
1Scientific Reports |          (2020) 10:146  | https://doi.org/10.1038/s41598-019-56758-4

www.nature.com/scientificreports

Enhancing quantum annealing 
performance by a degenerate two-
level system
Shohei Watabe1,2*, Yuya Seki2 & Shiro Kawabata2

Quantum annealing is an innovative idea and method for avoiding the increase of the calculation 
cost of the combinatorial optimization problem. Since the combinatorial optimization problems are 
ubiquitous, quantum annealing machine with high efficiency and scalability will give an immeasurable 
impact on many fields. However, the conventional quantum annealing machine may not have a high 
success probability for finding the solution because the energy gap closes exponentially as a function 
of the system size. To propose an idea for finding high success probability is one of the most important 
issues. Here we show that a degenerate two-level system provides the higher success probability than 
the conventional spin-1/2 model in a weak longitudinal magnetic field region. The physics behind this 
is that the quantum annealing in this model can be reduced into that in the spin-1/2 model, where the 
effective longitudinal magnetic field may open the energy gap, which suppresses the Landau–Zener 
tunneling providing leakage of the ground state. We also present the success probability of the Λ-type 
system, which may show the higher success probability than the conventional spin-1/2 model.

Quantum annealing is an interesting approach for finding the optimal solution of combinatorial optimization 
problems by using the quantum effect1–4. The combinatorial optimization problems are ubiquitous in the real 
social world, therefore the spread of quantum annealing machine with high efficiency and high scalability will 
give impacts and benefits on many fields, such as an industry including drug design5, financial portfolio problem6, 
and traffic flow optimization7. After the commercialization of superconducting quantum annealing machine by 
D-Wave Systems inc.8, several hardwares have been investigated and developed9–13.

However, there are bottlenecks for implementing scalable quantum annealing machine; for the conventional 
and scalable quantum annealing machine may not have a high success probability for finding the solution of 
a combinatorial optimization problem because of the emergence of the first order phase transition, where the 
energy gap between ground state and the first exited state closes exponentially as a function of the system size2. In 
this case, it necessitates an exponentially long annealing time for finding the solution of the problem14–16. In the 
case of the second oder phase transition, on the other hand, an annealing time for finding the solution may scales 
polynomially as a function of the system size17.

To propose an idea for finding high success probability is one of the most important and challenging issue in 
the field of quantum annealing. One of the approaches for obtaining the high success probability is to engineer the 
scheduling function for the driving Hamiltonian and the problem Hamiltonian, such as a monotonically increas-
ing scheduling function satisfying the local adiabatic condition18, the reverse quantum annealing19 implemented 
in D-wave 2000Q20, inhomogeneous sweeping out of local transverse magnetic fields21,22, and a diabatic pulse 
application23. Another is to add an artificial additional Hamiltonian for suppressing the emergence of the excita-
tions with avoiding the slowing down of annealing time, which is called shortcuts to adiabaticity by the counter-
diabatic driving24–27, and to add an additional Hamiltonian for avoiding the first order phase transition17,28,29. In 
this paper, we study the possibility of other approach: to employ a variant spin, such as a qudit, in the quantum 
annealing architecture.

Recently, two of the authors have studied the quantum phase transition in a degenerate two-level spin system, 
called the quantum Wajnflasz–Pick model, where an internal spin state is coupled to all the same energy internal 
states with a single coupling strength, and to all the different energy internal states with the other single coupling 
strength30. In the earlier study, this model is found to show a several kinds of phase transition while annealing; 
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single or double first-order phase transitions as well as a single second-order phase transition, depending on an 
internal state coupling parameter30, which suggests that the quantum annealing of this model may be controlled 
by an internal state tuning parameter. However, the study is based on the static statistical approach using the 
mean-field theory, because only the order of the phase transition has been interested in. Therefore, the enhance-
ment of the success probability for quantum annealing based on degenerate two-level systems is not clear yet. 
Furthermore, they employed a fully-connected uniform interacting system, and it is unclear whether their idea 
works that a double (or even-number of) first-order phase transition while annealing would bring the system 
back into the ground state at the end of the annealing, where the even number of the Landau–Zener tunneling 
may happen with respect to the ground state.

In the present paper, we clarify the success probability of the quantum annealing in the quantum Wajnflasz–
Pick model, focusing on (i) the Schrödinger dynamics, (ii) eigenenergies, and (iii) non-uniform effects of the 
spin-interaction as well as the longitudinal magnetic field. We find that the quantum Wajnflasz–Pick model is 
more efficient than the conventional spin-1/2 model in the weak longitudinal magnetic field region as well as in 
the strong coupling region between degenerate states. We also find that the quantum Wajnflasz–Pick model is 
reducible into a spin-1/2 model, where effect of the transverse magnetic field in the original Hamiltonian emerges 
in the reduced Hamiltonian not only as the effective transverse magnetic field but also as the effective longitudinal 
magnetic field. As a result, this model may provide the higher success probability in the case where the effective 
longitudinal magnetic field opens the energy gap between the ground state and the first excited state. We also 
evaluate the success probability in another variant spin, a Λ-type system31–40, which has three internal levels. This 
model also shows the higher success probability than the conventional spin-1/2 model in the weak magnetic field 
region.

