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Abstract

Background: Variability in patients’ postoperative pain experience and response to treatment challenges effective pain
management. Variability in pain reflects individual differences in inhibitory pain modulation and psychological sensitivity,
which in turn may be clinically relevant for the disposition to acquire pain. The aim of this study was to investigate the
effects of conditioned pain modulation and situational pain catastrophizing on postoperative pain and pain persistency.

Methods: Preoperatively, 42 healthy males undergoing funnel chest surgery completed the Spielberger’s State-Trait Anxiety
Inventory and Beck’s Depression Inventory before undergoing a sequential conditioned pain modulation paradigm.
Subsequently, the Pain Catastrophizing Scale was introduced and patients were instructed to reference the conditioning
pain while answering. Ratings of movement-evoked pain and consumption of morphine equivalents were obtained during
postoperative days 2–5. Pain was reevaluated at six months postoperatively.

Results: Patients reporting persistent pain at six months follow-up (n = 15) were not significantly different from pain-free
patients (n = 16) concerning preoperative conditioned pain modulation response (Z = 1.0, P = 0.3) or level of catastrophizing
(Z = 0.4, P = 1.0). In the acute postoperative phase, situational pain catastrophizing predicted movement-evoked pain,
independently of anxiety and depression (b = 1.0, P = 0.007) whereas conditioned pain modulation predicted morphine
consumption (b = 20.005, P = 0.001).

Conclusions: Preoperative conditioned pain modulation and situational pain catastrophizing were not associated with the
development of persistent postoperative pain following funnel chest repair. Secondary outcome analyses indicated that
conditioned pain modulation predicted morphine consumption and situational pain catastrophizing predicted movement-
evoked pain intensity in the acute postoperative phase. These findings may have important implications for developing
strategies to treat or prevent acute postoperative pain in selected patients. Pain may be predicted and the malfunctioning
pain inhibition mechanism as tested with CPM may be treated with suitable drugs augmenting descending inhibition.
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Introduction

Pain is an expected part of surgical recovery but effective pain

management remains challenging [1–4]. The high variability in

postoperative pain experience and analgesic treatment response

between patients is part of the challenge [5,6]. It has been

suggested that variability in the patients’ ability to modulate pain

(endogenous pain modulation) may be clinically relevant for the

variability of and disposition to acquire pain [7–12].

Endogenous pain modulation has been experimentally inves-

tigated in humans via conditioned pain modulation (CPM)

paradigms, during which central inhibition of a painful stimulus

is induced by applying a second painful conditioning stimulus to

a remote body region (i.e., counter-irritation) [8,13]. Deficits in

preoperative CPM have been found to be associated with

chronic pain following thoracotomy, i.e., the chance of a patient

who reported a decrease in heat pain intensity scores from 50/

100 at baseline to 40/100 during hot water hand immersion to
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develop chronic postoperative pain was about one-half that of a

patient who reported unchanged scores [14]. Inhibitory pain

modulation and pain intensity are strongly influenced by

psychological features [10]. Pain catastrophizing, defined as an

exaggerated negative orientation toward pain stimuli and pain

experience has emerged as a robust psychological predictor of

clinical pain outcomes [15,16]. Higher levels of preoperative pain

catastrophizing have been associated with higher postoperative

pain ratings [17–20]. However, the majority of these studies have

assessed dispositional catastrophizing (i.e., recall of catastrophizing

thoughts during previous pain events), which probably measures

different pain experiences than situational catastrophizing (i.e.,

catastrophizing thoughts measured directly after exposure to a

noxious stimulation) [21–23]. In the literature, situational pain

catastrophizing has shown more robust correlations with pain-

related outcomes than dispositional measures of pain catastro-

phizing [16,21–23]. Although it has been shown that catastro-

phizing in response to experimental heat pain accounted

significantly for the variance in pain after cesarean section

[20], there are no studies on the association between preoper-

ative situational pain catastrophizing and postoperative pain in

males undergoing thoracic surgery. Finally, considerable evidence

suggests the importance of examining unique versus common

contributions of pain catastrophizing and empirically and

conceptually related variables, particularly anxiety and depres-

sion, to pain-related outcomes [24–26]. Nonetheless, previous

research has inconsistently controlled for these negative affect

constructs when assessing relationships between pain catastro-

phizing and pain-related outcomes in surgical patients. The

mechanisms by which catastrophizing modulate pain are not

completely understood [10]. Previous studies have shown that

CPM may be influenced by catastrophizing, but evidence is

equivocal [27–31] and the association between catastrophizing

and CPM remain unclear.

To the best of our knowledge, no studies have yet combined

preoperative assessment of CPM with measurements of cognitive

and emotional processes in the prediction of postoperative pain.

Such a study would add to our understanding of the causes

underlying individual differences in pain and potentially enable

identification of patients at high risk of developing persistent

postoperative pain. In turn this may have important implications

for developing multimodal pharmacological or psychological

intervention strategies to treat or prevent postoperative pain in

the future. We hypothesized that patients with a preoperative

deficient endogenous pain inhibition capacity, expressed by less

efficient CPM and/or high levels of situational pain-related

catastrophic thinking, were more susceptible to postoperative

pain and pain persistency.

Materials and Methods

The current study was a prospective observational cohort

study designed to investigate whether preoperative assessment of

endogenous pain inhibition capacity can predict the course of

postoperative pain in a consecutive cohort of patients undergoing

surgical correction of funnel chest (pectus excavatum). Funnel

chest is the most common congenital deformity of the anterior

chest wall and the male/female ratio is approximately 6/1 for

patients undergoing surgical correction of funnel chest at our

institution. The deformity is primarily treated to achieve

anatomical correction and thus avoid cosmetic and psychological

inconveniences for the patient. Patients undergoing surgical

funnel chest repair are generally healthy pain-free opioid naı̈ve

adolescents. However, they are at high risk of experiencing

moderate to severe acute postoperative pain.

A schematic illustration of the study protocol is depicted in

Fig. 1. The study consisted of a preoperative session in which we

conducted dynamic quantitative sensory testing (CPM) and

introduced a number of psychological questionnaires, including

measures of pain catastrophizing, anxiety, and depression. CPM

and pain catastrophizing were evaluated as equal candidate

predictors of a range of clinical postoperative pain measures

obtained over a 6-month period; the primary endpoint was

persistent postoperative pain at six months. Anxiety and depres-

sion were considered as potential confounders of the relationship

between pain catastrophizing and pain-related outcomes. This is

the first report from the study where we compare persistent

postoperative pain development and the course of acute postop-

erative pain according to patients’ preoperative CPM scores and

levels of pain catastrophizing in response to experimental pain.

Ethics Statement
The Regional Committee on Biomedical Research Ethics (M-

20110064) and the Danish Data Protection Agency (J. no.: 2011–

41–6061) approved the study. The study was registered in the

clinicaltrials.gov database (Identifier: NCT01308385; Principal

Investigator: K.G.; Date of Registration: March 3, 2011) and was

conducted in accordance with the Declaration of Helsinki.

Patients admitted to surgery received written information

explaining the purpose of the study along with the appointment

for surgery. Upon arrival at the department, the principal

investigator (K.G.) restated the study purpose verbally to eligible

patients. All participating patients provided written informed

consent. Of note, the 15–17-year-old patients received special

information adapted to their age and abilities, both in language

and in content. To further aid decision-making, parents, next of

kin, caretakers, or guardians who had parental rights and

responsibilities of underage patients, received separate informa-

tion in writing and also participated in the conversation about

the study purpose and possible participation of the young. The

Ethics Committee granted special dispensation for the underage

patients to provide written informed consent autonomously.

