT
(N164Q, N291Q, and N327Q) (Figure S4) and PIGS (N267Q and N370Q) [21] (Figure S5). All
the constructs mutated in N-glycosylation sites could restore the expression of CD55 on the
cell surface, suggesting that N-glycans on the subunits do not affect GPI-TA activity. Among
the PIGU constructs mutated in the conserved amino acids (Figure S6), the construct with
mutations in both Leu375 and Trp376 residues (L375A, W376A) reduced the restoration
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activity (Figure 4B,D and Figure S3). The protein expression level of the L375A and W376A
mutants was the same as that of the wild-type HSV-PIGU. Taken together, we explored the
functionally important residues of the GPI-TA complex. In addition to the catalytic active
sites on PIGK (His164 and Cys206) and Cys residues that form an intermolecular disulfide
bond between PIGK (Cys92) and PIGT (Cys182), we found important residues for GPI-TA
activity including GPAA1 (Asp250), PIGT (Glu429), and PIGU (Leu375, Phe376).

Figure 3. Functionally important residues of GPAA1. (A) GPAA1 homology model constructed using the Phyre2 website.
The D250 residue is depicted in green, and the residues for putative metal binding sites are depicted in yellow. (B,C) GPAA1-
KO cells were transiently transfected with both a plasmid expressing GPAA1-3HA (wild-type or D250A) and a plasmid
expressing BFP. The BFP-positive cells were gated, and the surface expression of CD55 was analyzed by flow cytometry (B).
Protein levels of GPAA1-3HA were detected by western blotting (C). BFP was used as a control to check the transfection
levels and loading.
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Figure 4. Functionally important residues of PIGT and PIGU. (A,B) Surface expression of CD55 in PIGT-KO (A) and
PIGU-KO (B) cells transiently expressing wild-type or mutant PIGT-6Myc and PIGU-3HSV constructs, respectively, was
analyzed by flow cytometry, as described in Figure 2A. (C,D) Expression of PIGT-6Myc (C) and PIGU-3HSV (D) mutants
was detected by western blotting. BFP was used as a control to check the transfection levels and loading.

2.2. Expression of PIGK Recombinant Protein

To understand the GPI-TA structure, we next examined methods for purification of
the GPI-TA complex in a large scale. StrepII-GST-tagged or StrepII-tagged human PIGK
was stably expressed in PIGK-deficient human K562 (K562K) cells [46]. The expression of
hPIGK-StrepII-GST and hPIGK-StrepII was detected at 70 kDa by anti-GST (Figure 5A)
and 45 kDa by anti-StrepII (Figure 5C), respectively. Flow cytometric analysis confirmed
that both constructs successfully rescued the expression of CD55 on the cell surface in
K562K cells (Figure 5B,D). Under nonreducing conditions (-DTT), both recombinant hPIGK-
StrepII-GST and hPIGK-StrepII migrated slowly and were detected at higher molecular
weights (Figure 5E,F), suggesting the formation of an intermolecular disulfide bond with
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PIGT. These results support that both recombinant hPIGK-StrepII-GST and hPIGK-StrepII
form active GPI-TA complexes with PIGT, PIGU, PIGS, and GPAA1.

Figure 5. Establishment of cells for GPI-TA purification. (A,B) K562 PIGK-KO (K562K) cells and
K562K cells stably expressing PIGK-StrepII-GST were lysed, and PIGK-StrepII-GST was detected by
the anti-GST antibody (A). The surface expression of CD55 in these cells was analyzed using flow
cytometry (B). (C,D) K562 PIGK-KO (K562K) cells and K562K cells stably expressing PIGK-StrepII
were lysed, and PIGK-StrepII was detected by the anti-StrepII antibody (C). Surface expression of
CD55 in those cells was analyzed using flow cytometry (D). (E,F) PIGK-StrepII-GST (E) and PIGK-
StrepII (F) samples were prepared under reducing (sample buffer with dithiothreitol (+DTT)) and
nonreducing (sample buffer without dithiothreitol (−DTT)) conditions. Both PIGK-StrepII-GST and
PIGK-StrepII were detected at higher molecular weights under the nonreducing condition, indicating
the formation of intermolecular disulfide bonds with PIGT.
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2.3. Optimization of the Purification Conditions of the GPI-TA Complex

Since a GPI-TA complex has ~20 transmembrane domains in total (Figure 1B), it is
difficult to purify GPI-TA without destroying the complex structure. First, we tried to use
StrepTactin Sepharose and Glutathione Sepharose beads to purify the GPI-TA complex.
However, the reduced glutathione contained in the elution buffer of Glutathione Sepharose
beads broke the disulfide bond between PIGK and PIGT (Figure S7A). At the same time,
β-mercaptoethanol (β-ME), a reducing reagent commonly used in purification experiments
at low concentrations, also destroyed the structure of the GPI-TA complex (Figure S7B).
Therefore, we chose to use StrepTactin Sepharose beads for single-step purification of the
GPI-TA complex without adding any reducing reagent.