A multilevel system is ubiquitous, which can be seen, for example, in degenerate two-level systems in 
atoms41,42, Λ-type atoms31,32,34, Λ-, V-, Θ- and Δ-type systems in the superconducting circuits33,35–40,43 as well as 
Λ-type systems in the nitrogen-vacancy centre in diamond44. We hope that insights of our results in the degen-
erate two-level system and knowledge of their reduced Hamiltonian inspire and promote further study as well as 
future engineering of quantum annealing.

Quantum Wajnflasz–Pick Model
A conventional quantum annealing consists of the spin-1/2 model, where the time dependent Hamiltonian is 
given by1

= + −ˆ ˆ ˆH s sH s H( ) (1 ) , (1)z x

where Ĥz x,  are a problem and driver Hamiltonian, respectively, and ≡s t T/  is the time ∈t T[0, ] scaled by the 
annealing time T. The problem Hamiltonian Ĥz with the number of spins N, which encodes the desired optimal 
solution, has a non-trivial ground state. In contrast, the driver Hamiltonian Ĥx has a trivial ground state, where 
the driver Hamiltonian Ĥx must not be commutable with the problem Hamiltonian Ĥz. A problem Hamiltonian 
and driver Hamiltonian are typically given by
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where σ̂x z,  are the Pauli matrices, Jij is the coupling strength between spins, hi
z is the local longitudinal magnetic 

field, and hi
x is the local transverse magnetic field. The time-dependent total Hamiltonian Ĥ s( ) gradually changes 

from the driver Hamiltonian Ĥx to the problem Hamiltonian Ĥz. If the Hamiltonian changes sufficiently slowly, 
the quantum adiabatic theorem guarantees that the initial quantum ground state follows the instantaneous 
ground state of the total Hamiltonian45. We can thus finally obtain a non-trivial ground state of the problem 
Hamiltonian starting from the trivial ground state of the deriver Hamiltonian making use of the Schrödinger 
dynamics.

The quantum Wajnflasz–Pick model is a quantum version of the Wajnflasz–Pick model46, which can describe 
one of the interacting degenerate two-level systems. In the language of the quantum annealing, the problem 
Hamiltonian and the driver Hamiltonian are respectively given by30

∑ ∑τ τ τ≡ − −
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(Schematic picture of this model is shown in Fig. 1). The Hamiltonian of this model can be simply obtained by 
replacing the Pauli matrices σ̂x z,  in Eqs. (2) and (3) with the spin matrices of the quantum Wajnflasz-Pick model 
τ̂x z, . The spin operator τ̂z is given by30
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τ ≡ + … + − … −� ����� ����� � ����� �����ˆ diag( 1, , 1 , 1, , 1),
(6)

z

g gu l

where g lu( ) is the number of the degeneracy of the upper (lower) states. The spin-operator τ̂x  in the driver 
Hamiltonian is given by
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where lA( ) is a ×l l( ) matrix with the off-diagonal term ω, given by
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Here, ω is a parameter of the internal transition between the degenerated upper/lower states. The matrix m n1( , ) 
is the ×m n( ) matrix, where all the elements is unity, which gives the transition between the upper and lower 
states. The constant c is the normalization factor, where the maximum eigenvalue is normalized to be +1, so as to 
be equal to the maximum eigenvalue of τ̂z.

In the following, for the consistency to the earlier work30, we consider a uniform transverse field ≡h 1i
x , and 

also take the parameter of the internal transition to be real ω ω= ⁎ with ω > −1. In the case where 
=g g( , ) (2, 1)u l , we have

τ τ
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z x

with ω ω= + +c ( 8 )/22 , which is a kind of the Δ-type system38.
In this paper, we employ the common sets of parameters in both quantum Wajnflasz–Pick model and the 

conventional spin-1/2 model, including the coupling strength Jij, the magnetic fields hi
z x, , and the annealing time 

T . By using these parameters, we can obtain the same spin configuration (+1 or −1) in the ground state of the 
problem Hamiltonian. We thus compare efficiency of these models from the success probability.

