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Abstract
Photosynthesis is central to all life on earth, providing not only oxygen but also
organic compounds that are synthesized from atmospheric CO  and water
using light energy as the driving force. The still-increasing world population
poses a serious challenge to further enhance biomass production of crop
plants. Crop yield is determined by various parameters,  by the lightinter alia
energy conversion efficiency of the photosynthetic machinery. Photosynthesis
can be looked at from different perspectives: (i) light reactions and carbon
assimilation, (ii) leaves and canopy structure, and (ii) source-sink relationships.
In this review, we discuss opportunities and prospects to increase
photosynthetic performance at the different layers, taking into account the
recent progress made in the respective fields.
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Introduction
Photosynthesis is a process that all life on earth depends on. 
Photosynthetic organisms convert more than 109 metric tons of 
atmospheric CO

2
 into biomass per year. With the global human 

population rising from ~7 billion now to 9–10 billion by 2050, 
the worldwide trend towards a more meat-rich human diet, the 
loss of harvest and grazing land, and the negative effects of global 
warming on crop production have put forward the question of 
whether this incredibly high amount of biomass production can be 
further increased.

Crop yield is determined by the available solar irradiation energy 
across the growing season (0.487 S

t
), the genetically encoded 

properties of how the radiation is intercepted (ε
i
), the efficiency by 

which the light energy is converted into biomass (ε
c
), and what frac-

tion of the total biomass is partitioned into the harvestable part of 
the plant (harvest index, ε

p
). This results in the Monteith equation: 

yield = 0.487 • S
t
 • ε

i
• ε

c
• ε

p
1–3.

The Green Revolution raised the yield potential of the major  
grain crops mainly by increasing the harvest index, which is now 
about 0.6. Breeders were also able to improve the light intercep-
tion efficiency, which in modern cultivars is up to about 0.8–0.9. 
All available evidence suggests that additional grain yields by 
further increasing the harvest index or optimizing light intercep-
tion are rather unlikely; they appear to be close to their biological 
limits already. In contrast, the best light conversion efficiency (ε

c
) 

observed in field experiments (0.24 in C
3
- and 0.37 in C

4
-crops) is 

far below the theoretical maxima (0.46 in C
3
- and 0.6 in C

4
-plants) 

and thus not yet close to its biological limit. Enhancing, and in 
the long term re-designing, photosynthesis with respect to light  
energy conversion efficiency is therefore a prime target when  
aiming to increase crop yield3–6.

In general, photosynthesis can be described as a cellular trait 
that uses light energy to convert atmospheric CO

2
 into carbo-

hydrates. At a higher level, photosynthesis is determined by the 
activity of leaves and by the canopy structure. And, finally, 
photosynthesis is related to the capacities of source and sink 
tissues, i.e. mature leaves and heterotrophic organs, respectively 
(Figure 1).

Here, we will discuss the process of photosynthesis from these vari-
ous perspectives and address putative targets for the improvement 
of photosynthetic performance.

Photosynthesis as a cellular trait: (1) light-dependent 
reactions
Novel insights into the dynamic interactions of 
photosynthetic complexes
The light-dependent reactions involve five major multi-protein 
complexes: photosystem I (PSI), photosystem II (PSII), cyto-
chrome b

6
f, ATP synthase, and NADPH dehydrogenase (NDH). 

In particular, PSI can (transiently) form larger super-complexes 
with other complexes like cytochrome b

6
f7, NDH8, and PROTON 

GRADIENT 5 (PGR5)-PGR5-LIKE 1 (PGRL1)9,10. More recently, 
interactions of PSI with PSII11 and light-harvesting complex II 
(LHCII)12 have been characterized. Traditionally, PSI and PSII 
are thought to be spatially dispersed. However, in cyanobacteria, 
a megacomplex consisting of PSII, PSI, and phycobilisomes was 
found13. Aro and co-workers reported that PSI and PSII complexes 
coexist with LHCs in Arabidopsis14. More recently, Tanaka and col-
leagues suggested that about half of PSIIs are physically connected 
to PSI complexes11. The obtained results suggest that when PSII 
becomes excessively excited, it can divert excitation energy directly 
to PSI to avoid photo-damage. Conversely, photoinhibition of PSI 
can downregulate PSII via a mechanism that involves increased 

Figure 1. The process of photosynthesis viewed from different perspectives. 
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reduction of the intersystem electron carrier system due to damage 
to the FeS clusters of PSI. This is associated with the activation of 
thylakoid phosphorylation-based mechanisms that increase energy 
flow towards PSI15.