Setting and Patients
Patients were recruited consecutively from the Department of

Cardiothoracic and Vascular Surgery, Aarhus University Hospi-

tal, Denmark, during a pre-determined one-year period (May

2011 to May 2012). Patients were prospectively enrolled

according to the following inclusion criteria: (1) elective

minimally invasive surgical correction of funnel chest (pectus

excavatum); and (2) age $15 years. Exclusion criteria were: (1)

previous thoracic surgical interventions; (2) presence of diseases

affecting the central and/or peripheral nervous system; (3)

presence of chronic pain conditions; (4) inability to speak and/

or understand Danish; (5) inability to understand and participate

in the experimental pain session; (6) presence of psychiatric

disorders; (7) history of frostbite in the non-dominant upper limb;

(8) presence of sores or cuts on non-dominant upper limb; (9)

presence of cardiovascular disease; (10) history of fainting and/or

seizures; (11) presence of fractures of the non-dominant upper

limb; or (12) presence of Reynaud’s phenomenon. Secondary

exclusions included: (1) insensitivity to experimental cold pressor

pain; (2) lack of epidural catheter placement; or (3) re-operation.

Study Overview
All preoperative assessments were conducted by the principle

investigator (K.G.), the day before scheduled surgery in a quiet
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room with a constant temperature of approximately 20–

22uCelsius. Initially, patients were informed briefly about the

purpose of the study, excluding any information about exami-

nation of CPM and the focus on pain catastrophizing, and asked

to read and sign a consent form. Patients were then asked to fill

in the Spielberger’s State-Trait Anxiety Inventory (STAI) and

Beck’s Depression Inventory (BDI). Subsequently, a standardized

written statement based on instructions published by Price et al.

was used to explain the reporting of pain intensity and

unpleasantness using an 11-point numerical rating scale (NRS),

where 0 = no pain/unpleasantness and 10 = worst pain/

unpleasantness imaginable [32]. Afterwards, simple bedside

sensory testing was carried out approximately 10 cm distal to

the papilla on both sides of the thorax corresponding to 5 cm

above the (planned) surgical incisions. Sensory testing included,

assessment of dysesthesia and allodynia by gently stroking the

patient’s skin with a 1 cm wide; soft brush (SenseLabTM Brush-

05, Somedic AB, Hörby, Sweden) and mechanical dynamic

hyperalgesia using a single von Frey monofilament (Touch-Test

sensory evaluator, 5.88/60 g, nominal bending force 588.2 mN,

Semmes-Weinstein monofilament, Stoelting Co., IL, USA) as

previously described by Stubhaug et al. [33]. Patients were then

familiarized with the pain measures involved in a sequential

CPM paradigm. All study equipment was presented to the

patient, and introductory pressure algometry training measure-

ments were carried out on the patient’s dominant forearm.

Patients were instructed how to immerse and maintain their

hand in a stirred ice water bath and to verbally report the

moment they started feeling pain during the ice water hand

immersion (registered as cold pain detection threshold measured

in seconds elapsed from baseline). Accordingly, the cold pain

tolerance threshold was defined as the latency to intolerability in

seconds (spontaneous hand removal from the ice water bath).

Successively, the CPM response was assessed. First, a single

baseline pain threshold was measured using pressure algometry

at the quadriceps muscle. The conditioning painful stimulus was

then induced using hand immersion in the ice water bath (cold

pressor test). After 120 seconds of hand immersion (or upon

spontaneous hand removal) the pressure pain threshold at the

quadriceps muscle was immediately reassessed. Upon hand

withdrawal, patients were asked to numerically rate the worst

(maximum) pain intensity and unpleasantness associated with ice

water hand immersion on a NRS. Within five minutes after hand

removal, patients were instructed to reference the conditioning

stimulation (i.e., cold pressor pain) while filling in a Situational

Pain Catastrophizing Scale (S-PCS). During pain testing proce-

dures patients were seated comfortably on a chair without

armrests and with both feet placed on the floor to achieve an

approximately 90u flexing of the knee. Furthermore, patients

were asked to look away from the test area and either close their

eyes or fix their gaze on the wall in front of them to obtain full

concentration. The next morning patients underwent standard-

ized anesthesia and surgery, and movement-evoked pain was

assessed on five consecutive postoperative days. Upon discharge,

a review of each patient’s electronic medical chart was conducted

and data on analgesic consumption was retrieved. Patients were

assessed with regard to persistent postoperative pain at six

months according to responses to a detailed e-mailed question-

naire, including the Brief Pain Inventory – Short Form (BPI).

Preoperative Predictors
Conditioned Pain Modulation. Mechanical Pressure Pain

Threshold – the Test Stimulus. Pressure algometry was performed

at the patients’ quadriceps muscle (rectus femoris) 10 cm above the

patella on the same side as the dominant hand. A handheld digital

pressure algometer with a probe size of 1 cm2 was used

(Algometer, Somedic AB, Hörby, Sweden). The pressure was

gradually increased with a rate of 30 kPa per second. Patients were

instructed to press a button when the feeling of pressure changed

into a sensation of pain. This in turn froze the assessment

parameter, i.e., the pressure measured in kPa at the pressure pain

threshold on the algometer’s display and the value was instanta-

neously stored it in the internal memory of the apparatus. The

Figure 1. Schematic illustration of the study protocol. (A) The day before scheduled surgery patients completed the Spielberger’s State-Trait
Anxiety Inventory (STAI) and Beck’s Depression Inventory (BDI); (B) Then patients underwent a conditioned pain modulation paradigm in which a
baseline pressure pain threshold was measured at the quadriceps muscle followed by a conditioning painful stimulus induced by a cold pressor test
(CPT) (i.e., hand immersion in an ice water bath for 120 seconds). After 120 seconds of hand immersion (or upon spontaneous hand removal) the
pressure pain threshold at the quadriceps muscle was reassessed. The Situational Pain Catastrophizing Scale (S-PCS) was re-administered within five
minutes after cold pressor test and patients were instructed to reference the cold pressor pain while answering; (C) From postoperative days 2–5
pain-related outcomes were assessed, including postoperative movement-evoked pain intensity, morphine consumption, and an integrated
analgesic assessment score based on the aforementioned; (D) Persistent postoperative pain was assessed according to responses to the Brief Pain
Inventory – Short Form (BPI) at six months.
doi:10.1371/journal.pone.0090185.g001
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algometer was calibrated between patients using a manufacturer-

supplied weight equal to 100 kPa.

Cold Pressor Test – the Conditioning Stimulus. Patients were

asked to place their non-dominant hand in a stirred ice water

bath (161uCelsius) in a still position with their fingers spread for

as long as possible. A cut-off time of 120 seconds was set for

safety reasons. The CPM effect was evaluated by comparing the

baseline pressure pain threshold with the pressure pain threshold

following the cold pressor test. In order to control for individual

variation in baseline measures, the proportion of difference in

pressure pain thresholds from baseline was used rather than the

raw difference, and expressed in percentages. This approach

results in negative CPM scores for pain facilitation and positive

CPM scores for pain inhibition. In other words a positive CPM

score was considered indicative of effective endogenous pain

modulation [13]. Patients were told that pressure algometry

conducted at baseline would be repeated following the cold

pressor test, but they were not informed about the specific

purpose of the repeated testing or of the expected results.

Similarly, patients and staff involved in the postoperative care

and treatment were blinded to the results of the CPM assessment

during the entire study.

The Situational Pain Catastrophizing Scale (S-PCS). The

tendency to engage in pain catastrophizing was assessed by

means of the Danish version of the Pain Catastrophizing Scale

(PCS) [34,35]. Pain catastrophizing is characterized as the

tendency to magnify the threat value of pain stimulus and to

feel helpless in the context of pain, and by a relative inability to

inhibit pain-related thoughts in anticipation of, during or

following a painful encounter [15,16]. The PCS measures

thoughts and feelings when experiencing pain using the following

instruction: ‘‘We are interested in the types of thoughts and

feelings that you have when you are in pain’’. The scale has 13

items and includes three subscales: ‘‘rumination’’, ‘‘magnifica-

tion’’, and ‘‘helplessness’’. PCS scores range from 0 to 52, with

lower scores indicative of less catastrophizing. The Danish

version of the PCS has previously shown a high reliability

(Chronbach’s Alpha: 0.96) [24]. We aimed at examining

situational pain catastrophizing since this approach has produced

more robust correlations with pain-related outcomes compared

with dispositional measures of pain catastrophizing [16,21–23].