Schrödinger Dynamics
In order to numerically calculate the success probability of the quantum annealing, we employ the Crank–
Nicholson method47 for solving the Schrödinger equation

|Ψ 〉 = |Ψ 〉.ˆi d
dt

t H t t( ) ( ) ( ) (10)

In this method, the time-evolution of the wave function is calculated by using the Cayley’s form47

|Ψ + Δ 〉 =
− Δ
+ Δ

|Ψ 〉.
ˆ
ˆt t iH t

iH t
t( ) 1 /2

1 /2
( )

(11)

Although the inverse matrix is needed, this method conserves the norm of the wave function and is second-order 
accurate in time47.

We first consider the fully connected model, where the spin-spin coupling is ferromagnetic and the longitudi-
nal magnetic field is uniform ≡h hi

z , which is consistent with the earlier work30. For example, in the case where 

Figure 1.  Schematic setup of an interacting degenerate two-level system, called the quantum Wajnflasz–Pick 
model.
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ω = . .h( , ) (0 8, 0 02) and − . − .( 0 8, 0 02) for =g g( , ) (2, 1)u l , the time-dependence of the ground state population 
of the problem Hamiltonian, given by ≡ |〈Ψ |Ψ 〉|n t T( ) ( )0 0

2, clearly shows that this quantity in the quantum 
Wajnflasz–Pick model is greater than that in the conventional spin-1/2 model (Panels (a) and (b) in Fig. 2). Here, 
|Ψ 〉T( )0  is the ground state of the problem Hamiltonian, and |Ψ 〉T( )  is the wave function obtained from the 
time-dependent Schrödinger equation. In the case where ω = . − .h( , ) (0 8, 0 1) and − . .( 0 8, 0 1) for 

=g g( , ) (2, 1)u l , on the other hand, the ground state population of the problem Hamiltonian in the quantum 
Wajnflasz–Pick model is less than that in the spin-1/2 model (Panels (c) and (d) in Fig. 2).

Compare the success probability of the quantum Wajnflasz–Pick model, ≡ |〈Ψ |Ψ 〉|P T T( ) ( )0
2, with that of the 

conventional spin-1/2 model denoted as P1/2, where |Ψ 〉T( )  is the final state obtained from the time-dependent 
Schrödinger equation. In almost all regions in the ω-h plane, efficiencies of both models are almost the same, 
where the ratio of the success probability of the quantum Wajnflasz–Pick model and that of the conventional spin-
1/2 model is almost unity (Fig. 3). On the other hand, in the regime of the weak longitudinal magnetic field h, we 
can find higher or lower efficiency regions in the quantum Wajnflasz–Pick model, compared with the spin-1/2 
model. In the spin glass model, a non-trivial state may emerge in the weak longitudinal magnetic field limit48. In 
a p-spin model where = …p 3, 5, 7, , the energy gap is known to close exponentially and the first-order phase 
transition emerges in the absence of the longitudinal magnetic field15. In this sense, it is of interest that the quan-
tum Wajnflasz–Pick model may provide the high efficiency in the weak longitudinal magnetic field region.

Figure 2.  Population n0 of the ground state of the problem Hamiltonian Ĥz in the quantum Wajnflasz–Pick 
model and that of the conventional spin-1/2 model, where ≡ |〈Ψ |Ψ 〉|n t T( ) ( )0 0

2. The scaled time s is given by 
≡s t T/ . We employed the number of spins =N 4 both in the quantum Wajnflasz–Pick model and in the spin-

1/2 model. We used the parameters =g g( , ) (2, 1)u l , =J N1/ij , =h 1i
x  and =T 10.

Figure 3.  Success probability of a quantum Wajnflasz–Pick model P scaled by that of the conventional spin-1/2 
model P1/2 as a function of longitudinal magnetic field h and the coupling strength ω between degenerate 
internal states. The parameters are the same as those used in Fig. 2.
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In the case where =g g( , ) (2, 2)u l , where the numbers of upper and lower states are equal, the success proba-
bility of the quantum Wajnflasz–Pick model is almost equal to that of the conventional spin-1/2 model (Panel (a) 
in Fig. 4). In the case where =g g( , ) (3, 2)u l , the success probability of the quantum Wajnflasz–Pick model is 
almost equal to that of the case where =g g( , ) (2, 1)u l , where the differences between the number of the upper 
states and that of lower states are the same in both cases (Fig. 3 and Panel (b) in Fig. 4).