Bassi and colleagues have recently generated plants with a PSI that 
lacks its natural LHCI antenna system12. Despite the absence of 
LHCI, LHCII can still attach to PSI, and in fact each LHCI-less PSI 
complex binds one LHCII trimer, thus fully replacing the four Lhca 
proteins from LHCI by the three Lhcb proteins of LHCII. This dem-
onstrates that LHCI is not necessary for excitation energy transfer 
from LHCII to PSI, as was previously suggested16. Intriguingly, the 
transfer of energy from LHCII to PSI appears to be more efficient 
than from LHCI, raising the question of why PSI uses LHCI instead 
of LHCII. A plausible explanation is that LHCI absorbs photons 
with lower energy than LHCII, avoiding competition between PSI 
and PSII for the same photons. Therefore, in low-intensity and far-
red enriched light (like the one available under canopy cover), PSI 
is favored over PSII, avoiding over-reduction of plastoquinone and 
thus preventing photo-damage.

With respect to photosynthetic improvements, the structural 
flexibility of the photosynthetic complexes might allow the con-
struction of novel combinations of photosystem cores and LHC 
antenna complexes. Indeed, it appears to be possible to design an 
entire set of such combinations that could be tested under different 
light regimes for their efficiency and use under controlled (such as 
in greenhouses) and natural (such as in the field) light conditions. 
In a complementary approach, conditional regulation of various 
light-harvesting genes might allow for tuned optimization in an 
ever-changing and challenging environment. Therefore, biotic 
interactions also need to be considered, taking into account, 
for instance, trade-offs between photosynthesis and herbivore 
resistance17.

Novel auxiliary components of photosynthetic light 
reactions
During the last few decades, the structural components of the light 
reactions, including the multi-protein complexes PSI and PSII, 
cytochrome b

6
f, ATP synthase, and NDH, have been identified and 

extensively characterized at the gene, protein, and mutant level. In 
contrast, the inventory of the auxiliary components of the photo-
synthetic light reactions is far from being complete. Novel proteins 
involved in the biogenesis, repair, regulation, and protection of the 
photosynthetic machinery are continuously identified owing to 
genetic screens and functional genomics approaches and employing 
mainly the model species Arabidopsis thaliana, Chlamydomonas 
reinhardtii, and Synechocystis sp. PCC 6803. In Table 1, recently 
identified auxiliary proteins of the photosynthetic light reactions are 
listed. Adding their numbers to the ones of the factors already iden-
tified before (reviewed in 18), it becomes clear that the number of 
different proteins controlling the biogenesis and repair of the multi-
protein complexes exceeds the one of structural subunits. While for 
PSI and NDH, and particularly PSII, substantial sets of assembly 
factors have been known for many years already, until recently 
only one auxiliary protein (ALB419) involved in the biogenesis of 
the chloroplast ATP synthase (cpATPase) has been isolated. Three 
additional cpATPase assembly factors have now been identified: 

CGL16020,21, PAB22, and CGLD11/BFA323,24. CGL160 represents 
a protein of prokaryotic origin, whereas CGLD11/BFA3 and PAB 
are specific to photosynthetic eukaryotes. Interestingly, CGLD11/
BFA3 is also targeted to mitochondria but not (yet) essential for 
the assembly of the mitochondrial ATP synthase23. Similar pro-
nounced evolutionary dynamics are displayed by PAM68L, which 
evolved from a PSII assembly factor to mediate the assembly of 
the chloroplast NDH complex in Arabidopsis25.

The network of protein kinases and phosphatases involved in 
reversible thylakoid phosphorylation (reviewed in 26) and the two 
ferredoxin-plastoquinone reductase complexes involved in cyclic 
electron flow (reviewed in 27) are now relatively well character-
ized, and also several factors regulating the dynamics of thylakoid 
ultrastructure and the acclimation and protection of the photosyn-
thetic machinery have been identified (reviewed in 28–30). Three 
recent examples are highlighted here: (i) the levels and phos-
phorylation states of CURT1 proteins were shown to control the 
formation of the appressed regions of thylakoids in the so-called 
grana stacks31; it remains to be elucidated how the activity of 
CURT1 is regulated under physiological conditions. (ii) The 
calcium sensor CAS was localized to thylakoids32, appears to 
regulate acclimation and cyclic electron flow in C. reinhardtii33,34, 
and was more recently associated with retrograde signaling in  
A. thaliana35; here, future research needs to clarify the role  
of chloroplasts in cellular calcium signaling and how CAS is 
involved in this process. (iii) Very recently, the chloroplast-splic-
ing factor HPE1 was shown to be involved in the regulation of  
photosynthetic efficiency; in fact, plants without HPE1 re-
adjust their light-harvesting pigments, thereby reducing antenna  
size, improving light capture, decreasing energy loss, mitigat-
ing photodamage, and enhancing photosynthetic quantum yield  
during photosynthesis36.