The choice of detergent is critical for the solubilization, monodispersity, and stability of
membrane proteins in the purification process. In addition, detergent affects the dispersal
of protein samples on the grid for cryogenic electron microscopy (cryo-EM) analysis.
First, we applied three kinds of detergent to purify the GPI-TA complex: n-dodecyl-β-D-
maltopyranoside (DDM); cholesteryl hemisuccinate (CHS), which was added to DDM in a
ratio of 1:5 (w:w), with the resulting detergent called DDM-CHS; and digitonin. Among
them, the lipid compound CHS was used in the purification and crystallization of various
GPCRs [47–49], thus stabilizing membrane proteins [50]. In the purified protein fraction,
all five subunits of the GPI-TA complex could be detected by silver staining and were
confirmed by mass spectrometry (Figure S7C and Table S1), and part of the disulfide
bonds between PIGK and PIGT were retained under conditions using any of the detergents
(Figure S7D). However, when DDM was used as a detergent, the purified protein structure
was unstable and the protein mass fraction was decreased when analyzed by size exclusion
chromatography (SEC) (Figure S7E). The cryo-EM results showed that the protein particles
purified with DDM-CHS were scattered on the edges because the ice in the center was
too thin. The particles in the center were evenly dispersed (Figure S7F). Compared to
DDM-CHS, digitonin particles have more difficulty entering the holes in the samples.
When using DDM, only small particles were observed, which may be individual subunits
of the GPI-TA complex.

We next applied glyco-diosgenin (GDN) as a detergent during purification. Since it
has multiple advantages such as >10% solubility and nontoxic byproducts, it is widely
used to solubilize and purify membrane proteins for the purpose of structural and cryo-EM
studies [51–54]. In addition, we chose K562K cells expressing hPIGK-StrepII instead of hPIGK-
GST-StrepII to purify the GPI-TA complex since the GST tag is relatively large and easily
forms dimer structures [55]. Membrane fraction was first solubilized in solubilization buffer
containing DDM-CHS, then the soluble fraction was purified in buffer containing GDN. The
purified GPI-TA complex containing all five subunits could be observed (Figure 6A). Most of
the PIGK formed disulfide bonds with PIGT under nonreducing conditions (Figure 6A,B). In
addition, the protein particles with GDN were equally dispersed on the grids for cryo-EM
(Figure 6C) compared to the other detergents. Therefore, we chose K562K-hPIGK-StrepII cells
and GDN as detergents for purification of the GPI-TA complex.

2.4. Preliminary Cryo-EM Analysis of GPI-TA Complex

To date, low-resolution structures of yPIGK (24–337), yPIGS (38–467) [27], and yGAA1
(170–247) [28] from S. cerevisiae have been resolved. However, little is known about the
structure of the GPI-TA complex. Using the GDN-purified GPI-TA complex containing
hPIGK-StrepII, we performed a preliminary cryo-EM on the GPI-TA complex to evaluate
the sample quality. Single particle analysis of the GPI-TA complex using 300 kV cryo-EM
equipped with a K2 summit direct electron detector camera showed monodisperse particles
(Figure 6C). The particles extracted from more than two thousand images were classified
into several representative 2D classes (Figure 6D). At this resolution, it was difficult to
verify the stoichiometry and composition of the GPI-TA complex, whereas putative trans-
membrane regions and a soluble globular domain could be observed (Figure 6E). The
soluble domain would be the luminal domain of GPI-TA based on the protein topology and
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the active site. These results indicate the sample quality of GDN-purified GPI-TA, which
would be suitable for structural studies. By using the proposed method and selecting more
high-quality single particles, the structure of the fully assembled GPI-TA complex could be
acquired in future analysis.