Eigenvalues
Eigenvalue spectrum of the instantaneous Hamiltonian may help to understand these higher or lower success 
probabilities of the quantum Wajnflasz–Pick model than that of spin-1/2 model, although eigenvalues of the 
instantaneous Hamiltonian shows tangled spaghetti structures (Fig. 5). For example, in the case where 
ω = . − .h( , ) (0 8, 0 1), the energy gap between the ground state and the first excited state clearly closes once, which 

causes the low success probability (Panel (c) in Fig. 5). In the case where ω = . .h( , ) (0 8, 0 02), the ground state 
and the first excited state are finally merged at the annealing time, where the degeneracy would cause the high 
success probability (Panel (a) in Fig. 5). However, according to the following discussion, it will be found that the 
latter explanation would not be correct in the case where ω = . .h( , ) (0 8, 0 02). From panels (b) and (d) in Fig. 5, 
many crossings of eigenvalues are found to emerge. It suggests that there are no matrix elements in some states, 
and we may find symmetry behind the present quantum Wajnflasz–Pick model, where the Hamiltonian would be 
block diagonalized by a unitary operator Û . Since the energy spectrum of the original quantum Wajnflasz-Pick 
model shows very complicated behavior, it would be better to find out the reason of the high/low success proba-
bility from the reduced Hamiltonian, which are truly relevant for the efficiency of the quantum annealing.

For example, in the case where =g g( , ) (2, 1)u l , the single-spin Hamiltonian in the quantum Wajnflasz–Pick 
model is decomposable, where the irreducible representation is given by

=
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for arbitrary values of s, by using the unitary operator

=
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Figure 4.  Success probability of a quantum Wajnflasz–Pick model P scaled by that of spin-1/2 model P1/2. We 
consider the following degeneracy case: =g g( , ) (2, 2)u l  in Panels (a) and =g g( , ) (3, 2)u l  in Panels (b). We used 

=N 4, =J N1/ij , =h 1i
x  and =T 10.
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where ω≡ ± ′±h s h s h s( ) 2 ( )z , and ′ ≡ −h s s h c( ) (1 ) /(2 )x . As a result, we may reduce a quantum annealing prob-
lem in the single-spin quantum Wajnflasz–Pick model into that of the spin-1/2 model, the Hamiltonian of which 
is given in the form

ω σ σ ω= − + ′ − ′ − ′ .ˆ ˆ ˆHH s h s h s h s h s( ) [ ( )] 2 2 ( ) ( ) (14)z z x

Since the initial ground state of the single-spin Hamiltonian is given by |Ψ = 〉 ∝s c c( 0) ( /2, /2, 1)T in the original 
quantum Wajnflasz–Pick model, this state can be mapped to |Ψ = 〉 ∝Û s c( 0) ( / 2 , 0, 1)T. It indicates that the 
initial ground state |Ψ = 〉Û s( 0)  can be also projected to the Hilbert space of the reduced Hamiltonian ĤH s( ).

This reduction of the single-spin problem in the case where =g g( , ) (2, 1)u l  can be generalized to an interact-
ing N-spin problem (Fig. 6). A quantum annealing problem of the original quantum Wajnflasz–Pick model is 
reduced into that of the spin-1/2 model, given in the form

∑ ∑

∑ ∑

σ σ σ

σ ω
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−
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ĤH s s J h s

h s h s
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( ) ( ),
(15)

i j
ij i

z
j
z

i
i

z
i
z

i
i

x
i
x

i
i

eff,

eff,

where

ω≡ + ′h s h s h s( ) ( ), (16)i
z

i
z

ieff,

Figure 5.  Eigenenergies of the instantaneous Hamiltonian in the quantum Wajnflasz–Pick model (blue) and 
those in the reduced spin-1/2 model (black) as a function of ≡s t T/ . The parameters are the same as those in 
Fig. 2.

Figure 6.  Schematics of an original quantum Wajnflasz–Pick model (a) and its reduced model (b).
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≡ ′h s h s( ) 2 2 ( ), (17)i
x

ieff,

with

′ ≡
−

.h s s h
c

( ) (1 )
2 (18)i

i
x

As in the single-spin case, the initial ground state of the original N-spin quantum Wajnflasz–Pick model can 
be also projected to the Hilbert space of the reduced Hamiltonian (15). The coupling Jij in the reduced 
Hamiltonian is the same as that of the original Wajnflasz–Pick model. The effective longitudinal magnetic field 
h i

z
eff,  in the reduced Hamiltonian also reaches the same value as that of the original Wajnflasz–Pick model at the 

end of the annealing: = =h s h( 1)i
z

i
z

eff, . Eigenvalues of the reduced spin-1/2 model exactly trace eigenvalues in 
the original Wajnflasz–Pick model (Fig. 5). The time-dependence of the ground state population of the problem 
Hamiltonian is confirmed to show the completely same behavior between the reduced model and the original 
model.