As suggested before, the most promising targets for genetic 
engineering of the light reactions of photosynthesis––in terms of 
manipulating one or a few genes––are modifying light harvest-
ing and regulators of photosynthetic electron flow37. The resulting 
plants have the potential to exhibit more efficient photosynthesis 
under controlled conditions, e.g. in greenhouses, or in regions 
that cannot otherwise be extensively used for agriculture because 
of their short growing seasons. In fact, plants without the LHCII 
protein phosphatase TAP38 and concomitantly with hyper- 
phosphorylated thylakoid proteins38 or without HPE136 (see above) 
appear to be superior to normal plants under certain conditions, 
implying that the modification of single regulatory proteins might 
positively impact photosynthesis. Moreover, since evolutionary-
based adaptation of plants might not cope with the relatively rapid 
progression of human-made climate change that we experience 
today, transgenic plants with altered acclimation capacity due to 
altered activity of accessory photosynthetic proteins might con-
tribute to the generation of improved crop varieties. Proof of this 
concept was provided very recently. The parallel overexpression 
of three proteins involved in photoprotection (subunit S of PSII 
[PsbS], violaxanthin de-epoxidase [VDE], and zeaxanthin epoxi-
dase [ZEP]) accelerated the photoprotective response to natural 
shading events in tobacco, resulting in increased plant dry matter 
productivity in fluctuating light and under field conditions39.
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Table 1. Overview of novel auxiliary components of photosynthetic light 
reactions identified in the last few years.

Function Protein/Species Reference

Biogenesis and repair

PSII biogenesis AtCtpA (Arabidopsis thaliana) 74

TRX-m1, -m2 and -m4 (A. thaliana) 75

RBD1 (Chlamydomonasreinhardtii , 
Synechocystis, A. thaliana) 76

THF1 (A. thaliana) 77,78

PsbN (Tobacco) 79

AtTerC (A. thaliana) 80

CyanoP (Synechocystis) 81

PSII repair Psb28 (Synechocystis) 82,83

Slr0151 (Synechocystis) 84,85

MET1/TEF30 (A. thaliana, C. reinhardtii) 86,87

PSI biogenesis PSA2 (A. thaliana) 88

FtsH2 and FtsH5 (A. thaliana) 89

Chloroplast ATP synthase 
assembly

CGL160 (A. thaliana) 20,21

PAB (A. thaliana) 22

CGLD11/BFA3 (A. thaliana) 23,24

Assembly of NADPH 
dehydrogenase complex

PAM68L (A. thaliana) 25

NdhP (Thermosynechococcus elongatus) 90

CRR9 (A. thaliana) 91

Regulation

Reversible thylakoid 
phosphorylation PBCP (A. thaliana) 92

Thylakoid ultrastructure CURT1 (A. thaliana) 31

Photoacclimation, 
cyclic electron flow, and 
retrograde signaling

CAS (A. thaliana, C. reinhardtii) 33–35

Light-harvesting pigments HPE (A. thaliana) 36

Protection

PSII protection HHL1 (A. thaliana) 93

MPH1 (A. thaliana) 94

PSI protection FKBP16-1 (A. thaliana) 95

Photosynthesis as a cellular trait: (2) assimilation 
reactions
During photosynthesis, plants capture energy from sunlight and turn 
it into biochemical energy in the form of ATP and reducing equiv-
alents, NADPH. In C

3
-plants, the first product of the CO

2
-fixing 

ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the 
C

3
-compound 3-phosphoglycerate, is transformed to a C

3
-sugar 

(triose phosphate) as part of the Calvin-Benson cycle using both 
ATP and NADPH as products of the light reaction. In most plants, 
triose phosphates are subsequently converted into sucrose as the 

main photoassimilate exported from photosynthetically active 
leaves (the source tissue). The long-distance transport of photo-
synthates to heterotrophic organs (the sink tissue) serves to supply 
these organs with carbon and energy. In harvestable organs, carbon 
can be stored as, e.g., sucrose, starch, oil, or, in combination with 
nitrogen, protein.

In C
3
-plants, the category to which most of our crop plants belong 

to, RuBisCO is CO
2
 limited and works, at best, at half of its 

maximal reaction velocity40. The oxygenase activity of RuBisCO 
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initiates the wasteful process of photorespiration that finally 
results in the release of previously photoassimilated CO

2
 and 

ammonia41. Multiple efforts have been or are still being undertaken 
to improve RuBisCO activity either directly42, albeit with very 
limited success so far6, or by targeting auxiliary proteins, for 
instance RuBisCO activase43. Alternatively, by introducing CO

2
 

pumping devices into C
3
-species, the limitations of RuBisCO 

are expected to be reduced. These CO
2
 pumps are to operate via 

either a C
4
 cycle44 or inorganic carbon-concentrating devices of 

cyanobacterial origin45. There were also attempts to reduce 
photorespiratory losses by introducing alternative salvage 
pathways46,47. In addition, promising approaches have also been 
initiated to overcome bottlenecks in the Calvin-Benson cycle48,49.