Figure 6. Large-scale purification of the GPI-TA complex by GDN. (A,B) PIGK-StrepII containing the GPI-TA complex was
purified in buffer containing GDN. The purified samples were detected by silver staining (A) or by western blotting (B).
Samples were detected under reducing (+DTT) or nonreducing (−DTT) conditions as described in Figure 5. For western
blotting, an anti-StrepII antibody was used to detect PIGK-StrepII. (C) EM images of the purified PIGK-StrepII containing the
GPI-TA complex in GDN, which were obtained using a 300 kV cryo-EM equipped with a K2 summit direct electron detector
camera. (D) Representative 2D classification of cryo-EM data showing different orientations of the protein, with the box size
of 390 angstrom and the mask of 300 angstrom processed on RELION. Red square, selected images used in (E). (E) Particle
features observed from the 2D classes. Putative soluble domain and transmembrane domain are indicated, respectively.
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3. Conclusions

In this study, we analyzed the roles of amino acid residues of the GPI-TA subunits in
the activity. In addition to catalytic residues (His164 and Cys206) of PIGK and residues for
the intermolecular disulfide bond between PIGK (Cys92) and PIGT (Cys182), we found
several amino acid residues (Asp250 on GPAA1, Glu429 on PIGT, Leu375 and Phe376
on PIGU), which are critical for GPI-TA activity or stability. We further optimized the
purification process of the GPI-TA and applied the purified complex for a preliminary
structural analysis using single-particle imaging. We found that solubilization of GPI-TA
in buffer containing DDM-CHS detergent, followed by purification in buffer containing
GDN detergent was the best for keeping five subunits and particle distribution on the grids
for cryo-EM. Our study provides the basis for functional and structural analysis of the
GPI-TA complex.

4. Materials and Methods
4.1. Cell Lines, Antibodies, and Reagents

HEK293 (ATCC CRL-1573) cells and their derivatives were cultured in Dulbecco’s
modified Eagle medium (DMEM) with high glucose, glutamine (01-052-1ACS, Biological
Industries, Beit HaEmek, Israel) and 10% fetal bovine serum (04-001-1ACS, Biological
Industries, Israel) at 37 ◦C in a humidified 5% CO2 atmosphere. PIGK-KO, GPAA1-KO,
PIGT-KO, PIGS-KO, and PIGU-KO cells were previously constructed [29]. K562K (K562
PIGK-KO) [46] cells were cultured in DMEM with high glucose, glutamine and 10% fetal
bovine serum. K562K-hPIGK-StrepII or K562K-hPIGK-StrepII-GST cells were established
by transfection of the plasmid pME-puro-hPIGK-StrepII or pME-puro-hPIGK-StrepII-
GST into K562K cells, respectively, and selection using puromycin (ant-pr-5, In vivo Gen,
San Diego, CA, USA).

Mouse monoclonal anti-CD55 (clone IA10) [56], anti-CD59 (clone 5H8) [57], anti-GST
(HT601, TransGen Biotech, Beijing, China), anti-Myc (HT101, TransGen Biotech), anti-
StrepII (M211-3, MBL, Nagoya, Japan), rabbit monoclonal anti-HA (3724, Cell Signaling
Technology, Danvers, MA, USA), anti-RFP (R10367, Thermo Fisher Scientific, Waltham, MA,
USA), and anti-HSV (BRP0002, Beijing B&M Biotech, Beijing, China) were used as primary
antibodies. F(ab’)2-goat anti-mouse IgG (H + L) PE (12-4010-82; Thermo Fisher Scientific)
(for flow cytometric analysis), goat anti-mouse IgG (H + L) HRP (HS201, TransGen Biotech),
and goat anti-rabbit IgG (H + L) HRP (HS101, TransGen Biotech) (for western blotting)
were used as the secondary antibodies. StrepTactin Sepharose (28-9355-99, GE, Chicago, IL,
USA) was used to purify the GPI-TA.

4.2. Plasmids

All primers used in this study are listed in Table S2. The DNA fragments correspond-
ing to human PIGK were amplified from pPB-FRT-hPIGK. The HRV3C protease cleavage
site and StrepII were amplified from the forward primer Strep-tag-F and the reverse primer
Strep-tag-R. The DNA fragments consisting of hPIGK and StrepII (containing the HRV3C
protease cleavage site) were ligated into the EcoRI/NotI site of the vector pME-puro to
generate pME-puro-hPIGK-StrepII by using the M-Quick Cloning Mix (T1406, Talen-bio,
Shanghai, China). The DNA fragments corresponding to GST were amplified from pME-
GST and ligated into the SalI/NotI site of the vector pME-puro-hPIGK-StrepII to generate
pME-puro-hPIGK-StrepII-GST.