This effective model clearly explains behavior of success probability of the quantum Wajnflasz–Pick model 
shown in Fig. 3. Note that the coefficient c is a positive real number such that the maximum eigenvalue of τ x is 
unity, and we take =h 1i

x . Then, ′ ≥h s( ) 0i  always holds during the annealing time ≤ ≤s0 1. In the case where 
the longitudinal magnetic field hi

z is very large, ω| | | | ′h h (0)i
z

i , the effect of the original longitudinal magnetic 
field hi

z  is dominant compared with the effective additional term ω ′h s( )i  except at the very early stage of the 
annealing ω| ′ |s h h(0)/i i

z . In this case, the problem Hamiltonian in the reduced model is almost the same as that 
in the conventional spin-1/2 model in Eq. (2). As a result, the success probability of the quantum Wajnflasz–Pick 
model is almost the same as that of the conventional spin-1/2 model, which provides 

P P1/2.
In the case where the original longitudinal magnetic field hi

z is not large, the effective additional longitudinal 
magnetic field ω ′h s( )i  cannot be neglected compared with hi

z. When the effective additional field is in the same 
direction as the original longitudinal field, the total effective longitudinal magnetic field h s( )i

z
eff,  is enhanced, 

which opens the energy gap between the ground state and the first excited state (Panels (a) and (b) in Fig. 7). This 
region is given by the condition ω >h 0i

z , which is consistent with the result shown in Fig. 3. As a result, the suc-
cess probability of the quantum Wajnflasz–Pick model become superior to that of the conventional spin-1/2 
model. When the effective additional field is in the opposite direction to the original longitudinal field, the total 
effective longitudinal magnetic field h s( )i

z
eff,  is diminished, which closes the energy gap between the ground state 

and the first excited state (Panels (c) and (d) in Fig. 7). This region is given by the condition ω <h 0i
z , which is 

consistent with the result shown in Fig. 3. As a result, the success probability of the quantum Wajnflasz–Pick 
model become inferior to that of the conventional spin-1/2 model.

Behavior of success probability is also explained by the reference of the annealing time49

≡




 Δ







TT
b s

s
max ( )

( )
,

(19)
s 2

where

Figure 7.  Excited state energies measured from the ground state energy of the instantaneous Hamiltonian in 
the reduced model (red) and those in the conventional spin-1/2 model (blue). The parameters are the same as 
those in Fig. 2.
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≡ Ψ Ψ
ˆ

b s s dH s
ds

s( ) ( ) ( ) ( ) ,
(20)

1 0

Δ ≡ − .s E s E s( ) ( ) ( ) (21)1 0

Here, |Ψ 〉s( )0(1)  and E s( )0(1)  are the wave functions and eigenenergies of the ground (first-excited) state with respect 
to the instantaneous Hamiltonian, respectively. Annealing machine needs the annealing time T  much larger than 
TT. Let ≡ Δ⁎T b s s( )/ ( )2  be an instantaneous reference time of the annealing. The maximum value of this time ⁎T  
in the reduced Wajnflasz–Pick model given in (15) is suppressed compared with that of the conventional spin-1/2 
model, where the effective additional field ω ′h s( )i  is in the same direction as the original longitudinal field hi

z 
(Panels (a) and (b) in Fig. 8). It is consistent with the case where the quantum Wajnflasz–Pick model is more 
efficient than the conventional spin-1/2 model in the region where ω >h 0i

z  (Fig. 3). The maximum value of ⁎T  in 
the effective Wajnflasz–Pick model has larger values than that of the spin-1/2 model, where the effective addi-
tional field ω ′h s( )i  is in the opposite direction to the original longitudinal field hi

z (Panels (c) and (d) in Fig. 8). It 
is consistent with the case where the quantum Wajnflasz–Pick model is less efficient than the conventional spin-
1/2 model in the region where ω <h 0i

z  (Fig. 3).
In order to perform the scaling analysis of the minimum energy gap Δ ≡ −E s E smin [ ( ) ( )]min 1 0 , we consider 

the p-spin model in the absence of the longitudinal magnetic field:

^ ^ ^
∑ ∑τ τ τ= − + − −−

…
Ĥ s s

N
s h( ) ( 1 ) (1 )( ),

(22)
p

i i

N

i
z

i
z x

i

N

i
x

1
, , p

p
1

1

where the transverse magnetic field is homogeneous. Replacement of τi
x y,  with σi

x y,  provides the conventional p
-spin model, where the first order phase transition emerges, and the minimum energy gap is known to close 
exponentially as N  increases in the case where p is odd15. After mapping to the subspace spanned by the spin-1/2 
model, the reduced Hamiltonian of the quantum Wajnflasz–Pick model with =g g( , ) (2, 1)u l  can be given by