However, the situational use of the PCS after the cold pressor

test required the original instructions to be appropriately revised:

‘‘We are interested in the thoughts and feelings that you had

during the painful cold water hand immersion you have just

experienced’’ (S-PCS) [16,21,22].

Potential Confounding Variables
Pain catastrophizing shares variance with negative affect

constructs such as depression and anxiety. It is thus important to

statistically control for depressive symptoms and level of anxiety

when investigating relations between pain catastrophizing and

pain-related outcomes (i.e., the uniqueness of the catastrophizing

construct) [16].

The Spielberger’s State-Trait Anxiety Inventory

(STAI). Anxiety was measured with the Danish version of the

state part of the Spielberger’s State-Trait Anxiety Inventory

(STAI) for adults [36]. The state part of the STAI measures

emotional, cognitive and behavioral aspects of anxiety using 20

items for assessing state anxiety. The Danish version of the STAI

has previously shown a reasonable reliability (Chronbach’s Alpha:

0.80) [24].

Beck’s Depression Inventory (BDI). Depression was as-

sessed with the Danish version of Beck’s Depression Inventory

(second edition) (BDI) consisting of 21 items assessing psycholog-

ical and physiological aspects of depression over the preceding two

weeks [37]. Numerous studies have shown the BDI to be a reliable

and valid measure of depressive symptoms [38], and the Danish

version of the BDI has also previously shown a high reliability

(Chronbach’s Alpha: 0.94) [24,39].

Primary Outcome
Persistent Postoperative Pain. The primary outcome

measure was the presence of persistent postoperative pain at

six months, and the potentially predictive role of CPM on such

pain. Persistent pain was assessed according to responses to the

Brief Pain Inventory – Short Form (BPI) [40]. The introductory

question of the BPI was revised to ask specifically about the

experience of surgery-related pain during the past week. In brief,

the BPI rates worst, average, current, and least pain using simple

numeric rating scales (NRS) ranging from 0 to 10, where 0 = no

pain and 10 = the worst pain imaginable. Average pain was

chosen as the main pain intensity criterion, as this item has been

considered a measure of the patient’s subjective average

experience of pain [41]. The reliability and validity of the BPI

is well established and has become a widely used measurement

tool for assessing clinical pain in cardiothoracic surgery [42–45].

Secondary Postoperative Pain-related Outcomes
Subjective Movement-evoked Pain Intensity. Postope-

rative movement-evoked pain was self-reported by patients in a

study-specific pain diary based on NRSs. It is recommended to

use NRSs in adult clinical trials [46] and it is a validated tool to

measure both intensity and unpleasantness of acute pain in

children and adolescents [47,48]. Furthermore, the pain assess-

ment was standardized and maneuver-specific [49]. Accordingly,

the same movement was used to evoke pain in all patients, i.e.

rising from a supine position (patient lying flat on a bed) to an

upright position (patient standing next to the bed). We chose

movement-evoked pain as outcome because this measure is

generally more severe in intensity than pain at rest [4,49].

Moreover, the deliberate avoidance of pain-evoking movement

(e.g., deep breathing, coughing, and ambulation) contributes to

impairment of postoperative functional recovery [50] The pain

diary contained comprehensive instructions and a sample page to

assist in completion of the measures; the diary was filled in every

evening between 20:00 and 22:00 from the day of surgery to

postoperative day 5.

Consumption of Morphine Equivalents. Data on postop-

erative opioid use following epidural analgesia (i.e., over postop-

erative days 2–5), independent of route or mode of administration

was extracted from the electronic medical records or pain diaries if

the patient was discharged before postoperative day 5. Missing

data on morphine consumption on postoperative days 4 and 5

were acceptably imputed using the fixed daily morphine dose

prescribed at discharge. Doses of opioid other than morphine were

converted to morphine equivalents using standard equianalgesic

dose conversion ratios (i.e., 1.5 for oxycodone, 0.2 for tramadol,

and 210 for fentanyl) and calculated as mg kg21 day21 [51,52]

The cumulated use of epidural analgesia (i.e., bupivacaine and

morphine) may be largely dependent of epidural catheter

placement and was thus only calculated as supplementary

information.

Integrated Analgesic Assessment Score. It has been

suggested that using pain scores and analgesic requirements as

isolated variables may prevent identification of the total benefit

provided by the analgesic regimen. Hence, an integrated

analgesic assessment score was calculated as described by

Pain Modulation and Postoperative Pain
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Silverman et al. [53,54]. Movement-evoked pain intensity scores

and morphine consumption for each patient were rank ordered,

subtracted from the mean rank, expressed as a percentage

difference from the mean rank and added together (i.e., pain

rank score + morphine rank score) to yield an integrated

analgesic assessment score (ranging from 2200 to +200%; with

the highest positive score indicating the most pain). Patients

ranging from +100 to +200 had a high pain score requiring

higher-than-average morphine, whereas patients with scores

ranging from 2200 to 2100 had a low pain score requiring

less-than-average morphine [54].

Anesthesia, Surgery and Analgesia
Anesthesia. All patients followed a standardized anesthesia

regimen. Prior to the induction of general anesthesia, an epidural

catheter placed at the thoracic levels 4–6. With the patient sitting

in an upright position, using local anesthesia and a paramedian

approach, the catheter was placed using a hanging drop

technique. The epidural block was activated and tested with an

injection of 0.5% bupivacaine with simultaneous intravenous

infusion of a 6% hydroxyethyl starch. General anesthesia was

initiated with intravenous injection of fentanyl (0.05–0.1 mg),

propofol (1.5–2.5 mg kg21) and cisatracurium (0.1–0.15 mg kg21).

Surgery. The surgical technique was standardized and has

previously been described in detail [55]. In brief, one or more

convex steel bars are inserted under the sternum through small

bilateral incisions in the thoracic wall to achieve sternal elevation

and improve cosmetic appearance. The same highly experienced

thoracic surgeon (H.P.) performed all surgical procedures.

Analgesia. The aim of postoperative analgesia was effective

respiratory function and physical activity. Postoperative analgesia

was tailored to the patient’s individual requirements (i.e., titration

to pain intensity less than 3/10 at rest and less than 5/10 upon

cough/movement). The standardized analgesic regimen combined

epidural analgesia, and non-opioid and opioid analgesics as

described below. This regimen has previously been linked to

enhanced recovery in fast-track surgery [56].

N Epidural Analgesia

# The preoperative epidural blockade was reactivated during

surgery or upon arrival in the Post Anesthesia Care Unit at

the discretion of the attending anesthetist and subsequently

provided continuously for an additional 48 hours. Epidural

analgesia was provided with continuous infusion of 0.25%

bupivacaine + morphine, 50 mg ml21 for the first 24 hours

and with 0.25% bupivacaine for the next 24 hours.

Maximum epidural infusion rate was set at 10 ml h21.

Epidural analgesia was discontinued and the epidural

catheter was removed at 9:00 on postoperative day 2 in

all patients.

N Non-opioid Analgesia

# Non-opioid analgesic treatment was initiated in all patients

with acetaminophen (4 g day21) and ibuprofen (1200 mg

day21) from the day of surgery.