The DNA fragments corresponding to hGPAA1-3HA, hPIGT-6Myc, FLAG-hPIGS,
and hPIGU-3HSV, which were amplified from pME-hGPAA1-3HA, pME-hPIGT-6Myc,
pME-FLAG-hPIGS, and pME-hPIGU-3HSV, respectively, were ligated into the EcoRI/NotI
site of the vector pME-Hyg to generate pME-Hyg-hGPAA1-3HA, pME-Hyg-hPIGT-6Myc,
pME-Hyg-FLAG-hPIGS, and pME-Hyg-hPIGU-3HSV.

Plasmids harboring mutant PIGK, GPAA1, PIGT, PIGS, or PIGU were constructed by
site-direct mutagenesis based on pME-puro-hPIGK-StrepII-GST, pME-Hyg-hGPAA1-3HA,
pME-Hyg-hPIGT-6Myc, pME-Hyg-FLAG-hPIGS, or pME-Hyg-hPIGU-3HSV, respectively.
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Generally, conserved amino acids were replaced with Ala or Ser, and the Asn residues
on N-glycosylation sites were mutated to Gln. The primers used for the construction of
mutant plasmids are listed in Table S2.

4.3. Transient Transfection and Flow Cytometric Analysis

For transient transfection to screen various mutant constructs, cells (~106 cells/well)
were plated in 6-well plates one day before transfection. Four micrograms of plasmids were
transfected into KO cells using polyethyleneimine MAX (PEI-MAX) (24765, Polysciences,
Warrington, PA, USA) in OPTI-MEM (31985062, Thermo Fisher Scientific). Three days
after transfection, the transfected cells were harvested and washed with PBS (E607009,
Sangon Biotech, Shanghai, China). Then, the samples were stained with primary antibodies
(10 µg/mL) in FACS buffer (PBS containing 1% BSA and 0.1% NaN3) for 25 min on ice.
After washing twice with FACS buffer, the samples were stained with the secondary
antibody F(ab’)2-goat anti-mouse IgG (H + L) PE (10 µg/mL) in FACS buffer for 25 min on
ice. The samples were then washed twice with FACS buffer and analyzed using an Accuri
C6 system (BD). Accuri C6 and FlowJo software (BD) were used to analysis the data.

For co-transfection with a BFP construct, cells (~5 × 106 cells/well) were plated
in 12-well plates one day before transfection. Plasmids (0.8 µg of plasmids expressing
GPI-TA genes and 0.8 µg of plasmids expressing BFP (pME-tagBFP)) were mixed and
transfected into KO cells using PEI-MAX. Three days after transfection, the transfected
cells were harvested and stained with antibodies as described above. In mammalian cells,
co-transfection efficiency is generally high. Therefore, BFP-positive cells were gated and
only plasmid-transfected cells were analyzed using an Accuri C6 system.

4.4. Western Blotting

Western blotting was performed to confirm the expression level of recombinant pro-
teins. Cells (~106 cells/well) were lysed with 100 µL of lysis buffer (150 mM NaCl, 50 mM
Tris-HCl pH 7.5, 1% NP-40, 1 mM phenylmethylsulfonyl fluoride (PMSF) (HY-B0496,
MedChemExpress, Monmouth Junction, NJ, USA), protein inhibitor cocktail (HY-K0010,
MedChemExpress) on ice for 30 min. When detecting the recombinant protein PIGU-3HSV,
an additional 8 M urea was added to the lysis buffer. After incubation, the sample was
centrifuged at 21,600× g for 10 min at 4 ◦C to remove insoluble fractions. The supernatant
was mixed with SDS-PAGE loading buffer and kept at 4 ◦C overnight. To check the protein
levels of GPI-TA mutant proteins, BFP was used as a control to check the transfection levels
and loading. A plasmid expressing BFP (pME-tagBFP) and mutant GPI-TA gene constructs
at a ratio of 1:1 were mixed and co-transfected into cells. When cell lysate samples were
prepared, at least BFP expression levels of cells in Figures 2C, 3C and 4C,D were similar
among samples.