∑ ∑ ∑σ σ σ σ= − − − Γ − − Γ−
…



ˆ ˆ ˆ ˆ ˆHH s s
N

s s( ) 1 (1 ) (1 ) ,
(23)

p
i i

N

i
z

i
z z

i

N

i
z x

i

N

i
x

1
, , p

p
1

1

= − − − Γ − − Γ−
ˆ ˆ ˆs

N
M s M s M1 ( ) (1 ) (1 ) ,

(24)p
z p z z x x

1

up to the constant energy shift, where ωΓ ≡ h c/(2 )z x , Γ ≡ h c2 /x x , and σ≡ ∑ˆ ˆM
z x

i
N

i
z x, , . By using the commu-

tation relation σ σ σ δ=ˆ ˆ ˆi[ , ] 2i
x

j
z

i
z

ij and by following the standard argument of the angular momentum, where the 
total spin ≡ + +ˆ ˆ ˆ ˆM M MM ( ) ( ) ( )

x y z2 2 2 2 conserves, the Hilbert space can be spanned by states | 〉J M, , where 
| 〉 = + | 〉ˆ J M J J J MM , ( 2) ,

2
 and | 〉 = | 〉M̂ J M M J M, ,

z
 with = − − + −M J J J J, 2, , 2, . The diagonal elements 

Figure 8.  Instantaneous reference annealing time ≡ Δ⁎T b s s( )/ ( )2  as a function of the scaled time s. The 
parameters are the same as those in Fig. 2.
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of this Hamiltonian is given by = − − − Γ−HH sM N s M/( ) (1 )MM
p p z1 , and the off-diagonal elements are 

= − − Γ + − ±±HH s J J M M(1 ) ( 2) ( 2) /2M M
x

, 2 . Since the ground state of this model is given by the case 
=J N , we diagonalize the + × +N N( 1) ( 1) matrix of the reduced Hamiltonian. We compare the minimum 

energy gap of this model reduced from the quantum Wajnflasz–Pick model with that of the conventional p-spin 
model composed of the spin-1/2 system (Eq. (24) with Γ = 0z  and Γ = hx x). Figure 9 clearly shows that the min-
imum energy gap closes exponentially in the conventional spin-1/2 model, and the gap closes polynomially in the 
model reduced from the quantum Wajnflasz–Pick model. This polynomial gap closing originates from the emer-
gence of the effective longitudinal magnetic field in the reduced model: ωΓ = ≠h c/(2 ) 0z x .

Random Coupling
In the random spin-spin coupling case, where Jij are randomly generated by the gaussian distribution function50

π
=



−



P J N N J( )

2
exp

2
,

(25)ij ij
2

the density plot of the mean-value of the success probability is similar to the uniform coupling case. The maxi-
mum (minimum) value of the success probability is, however, suppressed (increased) compared with the uniform 
coupling case (Fig. 10). The variances of the success probability of the quantum Wajnflasz–Pick model are almost 
ranged from 0.03 to 0.06 in the first and third orthants in the ω-h plane, where the higher success probability may 
be obtained than the conventional spin-1/2 model. They are almost ranged from 0.02 to 0.15 in the second and 
forth orthants in the ω-h plane, where the lower success probability may be obtained. In the spin-1/2 model, the 
variance of the success probability is almost within the range from 0.03 to 0.06 in all the orthants.

The discussion above is in the case for a uniform longitudinal magnetic field. In the following, we discuss the 
case of random longitudinal magnetic fields hi

z in addition to the random interactions Jij. The success probabilities 
P and P1/2 are almost equal in the weak internal state coupling case (ω = ± .0 1 in Fig. 11). In the strong internal 

Figure 9.  Minimum energy gap as a function of the number of spins N  on a linear-log scale (a log-log scale in 
the inset). The minimum energy gap is obtained from the exact diagonalization of the ferromagnetic p-spin 
model with =p 3. We have used ω = .0 8 and =h 1x .

Figure 10.  Averaged success probability of a quantum Wajnflasz–Pick model P scaled by that of spin-1/2 model 
P1/2 in a randomly generated coupling strength case. We employed the coupling strength Jij randomly generated 
from the gaussian distribution function, where the mean is zero and the variance is 1/N. We used =N 4, =h 1i

x  
and =T 10. The success probabilities P and P1/2 are averaged values of 100 samplings in each data point.
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state coupling case (ω = ±1 in Fig. 11), the distribution is broaden. Although we can find cases where the con-
ventional spin-1/2 model is superior to the quantum Wajnflasz–Pick model, we can also find many cases where 
the quantum Wajnflasz–Pick model is superior to the conventional spin-1/2 model, where the success probability 
is close to the unity compared with the conventional spin-1/2 model.

In these random coupling cases, it may not be definitely concluded that the quantum Wajnflasz–Pick model is 
always more efficient than the conventional spin-1/2 model. The variance is relatively large, and there are cases 
where the quantum Wajnflasz–Pick model is inferior to the conventional spin-1/2 model (Fig. 11). However, we 
can find many cases where the quantum Wajnflasz–Pick model is possibly more efficient than the conventional 
spin-1/2 model. In the quantum Wajnflasz–Pick model and its reduced model, we have chances to find a better 
solution of the combinatorial optimization problem. In real annealing machines, we can extract a better solution 
after performing many sampling experiments by tuning ω.

