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Variation in upstream open reading frames contributes to allelic
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The 5′ untranslated region (UTR) sequence of eukaryotic mRNAs may contain up-
stream open reading frames (uORFs), which can regulate translation of the main ORF
(mORF). The current model of translational regulation by uORFs posits that when a
ribosome scans a mRNA and encounters an uORF, translation of that uORF can prevent
ribosomes from reaching the mORF and cause decreased mORF translation. In this
study, we first observed that rare variants in the 5′ UTR dysregulate maize (Zea mays
L.) protein abundance. Upon further investigation, we found that rare variants near the
start codon of uORFs can repress or derepress mORF translation, causing allelic changes
in protein abundance. This finding holds for common variants as well, and common
variants that modify uORF start codons also contribute disproportionately to metabolic
and whole-plant phenotypes, suggesting that translational regulation by uORFs serves
an adaptive function. These results provide evidence for the mechanisms by which
natural sequence variation modulates gene expression, and ultimately, phenotype.
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Understanding the mechanisms by which genetic variation produces a phenotype will
depend on learning how gene expression is regulated differently between alleles. Although
moderate correlations between messenger RNA (mRNA) and protein have been observed
across genes (r = 0.3 to 0.8; reviewed in ref. 1), the correlation across individuals tends
to be quite low (r < 0.25 in maize [Zea mays L.] and humans) (2, 3). Additionally,
there is only modest overlap between variants associated with mRNA levels and variants
associated with protein levels in maize, mice, and humans (3–6). Together, these findings
suggest an extensive role of posttranscriptional regulation in determining gene expression
across eukaryotes. Protein synthesis is energetically expensive, which implies high selective
pressure on individuals to produce the appropriate quantity of each protein (7, 8). Despite
this strong selective pressure, protein levels are heritable and vary between individuals
(6, 9), which means that there must be adaptive advantages to allelic differences in
protein abundance. Motivated by these observations, an outstanding question is, How
does genetic variation contribute to variation in protein abundance?

Secondary structure and high GC content of the 5′ untranslated region (UTR) can
affect translation efficiency, presumably by the formation of secondary structure that
obstructs scanning of the 43S preinitiation complex and completion of initiation (10–13),
a mechanism which can regulate gene expression response to environmental conditions
(14). However, single base pair substitutions (the focus of this study) do not cause
appreciable changes in secondary structure or GC content of the 5′ UTR. Upstream open
reading frames (uORFs) located in the 5′ UTR and preceding the main ORF (mORF) also
contribute to posttranscriptional gene regulation, generally by reducing translation of the
mORF (11, 13, 15). Studies in humans have shown that variants which create or disrupt
uORFs are under negative selection and associated with disease phenotypes (16, 17).
Across eukaryotes, the strength of the uORF Kozak sequence is predictive of translation
initiation efficiency (18). While the effects of uORF translation on protein abundance
have been demonstrated in several genes in plants and humans (15, 16, 19), across genes
in Arabidopsis thaliana (20), and across alleles in massively parallel reporter assays (11, 13),
less is known about the genome-wide effects that natural sequence variation in uORFs has
on allelic protein abundance in crop plants.

Previous studies of genetic variability for protein abundance between individuals
(3–5, 21, 22) have primarily used genome-wide association studies (GWAS), an approach
that is most effective for alleles that are at high frequency in the population being
studied. To be sufficiently powerful, GWAS require large population sizes and are still
generally best suited to identifying common alleles, which tend to have smaller effect
sizes but can be important for locally adapted phenotypes. In contrast, rare variants
tend to have larger, deleterious effects (23–25) but are difficult to identify by GWAS.
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Proteins are the machinery which
execute essential cellular
functions. However, measuring
their abundance within an
organism can be difficult and
resource-intensive. Cells use a
variety of mechanisms to control
protein synthesis from mRNA,
including short open reading
frames (uORFs) that lie upstream
of the main coding sequence.
Ribosomes can preferentially
translate uORFs instead of the
main coding sequence, leading to
reduced translation of the main
protein. In this study, we show
that uORF sequence variation
between individuals can lead to
different rates of protein
translation and thus variable
protein abundances. We also
demonstrate that natural
variation in uORFs occurs
frequently and can be linked to
whole-plant phenotypes,
indicating that uORF sequence
variation likely contributes to
plant adaptation.
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Because rare alleles 1) are more likely to have large effects and
2) have been implicated in dysregulation of mRNA abundance
(26, 27), we reasoned that, in aggregate, rare alleles would be ideal
candidates for identifying specific sets of variants that contribute
most to posttranscriptional regulation. Our findings for rare alleles
could then be validated in the pool of common alleles.

In this study, we answer the preceding questions with maize,
which has large homogeneous tissues that facilitate high-quality
proteome extraction, extremely high levels of phenotypic and
genetic diversity (28, 29), and rapid linkage disequilibrium decay
that allows high genetic resolution with fewer individuals (30,
31). We use two distinct sets of diverse inbred maize lines: a
technically and biologically replicated set of four inbreds and a
mostly unreplicated set of 95 inbreds previously described (3).
We first use rare alleles, which generally have larger and more
disruptive effects, to learn that variants in the 5′ UTR, specifically
those which modify uORFs, have the most influence on protein
abundance. We then use those findings to identify and test com-
mon variants which likely have weaker but adaptive effects, and
demonstrate their effects on protein abundance as well as their
contribution to metabolic and whole-plant phenotypes.