4.5. Stable Transfection of hPIGK-StrepII or hPIGK-StrepII-GST

Twenty micrograms of pME-puro-hPIGK-StrepII or pME-puro-hPIGK-StrepII-GST
was digested by FspI (R0135s, New England BioLabs, Ipswich, MA, USA) for 4 h at 37 ◦C.
The linearized plasmid was transfected into K562K cells (~107 cells) suspended in 800 µL
of OPTI-DMEM by electroporation. Cells expressing hPIGK-StrepII or hPIGK-StrepII-GST
were screened using the antibiotic puromycin.

4.6. Purification of the GPI-TA Complex

All the purification steps were performed at 4 ◦C. K562K-hPIGK-StrepII cells (~50 L)
were harvested by centrifugation and washed with PBS. The cells were disrupted with a mi-
crofluidizer in TBS (50 mM Tris pH 7.5, 150 mM NaCl) (with 1 mM PMSF, protein inhibitor
cocktail), and the debris was removed by centrifugation (8400× g) for 20 min. The collected
supernatant was ultracentrifuged at 100,000× g for 1 h to collect the membrane. Then, the
membranes were solubilized by adding 150 mL of solubilization buffer (50 mM Tris pH 7.5,
150 mM NaCl, 2% n-dodecyl-β-D-maltopyranoside (DDM) (69227-93-6, Anatrace, Maumee,
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OH)—0.4% cholesteryl hemisuccinate (CHS) (C6512, Merck, Burlington, MA, USA), 1 mM
PMSF, protein inhibitor cocktail). After incubation with rotation for 2 h, the mixture was
ultracentrifuged at 100,000× g for 1 h to remove unsolubilized debris. The supernatant was
mixed with 5 mL of StrepTactin Sepharose resin pre-equilibrated with buffer A (50 mM
Tris pH 7.5, 150 mM NaCl, 0.06% glyco-diosgenin (GDN) (GDN101, Anatrace) and rotated
for 1 h [FT]. StrepTactin Sepharose was collected through the column and washed 10 times
with 5 mL of buffer A [W]. The GPI-TA complex was eluted by 5 mL of buffer B (buffer A
containing 2.5 mM desthiobiotin (D1411, Merck)) five times [E1, E2, E3, E4, E5].

4.7. Sliver Staining

To detect the purity of the purified GPI-TA complex, a Fast Silver Stain Kit (P0017S,
Beyotime, Shanghai, China) was used according to the instructions. The protein bands
were cut, and the peptides were analyzed using mass spectrometry to verify whether
GPI-TA was successfully purified.

4.8. EM Data Acquisition

A total of 2.5 µL of the GPI-TA complex sample was applied to a glow-discharged
holey carbon-film grid (Quantifoil, Au 1.2/1.3, 300 mesh) blotted with a Vitrobot system
(FEI, Hillsboro, OR) using a 3.0 s blotting time with 100% humidity at 9 ◦C, then the sample
was plunge-frozen in liquid ethane. Cryo-EM data collection was performed using a 300 kV
Titan Krios microscope (FEI) equipped with a K2 summit direct electron detector camera
(Gatan Inc., Pleasanton, CA, USA) set to super resolution mode, with a pixel size of 0.65 Å
(a physical pixel size of 1.3 Å) and a defocus ranging from −1.5 µm to −2.3 µm. The
specimen stage temperature was maintained at 80 K. The dose rate was 10 e− s−1, and each
movie was 7.6 s long, dose-fractioned into 38 frames with an exposure of 1.18 e− Å−2 for
each frame.

4.9. Image Processing

A total of 2445 movies were motion-corrected and binned with MotionCor2 [58] with
5 × 5 patches, which produced summed and dose-weighted micrographs with a pixel size
of 1.3 Å. Contrast transfer function (CTF) parameters were estimated by CTFFIND 4.1 [59].
Particle picking and further image processing were performed using RELION 3.0 [60]. A
total of 132,558 particles were autopicked and extracted with a box size of 300 × 300 pixels.
2D classifications were then performed.

Supplementary Materials: The following are available online: Figure S1. The effect of mutant PIGK
on GPI-TA activity, Figure S2. The effect of mutant GPAA1 on GPI-TA activity, Figure S3. The effect of
mutant PIGT on GPI-TA activity, Figure S4. The effect of mutant PIGS on GPI-TA activity, Figure S5.
The effect of mutant PIGU on GPI-TA activity, Figure S6. Optimization of large-scale purification
for the GPI-TA complex, Table S1. LC-MS analysis of the purified GPI-TA complex, Table S2. List of
primers used in this study.
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