Discussion
In the case where =g g( , ) (2, 1)u l , the spin matrix in the quantum Wajnflasz–Pick model is represented by a 
(3 × 3)-matrix, which suggests that the quantum Wajnflasz–Pick model in this case may be mapped into the 
model represented by the spin-1 matrices given by

=











=







−
−






=





 −






.ˆ ˆ ˆS S i S1

2

0 1 0
1 0 1
0 1 0

,
2

0 1 0
1 0 1
0 1 0

,
1 0 0
0 0 0
0 0 1 (26)

x y z

Indeed, after we interchange elements of second and third rows in the spin matrices defined in Eq. (9) in the 
case where =g g( , ) (2, 1)u l , as well as we interchange elements of second and third columns, simultaneously, we 
find the following maps

τ ≡ +
−

ˆ ˆ ˆq Q2
3

1
3

,
(27)

z z z r3 2 2

τ ω ω≡






+ −






−
ˆ ˆ ˆ ˆ ˆR Iq

c
S Q Q1 2 ,

(28)
x x x x y xy2 2

where we have introduced quadrupolar operators51,52

≡ − −
−ˆ ˆ ˆ ˆQ S S S1

3
[2( ) ( ) ( ) ],

(29)
z r z x y3 2 2 2

2 2

≡ −
−ˆ ˆ ˆQ S S( ) ( ) , (30)

x y x y2 2
2 2

≡ +ˆ ˆ ˆ ˆ ˆQ S S S S , (31)
xy x y y x

and ωR  ( ωI ) is the real (imaginary) part of ω. Since =ˆ ˆq S[ , ( ) ] 0z x 2  and ω=ˆ ˆ ˆIq S i c S[ , ( ) ] ( / )x x x2  hold, we find that 
Ŝ( )

x 2 is the operator of the conserved quantity in the case where the parameter ω is a real number. The coupling of 
τ τ ≠ˆ ˆi

z
j i
z
( ) is mapped into the interaction 

≠ˆ ˆq qi
z

j i
z
( ), which is a kind of the biquadratic interaction with respect to the 

Figure 11.  Success probability P of the quantum Wajnflasz–Pick model vs. success probability P1/2 of the 
conventional spin-1/2 model. We take 1000 samples of problem hamiltonian with the random coupling strength 
Jij as well as the random longitudinal magnetic field hi

z, both of which are generated from the standard Gaussian 
distribution. The means of Jij and hi

z are zeros, and the variances are 1/N and 1/ 2 , respectively. For each 
problem set, we consider four cases ω = ± .0 1 and ±1. We used =g g( , ) (2, 1)u l , =N 4, =h 1i

x  and =T 10.
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spin. In short, the interacting quantum Wajnflasz–Pick model with =g g( , ) (2, 1)u l  can be mapped into the spin-1 
model with an artificial biquadratic interaction. In particular, in the case where ω ∈ , there is the hidden sym-
metry related to Ŝ( )

x 2, which indicates that the quantum Wajnflasz–Pick model is reducible in this case.
It is general that an interacting quantum Wajnflasz–Pick model is reducible to the conventional spin-1/2 

model. It holds for an arbitrary number of the degeneracy g g( , )u l  and at an arbitrary time s, which can be proven 
in the case where the parameter ω  is  a real  number and the condition ω > −1 holds.  In 
Supplementary Information, we show that the Hamiltonian of the interacting quantum Wajnflasz–Pick model 
with arbitrary g g( , )u l  can be projected to the spin-1/2 model, and the initial ground state in the original quantum 
Wajnflasz–Pick Hamiltonian is also projected to the reduced Hilbert space. It indicates that the quantum anneal-
ing in the quantum Wajnflasz–Pick model can be always described by the reduced Hamiltonian.

As shown in Supplementary Information, this projection holds not only in the 2-body interacting quantum 
Wajnflasz–Pick model, but also in the N-body interacting model. It indicates that if the quantum Wajnflasz–Pick 
model is embedded into the Lechner–Hauke–Zoller (LHZ) architecture53,54, it can be also projected into the LHZ 
architecture composed of the spin-1/2 model, where the effective additional magnetic fields may emerge. The 
present quantum Wajnflasz–Pick model is a degenerate two-level system in the presence of the transverse mag-
netic field. The possibility of the implementation of the degenerate two-level system has been discussed for the D2 
line of 87Rb41,42. The quantum Wajnflasz–Pick model is also similar to the Δ-type cyclic artificial atom in the 
superconducting circuit38,43. In the Δ-type artificial atom, the population is controllable by making use of the 
amplitudes and/or phases of microwave pulses, where the amplitudes alone controls the population in the con-
ventional three-level system (Λ-type system)43. However, the Δ-type system in the superconducting circuit is not 
an exactly degenerate two-level system. With this regard, it may be difficult to directly implement our model in 
the Δ-type cyclic artificial atom in the superconducting circuit. Actually, it may be feasible to employ the spin-1/2 
model with the scheduling function inspired by the quantum Wajnflasz–Pick model, in the case where the 
Schrödinger dynamics without the dissipation holds.