N Opioid Analgesia

# Opioid analgesic treatment was initiated with controlled-

release morphine at 08:00 on postoperative day 1, and

subsequently adjusted once daily based on the opioid

requirements in the preceding 24 hours. Morphine was

acceptably exchanged for oxycodone in case of intolerance

and/or untreatable adverse effects related to morphine

analgesia (i.e., urinary retention, respiratory depression,

nausea and vomiting, and/or pruritus).

N Rescue Analgesia

# Intermittent epidural bolus injections were given if the

patient was uncomfortable due to pain (2–4 ml bolus;

lockout of 15–20 minutes). If the patient required addition-

al boluses within the hour, the continuous basal infusion

was either increased or the epidural catheter was retracted

to optimize the spread of injected solutions and avoid

fluctuations in the level of analgesia. Additionally, bolus

intravenous injections of 2 mg of morphine followed by an

upward titration in 1–2 mg increments were available as

rescue analgesia throughout hospitalization.

Study Size
The size of the study population was based on a conservative

estimate for a predetermined 1-year study period. We wanted to

avoid overlooking an actual difference in CPM effect between

pain-free patients and patients developing persistent postopera-

tive pain at six months. Power calculation was based on results

from previous studies showing that 14% of patients undergoing

similar chest wall surgery developed persistent postoperative pain

at six months [57] and results from a study in chronic pain

patients indicating that the increase in pressure pain thresholds

after cold pressor test was reduced in patients with chronic

pancreatitis (13%, SD = 21%) when compared to healthy

volunteers (39%, SD = 22%) [58]. Accordingly, the statistical

power of the study (b) was estimated at 86% under the following

assumptions: (1) 50 patients would be included during the

predetermined 1-year study period; (2) 7/50 patients (14%)

would develop persistent postoperative pain at six months; (3)

with a significance (a) level at 5%; and (4) with mean CPM

responses at 39 in pain-free patients and 13 in patients

developing persistent postoperative pain (common SD = 21).

Statistical Analyses
Stata/IC 12.1 for Mac (64-bit Intel) (StataCorp, College

Station, TX, USA) was used for all statistical analyses. Two-tailed

P values less than 0.05 were considered statistically significant

unless stated otherwise. Categorical variables are presented as

numbers (percentages); continuous variables with a normal

distribution are described with mean 6 standard deviation;

whereas non-normally distributed data is described with median

[interquartile range], unless stated otherwise. Non-normally

distributed data was attempted log-transformed to normality.

A paired t test was used to test the null hypothesis that

conditioning cold pressor pain had no effect on the response to

pressure algometry. Spearman’s rank correlation coefficients (r)

were calculated as measures of dependence between preoperative,

perioperative, and postoperative study variables including predic-

tors, potential confounders and outcomes. Considering the small

sample sizes and obviously skewed data, the Wilcoxon-Mann-

Whitney rank sum test was used for primary analyses to compare

the distributions of CPM responses, S-PCS, BDI, and STAI scores

in pain-free patients and patients reporting persistent postopera-

tive pain at six months.

For analyses of secondary outcomes, we performed three

separate ordinary least squares (OLS) linear regressions of (i)

movement-evoked pain; (ii) morphine consumption; and (iii) the

integrated analgesic assessment score on each of the continuous

covariates: conditioned pain modulation (CPM) and situational

pain catastrophizing (S-PCS). State anxiety and depression were
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solely chosen to control the effect of pain catastrophizing on

postoperative pain-related outcome measures. Following initial

residual analyses it was found appropriate to log-transform the S-

PCS score (Log[S-PCS]). Hence, for each of the three mentioned

multiple regressions (i-iii), log[S-PCS] was entered in Model 1;

CPM response in Model 2; and log[S-PCS], STAI score, and

BDI score in Model 3.

Regression models were validated by visual inspection of

diagnostic plots, including Q-Q plot of the residuals, residual

versus predicted, residuals versus explanatory variable(s), and

leverage versus squared residuals. If the leverage versus squared

residuals plot revealed an observation with high leverage and

large residuals, we performed regressions with and without this

outlier to assess its potential impact. Additionally, we conducted

robust regressions in which influential observations were auto-

matically dropped, (i.e., observations with a Cook’s distance

greater than 1), and those with large absolute residuals were

down-weighted. Model validation did not suggest severe

assumption violation and the conclusions were broadly similar

regardless of using model-based or robust standard errors.

In order to interpret and visualize the regression models, we

calculated adjusted means (predictive margins) with 95% confi-

dence intervals (95% CI) of the patient’s postoperative movement-

evoked pain intensity given different log-transformed values of

preoperative situational pain catastrophizing and of postoperative

morphine consumption given different values of preoperative

CPM.

Results

Patients
We included 51 patients (50 males and 1 female) in the

experimental protocol (Fig. 2). Preoperatively, all patients were

pain-free and presented with a normal sensory function in the

planned surgical area. Eight patients (7 males and 1 female) were

subsequently excluded due to secondary exclusion criteria and one

declined surgery. Accordingly, 42 male patients with a median age

of 19 [17–23] years were available for postoperative follow-up.

Patient demographic and clinical characteristics, preoperative

predictors and primary and secondary postoperative pain-related

outcomes are depicted in Table 1.

Preoperative Predictor and Confounder Assessments and
Crude Associations

There was a 17% increase in the mean pressure pain

thresholds before and after cold pressor test (9606226 vs.

11096334 kPa; t = 24.0, P = 0.0003) (Table 1). Change in the

absolute pressure pain threshold values was 1506245 kPa. The

S-PCS score was median 18 [8–26] with median subscale scores

of 7 [2–15] for helplessness, 7 [4–13] for rumination, and 1 [0–4]

for magnification. As regards the potential confounding variables,

the STAI score was median 37 (range: 22–60) and the BDI score

was median 5 (range: 0–30). Spearman’s rank correlations for

preoperative, perioperative, and postoperative predictors, con-

founders and outcomes are depicted in Table 2. Notably, there

were no significant associations between CPM responses and

measures related to the conditioning pain stimulation (i.e., worst

cold pressor pain and unpleasantness scores and cold pressor

pain detection and tolerance thresholds). Furthermore, there

were no significant associations between CPM response, S-PCS,

BDI and STAI scores. The BDI and STAI scores, the duration

of surgery, the intraoperative use of fentanyl and epidural

analgesia were not found to be significantly associated with any

of the postoperative pain-related outcomes. We found no

evidence of associations between experimental pain measures,

such as test pain or conditioning pain, and any of the primary or

secondary outcomes; however, unpleasantness of cold pressor

pain was associated with both morphine consumption (Rho

= 0.31; P = 0.04) and the integrated analgesic assessment score

(Rho = 0.47; P = 0.007). We found no evidence of associations

between measures of postoperative pain intensity and analgesic

consumption. In other words, patients reporting postoperative

pain of high intensity do not necessarily consume more

morphine, and vice versa.

Primary Outcome – Persistent Postoperative Pain
Thirty-one patients (74%) responded to our questionnaire

assessment at six months after surgery (Figure 2). Of these, 15

patients (48%) complained of persistent postoperative pain as a

direct consequence of the surgical procedure (Table 2). Pain was

present daily in four patients (13%), weekly in seven (23%) and

more rarely in four (13%). Pain was most frequently located to the

ribcage at level with the surgical incisions or behind the sternum.

Pain was described as movement-evoked, e.g., heavy lifting and

high intensity fitness training or associated with couching/

sneezing/laughing or lying on the side. The reported average

pain intensity score on NRS was less than 3 in all patients. Only

one patient required intermittent use of analgesics (i.e., acetamin-

ophen and morphine).

Conditioned Pain Modulation and Persistent
Postoperative Pain

The median CPM response in patients reporting pain at six

months after surgery was 1.2% (95% CI: 27.4; 12.7%); in pain-

free patients it was 9.0% (95% CI: 20.5; 23.7%). Accordingly,

there was no significant difference between the two groups

(Z = 0.99, P = 0.3).