Photosynthesis: leaves as target for photosynthesis 
improvement
Leaves are the plant’s organs that are dedicated to photosyn-
thesis. Under high-light conditions, e.g. at midday, plants receive 
excess energy that they are not able to cope with. It was proposed 
earlier that photosynthetic efficiency could be maximized by 
improving the plants’ canopy light distribution in a way that mini-
mizes light saturation of the upper leaves and light starvation of 
the lower leaves6. This could be achieved by (i) varying the angle 
of the leaves in the canopy, (ii) altering the size of LHCs per pho-
tosystem, i.e. fewer LHCs in the upper leaves and larger LHCs in 
lower leaves, and/or (iii) extending the light absorption spectrum  
of photosynthetic pigments into the near-infrared region in the 
lower leaves in order to use this light quality more efficiently6,50,51.

The leaves of the angiosperms vary greatly in size and shape, from 
single and entire to highly complex compound leaves52. However, 
the role and importance of leaf anatomy in contributing to the pho-
tosynthetic output of leaves is largely unexplored. It was suggested 
earlier that both leaf shape and leaf anatomy contribute to the pho-
tosynthetic output of leaves53 and are therefore promising targets 
for improving photosynthesis54. Genetic studies with rice support 
this notion by demonstrating that in rice the anatomy of leaves is 
closely associated with leaf photosynthesis55,56 and, moreover, with 
crop yield57,58. Unfortunately, global genetic analyses, preferably 
with easily accessible genetic model plants, which aim to identify 
genes affecting the inner anatomy of leaves and concomitantly  
their photosynthetic output, are still missing.

One approach to tackle this issue would be to compare leaf form 
and anatomy in established model systems, e.g. A. thaliana and 
Cardamine hirsuta, which both belong to the Brassicaceae. In con-
trast to A. thaliana, C. hirsuta has complex leaves subdivided into 
leaflets. Major steps in understanding the genetic basis for varia-
tion in leaf shape both within and between species have already 
been made59–63. Both species have been documented to be suit-
able for an easy identification of genes and their functions. In both 
species, genes could be identified that affect primarily leaf form 
and/or the structure and organization of palisade and spongy paren-
chyma tissues of the leaf. A second step would be to investigate 
how and to which degree these genes can be used to optimize the 
photosynthetic output of leaves. The forward genetic approaches 

could rely on either mutagenesis or the available natural genetic  
diversity. Both photosynthesis and leaf differentiation are rather 
conserved in evolution, at least among the angiosperms. The trans-
fer of knowledge from these model systems to the major crop spe-
cies of this plant family, namely the Brassicas, should therefore be 
relatively straightforward.

Photosynthesis and the interaction with source-sink 
metabolism
Photosynthesis is part of a superordinate system, namely the whole 
plant. From the system’s perspective, the production of goods and 
their utilization have to be coupled, i.e. previous to the storage of 
products derived from photosynthetic assimilation processes in 
sink tissues (i.e. in harvestable organs), and carbon and nitrogen 
have to be assimilated in the source tissue (i.e. in mature leaves). 
To increase biomass production, strengthening the capacities of 
both source and sink tissues have been aimed at, although with 
varying success64–71. Molecular targets were mainly related to genes 
involved in sugar and starch metabolism. A promising approach 
was recently suggested comprising the simultaneous boosting of 
both source and sink capacities using the crop plant potato as an 
example72. Here, the moderate repression of the leaf ADP-glucose 
pyrophosphorylase, a key enzyme of transitory starch formation or, 
alternatively, the mesophyll-specific expression of a bacterial pyro-
phosphate to stimulate sucrose synthesis and to prevent sucrose 
breakdown were combined with plants that had an increased sink 
strength. An increase in sink strength was accomplished by tuber-
specific overexpression of two plastidic transporters responsible for 
the import of carbon (glucose 6-phosphate73) and energy (ATP74), 
respectively, into starch-storing amyloplasts. Both procedures 
resulted in an enhanced allocation of sucrose from source to sink 
tissues at the expense of leaf starch accumulation. The combined 
push-pull approach resulted in doubling the tuber starch yield72. 
This way of proceeding is currently being transferred to cassava, an 
important staple food in developing countries (Bill & Melinda Gates  
Foundation, CASS, OPP1113365).

It remains to be elucidated whether or not the push-pull approach 
can be combined with recent knowledge on novel photosynthetic 
components, e.g. by novel combinations of photosystem cores 
and LHC antenna complexes or by modifying light harvesting and 
regulators of photosynthetic electron flow to improve photosyn-
thetic efficiency (Table 1). In addition, the push-pull strategy could 
potentially be teamed up with approaches to alter leaf form and/or 
anatomy to further improve ε

c
, i.e. photosynthetic performance and 

biomass production.
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