The quantum Wajnflasz–Pick model is one of the qudit models, which is a kind of the artificial Δ-type sys-
tem38,43 in the case where =g g( , ) (2, 1)u l . The question naturally arises whether the Λ-type system also shows the 
higher success probability than the conventional spin-1/2 model. The spin matrix of the Λ-type system we employ 
here is given by

τ
ε

τ
κ

κ=











=












ˆ ˆ

c

0 0 0
0 1 0
0 0

, 1 0 0
0 1

0 1 0
,

(32)

z x

where we take ε| | ≤ 1, and the coefficient κ≡ +c 1 2  is a normalization factor so as the maximum eigenvalues 
of τ̂x z,  are unity. The Hamiltonian of the quantum annealing with the Λ-type system is given by Eqs. (1), (4) and 
(5), where τ̂x z,  are replaced with those given in (32). The success probability in the Λ-type system is found to be 
higher than that in the conventional spin-1/2 model, in the case where ε is small in the weak longitudinal mag-
netic field region, which is similar to the case of the quantum Wajnflasz–Pick model (Panels (a) and (b) in Fig. 12). 
When ε is large, on the other hand, the success probability is drastically suppressed (Panel (c) in Fig. 12). In the 
case of a single Λ-spin system with ε = 0, which corresponds to a degenerate two-level system, the unitary 
transformation

κ

κ
=





 −






Û

c
1 0 1

0 1 0
1 0 (33)

can map the Hamiltonian τ τ= − − −ˆ ˆ ˆH s sh s h( ) (1 )z z x x to the following block diagonal form:

=






− −
− − −






.

−ˆ ˆ ˆU H s U
s h

s h sh( )
0 (1 ) 0

(1 ) 0
0 0 0 (34)

x

x z
1

As a result, after exchanging the first and second columns and also the first and second rows, we may reduce a 
quantum annealing problem in this Λ-spin model into that of the spin-1/2 model, the Hamiltonian of which is 
given by σ σ= − − − −ĤH s sh s h sh( ) /2 (1 ) /2z z x x z . Although the Λ-type system may provide the higher success 
probability than the conventional spin-1/2 model, the effect of dark states (never employed states) on the quan-
tum annealing in the general Λ-spin case and its reduction to the spin-1/2 model in the many-spin system would 
be important issues for future study.

To summarize, we have demonstrated that qudit models, such as the quantum Wajnflasz–Pick model as well 
as the Λ-type system, may provide the higher success probability than the conventional spin-1/2 model in the 
weak magnetic field region. We have analytically shown that the quantum Wajnflasz–Pick model can be reduced 
into the spin-1/2 model, where effect of the transverse magnetic field in the original Hamiltonian emerges as the 
effective additional longitudinal magnetic field in the reduced Hamiltonian, which possibly opens the energy gap 
between the ground state and the first excited state in the reduced Hamiltonian. Since qubits have experimental 
advantages for the manipulation, the direct implementation of the reduced spin-1/2 model may be convenient 
for the quantum annealing. On the other hand, the reduction to the subspace in terms of the spin-1/2 model is 
useful only in the case where we focus on the Schrödinger dynamics. If we consider the dissipation as a realistic 
system, the transition between the subspaces emerges. The efficiency of the quantum annealing in this system is 
open for further study.
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Conclusions
We studied the performance of the quantum annealing constructed by one of the degenerate two-level systems, 
called the quantum Wajnflasz–Pick model. This model shows the higher success probability than the conven-
tional spin-1/2 model in the region where the longitudinal magnetic field is weak. The physics behind this is that 
the quantum annealing of this model can be reduced into that of the spin-1/2 model, where the effective longitu-
dinal magnetic field in the reduced Hamiltonian may open the energy gap between the ground state and the first 
excited state, which gives rise to the suppression of the Landau–Zener transition. The reduction of the quantum 
Wajnflasz–Pick model to the spin-1/2 model is general at an arbitrary time as well as in an arbitrary number of 
degeneracies. We also demonstrated that the Λ-type system also shows the higher success probability than the 
conventional spin-1/2 model in the weak magnetic field regions. We hope that studying quantum annealing with 
variant spins, and utilizing the insight of their reduced model will promote further development of high perfor-
mance quantum annealer.
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