Situational Pain Catastrophizing and Persistent
Postoperative Pain

The distributions of S-PCS scores were not significantly

different for patients reporting pain at six months after surgery

and pain-free patients, with median S-PCS scores of 11 (95% CI:

8; 24) and 15 (95% CI: 9; 24), respectively (Z = 20.04, P = 0.69).

Secondary Postoperative Pain-related Outcomes
At postoperative days 2–5 mean level of movement-evoked pain

was 562/10 and mean consumption of morphine equivalents was

1.060.3 mg kg21 day21; ranging from 30 to 110 mg/day

(Table 1). There was no association between postoperative pain

intensities and morphine consumption (Table 2). Four patients

(12%) reported high pain while consuming higher-than-average

morphine, whereas three patients (9%) reported low pain and

consumed less–than-average morphine.

Conditioned Pain Modulation and Secondary
Postoperative Pain-related Outcomes

Parameter estimates with 95% confidence intervals from linear

regression models of secondary postoperative pain-related outcomes

are shown in Tables 3 to 5. A total of 22% of the variance in

morphine consumption was explained by CPM (P = 0.001; Table 4,

Model 1). In contrast, CPM was not related to movement-evoked

pain intensity (P = 0.2; Table 3, Model 1) or the integrated analgesic

assessment score (P = 0.3; Table 5, Model 1).
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Situational Pain Catastrophizing and Secondary
Postoperative Pain-related Outcomes

Situational pain catastrophizing explained 23% of the varia-

tion in postoperative movement-evoked pain intensity (P = 0.004;

Table 3, Model 2). The significant association between

situational pain catastrophizing and pain intensity remained

when statistically adjusted for anxiety and depression (P = 0.007;

Table 3, Model 3). In contrast, situational pain catastrophizing

was not related to morphine consumption (P = 0.1; Table 4,

Model 2) or the integrated analgesic assessment score (P = 0.1;

Table 5, Model 2), and remained unrelated when statistically

adjusted for anxiety and depression (P = 0.1; Table 4, Model 3

and P = 0.2; Table 5, Model 3).

Figure 2. Flow chart. Illustration of the patient selection process, reasons for exclusion and number of patients analyzed for the primary and
secondary outcomes.
doi:10.1371/journal.pone.0090185.g002
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Table 1. Patient Characteristics, Preoperative Predictors and Postoperative Pain-related Outcomes (N = 42).

Variables

Patient characteristics

Age (years) 19 [17–23]

Height (cm) 184.167.6

Weight (kg) 70.4611.5

Pectus excavation depth (cm) 5.461.4

Preoperative Conditioned Pain Modulation

PPT 1 (kPa) 9606226

PPT 2 (kPa) 11096334

CPM, absolute change (kPa) 1506245

CPM%, relative change (%) 17630

CPTP (NRS 0–10) 9 [7–10]

CPTU (NRS 0–10) 9 [7–10]

Cold pain detection (s) 25 [14–31]

Cold pain tolerance (s) 120 [52–120]

Preoperative Psychological Questionnaires

STAI score 37 [32–47]

BDI score 5 [3–12]

S-PCS score 16 [8–26]

S-PCS Helplessness score 7 [2–15]

S-PCS Rumination score 7 [4–13]

S-PCS Magnification score 1 [0–4]

Anesthesia, Surgery and Epidural Analgesia

Duration of anesthesia (min) 109 [98–130]

Duration of surgery (min) 33 [25–39]

Intraoperative Fentanyl (mg) 200 [100–225]

Intraoperative Bupivacaine (mg) 15.768.2

Intraoperative Morphine (mg) 3146164

Postoperative Bupivacaine (POD 0–2) (mg) (n = 41) 654 [568–759]

Postoperative Morphine (POD 0–2) (mg) (n = 40) 5.8 [4.7–7.5]

Primary Outcome (POD 180)

Persistent postoperative pain (of any degree) (n = 31) 15 (48%)

Daily pain 4 (13%)

Weekly pain 7 (23%)

More rarely pain 4 (13%)

Worst pain intensity (NRS 0–10) 3 [2–3]

Mild pain intensity (NRS 0–10) 0 [0–0]

Average pain intensity (NRS 0–10) 1 [0–1]

Current pain intensity (NRS 0–10) 0 [0–0]

Secondary Postoperative Pain-related Outcomes (POD 2-5)

PAR (NRS 0–10) (n = 32) 462

MEP (NRS 0–10) (n = 32) 562

Morphine consumption (mg kg21 day21) 1.060.3

Integrated analgesic assessment score (n = 32) 0679

Patient characteristics, preoperative predictors and postoperative pain-related outcomes in a study designed to assess whether preoperative conditioned pain
modulation and situational pain catastrophizing can predict measures of clinical postoperative pain.
Data are presented as numbers (percentages), mean 6 standard deviation or median [interquartile range] depending on distribution profile.
n = number of observations if n is different from total (N = 42); kPa = kilopascal; STAI = state part of the Spielberger’s State-Trait Anxiety Inventory; BDI = Beck’s
Depression Inventory; S-PCS = Situational Pain Catastrophizing Scale administered in connection with cold pressor test; PPT 1 = pressure pain threshold (test pain
before cold pressor test); PPT 2 = pressure pain threshold (test pain after 120 s cold pressor test); CPM = conditioned pain modulation (i.e., difference between PPT 1
and PPT 2); CPTP = worst (maximum) pain intensity associated with cold pressor test; CPTU = worst (maximum) unpleasantness associated with cold pressor test; Cold
pain detection = time to pain detection during cold pressor test; Cold pain tolerance = total hand immersion time during cold pressor test; Persistent postoperative
pain = pain assessed according to responses to the Brief Pain Inventory – Short Form (BPI) at six months (POD 180); POD = postoperative day; PAR = postoperative
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Interpreting and Visualizing the Regression Models of
Secondary Postoperative Pain-related Outcomes

The above-mentioned regressions could be used to compute

the predicted mean for the patient’s postoperative movement-

evoked pain intensity and morphine consumption for any given

level of his preoperative CPM response or situational pain-related

catastrophic thinking. By using the multiple regression model

considering the patient’s preoperative level of situational pain

catastrophizing, anxiety and depression (Table 3, Model 3), a

preoperative PCS score of e.g. 16 (i.e., 2.8 on log-scale) would

compute the mean of the patient’s postoperative movement-

evoked pain intensity to 5.5 (95% CI: 4.9–6.2) (Figure 3). In

comparison, patients with low and high levels of catastrophic

thinking (e.g. equal to the 25th and 75th percentiles of the S-PCS

score) would yield predicted means at 4.8 (95% CI: 4.1; 5.5) and

6.0 (95% CI: 5.2; 6.8), respectively. Similarly, a CPM response of

e.g. 25% would yield a predicted mean postoperative morphine

consumption of 1.0 (95% CI: 0.9; 1.1) mg kg21 day21 using the

pain at rest; MEP = postoperative movement-evoked pain; NRS 0–10 = 11-point numerical rating scale; Integrated analgesic assessment score = a composite measure
of movement-evoked pain intensity and morphine consumption: Pain intensity scores and morphine consumption for each patient were rank ordered, subtracted from
the mean rank, expressed as a percentage difference from the mean rank and added together (i.e., pain rank score + morphine rank score) to yield and integrated
analgesic assessment score (ranging from 2200 to +200%; with the highest positive score indicating the most pain).
doi:10.1371/journal.pone.0090185.t001

Table 2. Spearman’s Rank Correlation Matrix for Preoperative, Perioperative, and Postoperative Study Variables Including
Predictors, Confounders and Outcomes.

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1. STAI score -

2. BDI score 0.19 -

3. PPT 1 (kPa) 0.02 0.16 -

4. PPT 2 (kPa) 0.07 0.29 0.71 -

5. Cold pain
detection (s)

20.03 20.24 0.17 0.26 -

6. Cold pain
tolerance (s)

0.05 20.17 0.32 0.28 0.59 -

7. CPTP (NRS 0–10) 20.14 0.20 20.22 20.25 20.53 20.83 -

8. CPTU (NRS 0–10) 20.21 0.20 20.26 20.32 20.49 20.72 0.85 -

9. CPM (%) relative
change (%)

0.16 0.21 0.01 0.67 0.27 0.09 20.20 20.22 -

10. S-PCS score 0.14 0.30 20.08 0.08 20.38 20.46 0.50 0.46 0.21 -

11. Duration of
surgery (min)

20.10 20.02 0.40 0.29 0.08 0.16 20.25 20.27 0.01 20.27 -

12. Epidural
analgesia (mg)

20.14 20.14 0.22 0.00 0.09 0.25 20.20 20.19 20.17 20.33 0.31 -

13. Fentanyl (mg) 20.02 0.23 0.29 0.19 20.13 20.02 20.18 20.15 0.02 20.06 0.35 0.18 -

14. PAR (NRS 0–10) 0.23 0.30 0.22 0.29 20.19 20.07 0.13 0.20 0.22 0.38 0.14 20.01 0.14 -

15. MEP (NRS 0–10) 0.17 0.08 20.16 20.02 20.30 20.16 0.20 0.30 0.19 0.40 20.22 20.14 20.13 0.73 -

16. Morphine (mg
kg21 day21)

20.03 20.03 0.03 20.26 20.19 20.09 0.22 0.31 20.46 20.18 20.15 20.06 20.13 0.06 20.03 -

17. Integrated
analgesic score

0.20 0.19 20.07 20.19 20.33 20.17 0.34 0.47 20.20 0.25 20.29 20.18 20.15 0.56 0.70 0.69 -

18. Pain at POD
180 (NRS 0–10)

0.07 0.04 0.29 0.20 0.03 20.27 0.13 20.02 20.03 0.54 0.02 20.06 0.11 0.23 0.39 20.01 0.36 -

Spearman’s rank correlation coefficients for all pairs of preoperative, perioperative, and postoperative study variables including predictors, confounders and outcomes.
Total n for the pairwise correlations with pre- and intraoperative variables is 42. For postoperative pain-related outcomes any pairwise correlation has a total n of 32
with the exception of morphine (n = 42) and persistent postoperative pain at six months (POD 180) (n = 15). Coefficients with significance levels of 0.05 or less are
printed in bold.
STAI = state part of the Spielberger’s State Trait-Anxiety Inventory; BDI = Beck’s Depression Inventory; PPT 1 = pressure pain threshold (test pain before cold pressor
test); PPT 2 = pressure pain threshold (test pain after 120 s cold pressor test); kPa = kilopascal; Cold pain detection = time to pain detection during cold pressor test;
Cold pain tolerance = total hand immersion time during cold pressor test; CPTP = worst pain intensity associated with cold pressor test; CPTU = worst unpleasantness
associated with cold pressor test; NRS 0–10 = 11-point numerical rating scale; CPM = conditioned pain modulation (i.e., difference between PPT 1 and PPT 2); S-PCS =
the Situational Pain Catastrophizing Scale administered in connection with cold pressor test; Epidural analgesia = total intraoperative dose of 0.25% bupivacaine +
morphine, 50 mg ml21; Fentanyl = total dose of intraoperative fentanyl; PAR = postoperative pain at rest (POD 2–5); MEP = postoperative movement-evoked pain
(POD 2–5); Morphine = postoperative morphine consumption (POD 2–5); Integrated analgesic assessment score = a composite measure of movement-evoked pain
intensity and morphine consumption: Pain intensity scores and morphine consumption for each patient were rank ordered, subtracted from the mean rank, expressed
as a percentage difference from the mean rank and added together (i.e., pain rank score + morphine rank score) to yield and integrated analgesic assessment score
(ranging anywhere from 2200 to +200%; with the highest positive score indicating the most pain); Pain at POD 180 was assessed according to response to the question:
‘‘Please rate your pain by circling the one number that best describes your pain on the average’’ from the Brief Pain Inventory – Short Form (BPI). The BPI rates worst,
average, current, and least pain using simple numeric rating scales (NRS) ranging from 0 to 10, where 0 = no pain and 10 = the worst pain imaginable.
doi:10.1371/journal.pone.0090185.t002

Pain Modulation and Postoperative Pain

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e90185



simple regression model in which patients’ morphine consump-

tion was uniquely predicted from their preoperative CPM

response (Figure 4 and Table 4, Model 1). This latter calculation

corresponds to a predicted postoperative morphine consumption

of 70 (95% CI: 65; 76) mg/day for the average patient with a

body weight of 70 kg. If the patient had an inefficient pain

Table 3. Parameter Estimates from Regression Models of Postoperative Movement-evoked Pain Intensity (NRS 0–10) against
Preoperative Conditioned Pain Modulation, Situational Pain Catastrophizing, Anxiety, and Depression.

Model 1 (N = 32) Model 2 (N = 31) Model 3 (N = 31)

Covariate Parameter

Parameter
estimate
(95% CI) P value Parameter

Parameter
estimate
(95% CI) P value Parameter

Parameter
estimate
(95% CI) P value

Constant a 5.076 (4.294; 5.858) ,0.001 a 2.714 (0.886; 4.541) 0.005 a 2.705 (20.189; 5.599) 0.066

CPM%i b1 0.015 (20.01; 0.04) 0.228 b1 b1

Log[S-PCSi] b2 b2 1.020 (0.352; 1.688) 0.004 b2 1.026 (0.298 1.753) 0.007

STAIi b3 b3 b3 0.003 (20.070; 0.076) 0.935

BDIi b4 b4 b4 20.017 (20.121; 0.088) 0.744

Model fit

F-statistic F(1, 30) = 1.52, P = 0.23 F(1, 29) = 9.76, P = 0.004 F(3, 27) = 3.08, P = 0.04

Adj. R-
squared

0.02 0.23 0.17

The effect of preoperative conditioned pain modulation and situational pain catastrophizing on patients’ ratings of movement-evoked pain intensity following chest
wall surgery. State anxiety and depression are solely included in the models to statistically control the effect of pain catastrophizing on postoperative pain (a priori
confounders). The regression outputs indicate that situational pain catastrophizing significantly predicted postoperative movement-evoked pain intensity, per se
(Model 2), and independently of anxiety and depression (Model 3). The adjusted R-squared values indicate that up to 23% of variance in the dependent variable
(postoperative movement-evoked pain) can be explained by the independent variable Log[S-PCS]. Conditioned pain modulation was not related with postoperative
movement-evoked pain (Model 1).
N = the number of observations used in the regression analysis; 95% CI = 95% confidence interval for the coefficients; P value = two-tailed P values used in testing the
null hypothesis that the coefficient (parameter) is 0 using an alpha of 0.05; CPM% = conditioned pain modulation (i.e., relative difference between pressure pain
thresholds obtained before and after 120 s cold pressor test); Log[S-PCS] = Situational Pain Catastrophizing Scale score (log-transformed); STAI = Spielberger’s State
Anxiety and Inventory score; BDI = Beck’s Depression Inventory score; F-statistic = the mean square model divided by the mean square residual. The P value associated
with the F-statistic is used in testing the null hypothesis that all of the model coefficients are 0; Adj. R-squared = a modified version of R-squared that has been adjusted
for the number of predictors in the model.
doi:10.1371/journal.pone.0090185.t003

Table 4. Parameter Estimates from Regression Models of Postoperative Consumption of Morphine Equivalents (mg/kg/day)
against Conditioned Pain Modulation, Situational Pain Catastrophizing, Anxiety, and Depression.

Model 1 (N = 42) Model 2 (N = 41) Model 3 (N = 41)

Covariate Parameter

Parameter
estimate
(95% CI) P value Parameter

Parameter
estimate
(95% CI) P value Parameter

Parameter
estimate
(95% CI) P value

Constant a 1.114 (1.028; 1.200) ,0.001 a 1.211 (0.978; 1.444) ,0.001 a 1.109 (0.715; 1.503) ,0.001

CPM%i b1 20.005 (20.007; 20.002) 0.001 b1 b1

Log[S-PCSi] b2 b2 20.064 (20.149; 0.020) 0.132 b2 20.072 (20.162; 0.018) 0.115

STAIi b3 b3 b3 0.003 (20.007; 0.013) 0.537

BDIi b4 b4 b4 0.001 (20.013; 0.015) 0.924

Model fit

F-statistic F(1, 40) = 12.48, P = 0.001 F(1, 39) = 2.36, P = 0.13 F(3, 37) = 0.91, P = 0.44

Adj. R-
squared

0.22 0.03 20.07

The effect of preoperative conditioned pain modulation and situational pain catastrophizing on patients’ consumption of morphine equivalents following chest wall
surgery. State anxiety and depression are solely included in the models to statistically control the effect of pain catastrophizing on postoperative morphine
consumption (a priori confounders). The regression outputs indicate that conditioned pain modulation significantly predicted postoperative morphine consumption
(Model 1). Situational pain catastrophizing was not related with postoperative movement-evoked pain (Models 2 and 3).
N = the number of observations used in the regression analysis; 95% CI = 95% confidence interval for the coefficients; P value = two-tailed P values used in testing the
null hypothesis that the coefficient (parameter) is 0 using an alpha of 0.05; CPM% = conditioned pain modulation (i.e., relative difference between pressure pain
thresholds obtained before and after 120 s cold pressor test); Log[S-PCS] = Situational Pain Catastrophizing Scale score (log-transformed); STAI = Spielberger’s State
Anxiety and Inventory score; BDI = Beck’s Depression Inventory score; F-statistic = the mean square model divided by the mean square residual. The P value associated
with the F-statistic is used in testing the null hypothesis that all of the model coefficients are 0; Adj. R-squared = a modified version of R-squared that has been adjusted
for the number of predictors in the model.
doi:10.1371/journal.pone.0090185.t004
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inhibition capacity equal to the lower quartile of the CPM score,

the predicted morphine consumption would be estimated at 79

(95% CI: 73; 85) mg/day.

Discussion

The present study assessed whether preoperative experimental

pain modulation can predict measures of clinical postoperative

pain. This was investigated in a cohort of consecutive healthy

pain-free male adolescents undergoing a standardized thoracic

surgical procedure using uniform anesthesia and analgesia

protocols. The hypothesis that less efficient endogenous pain

inhibition capacity would increase the risk of developing

persistent postoperative pain was not supported by our data.

However, our data indicated that patients with higher levels of

preoperative situational catastrophic thinking reported higher

movement-evoked pain intensity scores in the acute postoperative

phase. Furthermore, consumption of morphine equivalents in the

acute setting depended on preoperative CPM; thus, patients with

less efficient CPM (negative CPM scores) consumed more

morphine than patients with efficient CPM (positive CPM

scores), and vice versa.

Prediction of Persistent Postoperative Pain
Contrary to some previous studies [14,59], the current study

did not prove preoperative CPM efficiency predictive of

persistent postoperative pain development. Similarly, the lack of

predictive value of situational pain catastrophizing does not add

to the moderate evidence that preoperative measures of anxiety

and pain catastrophizing play a role in the development of

persistent postoperative pain [60]. However, our results are in

agreement with other studies showing a non-significant associa-

tion between the total Pain Catastrophizing Scale score and

persistent postoperative pain [57,61–63]. Major differences

between study populations (preoperative pain, age, underlying

disease and type of surgery) may explain the diverging results.

Table 5. Parameter Estimates from Regression Models of an Integrated Analgesic Assessment Score based on Morphine
Consumption and Movement-evoked Pain Intensity Scores (2200 to +200%) against Conditioned Pain Modulation, Situational Pain
Catastrophizing, Anxiety, and Depression.

Model 1 (N = 32) Model 2 (N = 31) Model 3 (N = 31)

Covariate P
a

ra
m

e
te

r

Parameter
estimate
(95% CI) P value P

a
ra

m
e

te
r

Parameter
estimate
(95% CI) P value P

a
ra

m
e

te
r

Parameter
estimate
(95% CI) P value

Constant a 7.324 (224.57; 39.22) 0.642 a 255.051 (2135.7; 25.6) 0.173 a 292.944 (2218.9; 33.0) 0.142

CPM%i b1 20.514 (21.52; 0.50) 0.307 b1 b1

Log[S-PCSi] b2 b2 22.671 (26.8; 52.1) 0.126 b2 18.502 (213.2; 50.2) 0.241

STAIi b3 b3 b3 1.089 (22.1; 4.3) 0.489

BDIi b4 b4 b4 0.629 (23.9; 5.2) 0.778

Model fit

F-statistic F(1, 30) = 1.08, P = 0.31 F(1, 29) = 2.48, P = 0.13 F(3, 27) = 1.08, P = 0.38

Adj. R-
squared

0.03 0.05 0.08

The effect of preoperative conditioned pain modulation and situational pain catastrophizing on an integrated analgesic assessment score based on morphine
consumption and movement-evoked pain intensity scores following chest wall surgery. State anxiety and depression are solely included in the models to statistically
control the effect of pain catastrophizing on the integrated analgesic assessment score (a priori confounders). The regression outputs indicate that conditioned pain
modulation and situational pain catastrophizing are not significantly related with the integrated analgesic assessment score (Models 1–3).
N = the number of observations used in the regression analysis; 95% CI = 95% confidence interval for the coefficients; P value = two-tailed P values used in testing the
null hypothesis that the coefficient (parameter) is 0 using an alpha of 0.05; CPM% = conditioned pain modulation (i.e., relative difference between pressure pain
thresholds obtained before and after 120 s cold pressor test); Log[S-PCS] = Situational Pain Catastrophizing Scale score (log-transformed); STAI = Spielberger’s State
Anxiety and Inventory score; BDI = Beck’s Depression Inventory score; F-statistic = the mean square model divided by the mean square residual. The P value associated
with the F-statistic is used in testing the null hypothesis that all of the model coefficients are 0; Adj. R-squared = a modified version of R-squared that has been adjusted
for the number of predictors in the model.
doi:10.1371/journal.pone.0090185.t005

Figure 3. Preoperative situational pain catastrophizing and
postoperative movement-evoked pain. Adjusted means (filled
circles) with 95% confidence intervals (continuous solid lines) of the
patient’s postoperative movement-evoked pain intensity (NRS 0–10)
given different log-transformed values of preoperative situational pain
catastrophizing (log[S-PCS]), adjusted for anxiety and depression by
averaging across the values of the state part of the Spielberger’s State-
Trait Anxiety Inventory (STAI) and Beck’s Depression Inventory (BDI)
(average marginal values). The hollow circles represent overlaid
scatterplots of log[S-PCS] versus postoperative movement-evoked pain
intensity.
doi:10.1371/journal.pone.0090185.g003
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However, another probable explanation for our findings may be

attributed to the decreased prevalence of clinically relevant

persistent postoperative pain in our study population at six

months. The possible bias of these responses should be

considered as they may have caused a lack of satisfactory

differentiation between clinically relevant pain and discomfort.

Although we used the BPI to evaluate the degree to which pain

influenced a number of daily activities, it did not facilitate

persistent pain status classification. We cannot rule out that such

information bias could have led to outcome misclassification and

potential attenuation of risk estimates. Along this line it is

possible to hypothesize that pain perception may be reported

differently in an otherwise healthy young population where low

intensity pain may be tacitly accepted in favor of an improved

cosmetic appearance. Several questions remain unanswered and

there is a need for further progress in determining the exact role

of CPM and situational pain catastrophizing in the transition

from acute to chronic (postoperative) pain. Additionally, it should

be noted that other clinically relevant mechanisms may be

important in persistent postoperative pain development.

Prediction of Secondary Postoperative Pain-related
Outcomes

Subjective Movement-evoked Pain Intensity. Our find-

ings extend previous observations [17–20,64–73] by showing that

pain catastrophizing in response to experimental cold pressor

pain explains a high amount of the variance in self-reported

maneuver-specific postoperative pain intensity. Our results

corroborate those of Strulov et al. showing that pain catastro-

phizing in response to experimental heat pain accounted

significantly for the variance in cesarean section pain [20].

Moreover, the present findings coincide with previous studies

showing that preoperative pain catastrophizing predicts acute

postoperative pain measures independent of other psychological

factors, including anxiety [17,65,68–71], depression [65,68,69],

optimism [71,72], and self-efficacy [71]. Contrary to the

conclusions of a recent review that identified anxiety as one of

the four most significant predictors for postoperative pain

intensity [74], we did not find preoperative state anxiety to be

an independent significant predictor of pain. Conversely, our

findings may contribute to the few studies of the relationship

between pain catastrophizing and anxiety suggesting that both

cognitive and emotional factors must be assessed in postoperative

pain management [17,70,72]. The proposed mechanisms by

which pain catastrophizing negatively effects the experience of

pain range from interpersonal to neurophysiological, including

appraisal processes, attentional bias, behavioral coping, CNS

mechanisms, and physiological responses to pain [16]. Accord-

ingly, pain catastrophizing has been viewed both as an appraisal

process in which painful stimuli are appraised in a primary

(magnification, rumination) and secondary (helplessness) fashion

and as a behavioral coping strategy employed by individuals

experiencing pain to solicit supportive responses from others

[16]. Furthermore, pain catastrophizing has been associated with

a heightened attentional bias to the negative affective dimensions

of pain-relevant stimuli and an inability to disengage from pain

or pain cues, with altered CNS processes, and with activation in

brain regions implicated in processing of affective dimensions of

pain [16]. Thus, it has previously been hypothesized that pain

catastrophizing may negatively influence CPM through multiple

systems of complex anatomical circuitry that link cortical

responses to pain with top-down processes that modulate pain

[10,28,75]._ENREF_10 A few experimental studies in healthy

volunteers have shown that individuals with high levels of

catastrophizing demonstrate higher pain intensities and lower

CPM effects [28,31]. This suggests that the heightened pain

reported by individuals higher in pain catastrophizing may be

related to a disruption in the endogenous modulation of pain.

However, as argued by some authors, it could also be that less

efficient CPM systems may enhance the intensity of a painful

experience, which in turn could cause higher catastrophizing

[28]. In line with other studies [27,29], we found no association

between CPM response and catastrophizing. This indicates that

pain catastrophizing is an independent psychological predictor of

increased acute postoperative pain. However, the various

conditions in which catastrophizing may function as a variable

response to pain and pain modulation are sparsely investigated,

hence we caution against drawing firm conclusions at this point.

Collectively, our findings provide support for the use of

psychological constructs in predicting postoperative pain and

particularly for the clinical utility of assessing situational pain

catastrophizing. This may be an important issue for future

research as a shift from curative to preventive postoperative pain

management could lead to substantial cost savings. Despite

achievable preoperative identification of patients with a high level

of catastrophic thinking, most clinical interventions (e.g.,

cognitive behavioral techniques) targeting pain catastrophizing

remain unproven in the surgical setting.

Consumption of Morphine Equivalents. To date, very

few studies have assessed the CPM effect as predictor of analgesic

efficacy and results diverge [76]. Despite our small sample, we

were able to obtain clinically applicable and statistically

significant effect estimates of postoperative morphine consump-

tion. This finding may have important implications for the

development of tailored analgesic drug administration in future

surgical patients. Although we did not assess CPM postopera-

tively, it may be hypothesized that morphine enhanced

postoperative pain inhibition capacity resulting in reduced

morphine requirements. This is supported by recent studies

showing that opioid analgesics potentiated the effect of descend-

ing pain inhibition in healthy volunteers [77] and in neuropathic

pain patients [78]. We did, however, not successfully establish an

Figure 4. Preoperative conditioned pain modulation and
postoperative morphine consumption. Adjusted means (filled
circles) with 95% confidence intervals (continuous solid lines) of the
patient’s postoperative morphine consumption given different values
of preoperative conditioned pain modulation (CPM %). The hollow
circles represent overlaid scatterplots of CPM % versus postoperative
morphine consumption.
doi:10.1371/journal.pone.0090185.g004
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association between CPM and postoperative pain intensity, and it

may thus be speculated that this is a mere consequence of

increased morphine consumption. In other words, it is plausible

that patients with deficient preoperative pain inhibition capacity

experienced higher postoperative pain levels creating a need for a

higher morphine dose to maintain an acceptable state of comfort

compared to patients with more efficient CPM. The mechanisms

by which psychological factors interfere with the response to

analgesics remain unclear. In agreement with the present

findings, previous studies have reported that levels of pain

catastrophizing are not associated with postoperative analgesic

consumption [17,18,20,67]. In contrast, other studies have found

higher levels of catastrophizing associated with poorer effective-

ness of analgesic treatment of experimental and clinical pain

[64,69,79–81]. We believe the explanation to this is rooted in

differences in study design and methodology.
Integrated Analgesic Assessment Score. Preoperative

CPM and situational pain catastrophizing were not predictive

of the proposed integrated analgesic assessment score. One

possible explanation for this may be attributed to our co-

administration of several analgesics. Despite the use of a

standardized analgesic regimen, we cannot rule out that the

administration of several analgesics may have resulted in

differential synergistic effects across patients. Another explanation

for this observation may be based on evidence that a combined

endpoint may cause problems if the predictor effect is in opposite

directions for different outcomes included in the composite

endpoint [82]. However, it is worth mentioning that normalizing

data on a per-subject basis enabled identification of patients with

differential treatment effects on pain and morphine consumption

outcome and that such an approach may facilitate comparison of

similar studies in the future. Though there is little reason to

suspect that the proposed integrated index would not measure

therapeutic efficacy at least as well as the individual components,

future studies may wish to comprehensively assess the validity of

this method [54].

Limitations
Some of the limitations of the present study have implications

for the generalizability of findings. Although we used a highly

standardized surgical procedure and protocols for anesthesia and

analgesia in a homogenous study population, inevitable differ-

ences in anesthesia, analgesia and surgically induced tissue injury

and inflammation may have affected postoperative pain percep-

tion differently across patients. However, we found no evidence

of significant associations between measures related to the

anesthesia, analgesia, and complexity of surgery and study

outcomes. Furthermore, patients in this study were primarily

pain-free male adolescents who were not suffering from chronic

pain before undergoing surgery. The applicability of the present

findings to patients suffering from pain-related conditions thus

remains uncertain. We acknowledge that our results are based on

a small sample and that results need to be confirmed and

replicated in larger studies. However, the homogeneous patient

sample free from the usual bias related to pain, social and

economical parameters, the uniform surgical procedure and the

fact that all patients were operated on by the same surgeon and

investigated by the same investigator strengthen our findings.

Conclusions
In conclusion, preoperative CPM scores and levels of pain

catastrophizing in response to experimental pain were not

predictive of persistent postoperative pain development. Analyses

of secondary pain-related outcomes, however, indicated that

reduced pain-inhibition may contribute to enhanced clinical

postoperative pain and morphine consumption. If replicated and

confirmed in larger samples, this may potentially enable clinicians

to tailor individualized analgesic drug administration and thus

hypothetically improve postoperative pain management in future

patients.
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