Results and Discussion

Regulation of gene expression is largely genetically determined;
mRNA abundance is heritable in organisms across kingdoms (32),
as are proteomic (6, 9) and metabolite levels (33). Quantification

of 7,524 peptides in a pair of leaves in developmentally matched
juvenile plants (four replicated maize inbreds; Dataset S1) con-
firmed that protein abundance is heritable in maize, with median
heritability of 0.79, similar to mRNA and metabolite abundances
(33) (SI Appendix, Figs. S1 and S2). These high heritabilities not
only demonstrate low measurement error but also reveal extant
adaptive genetic variation in protein abundances.

We identified rare variants based on a minor allele frequency
(MAF) < 0.02 in the maize HapMap3.2.1 population, which
contains >1,200 varieties of maize and its wild relatives from
around the world (34). Rare variants were classified based on their
location within five genic features: promoter, 5′ UTR, coding
sequence (CDS), intron, or 3′ UTR (Fig. 1B). In each genic
feature, we tested for differing protein abundance among 95 di-
verse inbred lines (Dataset S2), classified at each single-nucleotide
polymorphism (SNP) by whether they have the common or rare
allele. Introns were predicted to show little effect on protein abun-
dance, due to their typical absence from the mRNA; we observe
a corresponding lack of association between intronic rare alleles
and protein abundance (Fig. 1A). Rare alleles in the promoter and
5′ UTR were associated with more variable protein abundance,
with rare alleles in the 5′ UTR showing the strongest effect (Fig. 1
A and C and SI Appendix, Fig. S3). This finding reinforces pre-
vious implication of the 5′ UTR in posttranscriptional regulation
(11–13, 16–18, 35, 36), and the lack of any significant effect from
variants in the 3′ UTR contrasts with recent work focused on the
role of the 3′ UTR in translational regulation in maize (37).
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Fig. 1. Individuals with rare alleles have altered protein abundance. (A) In each genic region shown in B (generic gene), individuals with at least one rare allele
(MAF < 0.02) were compared to individuals with no rare alleles in any of the genic regions. The two-sided Kolmogorov–Smirnov and Mann–Whitney tests test
for differences in the distribution of protein abundance between individuals with and without rare alleles; the one-sided F test for equality of variance tests for
greater variability among individuals with rare alleles. Rare alleles in the 5′ UTR are significantly associated with dysregulated protein abundance by all three
tests. Number of observations without rare allele = 184,668. (C) Distribution of protein abundance (log2 ratio against B73) for individuals with rare alleles in the
5′ UTR (blue), compared to individuals without rare alleles (light blue).
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The 5′ UTR can contribute to posttranscriptional regulation
of gene expression, and machine learning models have been suc-
cessful at predicting protein abundance from sequence. However,
application of previously developed machine learning models (11,
38) proved unable to predict allelic differences in protein abun-
dance from 5′ UTR and transcript sequence in four maize inbreds
(full results are available in Bitbucket repository https://bitbucket.
org/bucklerlab/p protein diverse maize/src/master/src/1 four
inbreds/). Instead, we turned to evaluating the mechanisms by
which these observed rare variants might be disrupting translation.

We hypothesized that rare alleles can disrupt existing uORF
start codons or create start codons that generate novel uORFs,
thereby decreasing or increasing (respectively) uORF translation
and ultimately altering translation of the mORF (Fig. 2 A and
B). Based on this hypothesis, and the inverse relationship between
uORFs and mORF translation efficiency (SI Appendix, Fig. S4),
we predicted that 1) rare alleles that weaken existing uORF start
codons will be associated with greater mORF protein abundance
(Fig. 2A) and 2) rare alleles that cause new or strengthen existing
uORF start codons will be associated with lower mORF protein
abundance (Fig. 2B).

To test the first prediction, we identified uORFs that show
evidence of translation based on ribosome profiling data (39),
then searched for rare alleles within or near the start codons of
those uORFs. A score was assigned to the common and rare
alleles based on similarity of their surrounding sequence to the
maize Kozak sequence (SI Appendix, Fig. S5) (40), and variants
with rare alleles that weaken the Kozak sequence were labeled as
“derepressive variants,” based on the hypothesized effect of the rare
allele on mORF protein abundance (Dataset S3). Derepressive
variants were compared to rare alleles anywhere else in the 5′
UTRs of genes with translated uORFs, including within uORFs
themselves but excluding the start codons of translated uORFs.
This comparison revealed that derepressive variants are associated
with 26% greater mORF protein abundance than rare alleles
elsewhere in the 5′ UTR of genes with translated uORFs (Fig.
2C ; P = 1.4e-02, two-sided Mann–Whitney test). We also studied
the difference in protein abundance between individuals with the
common and rare derepressive alleles. In 9 out of 14 cases, the rare
derepressive alleles were associated with increased mORF protein
abundance relative to the common allele (Fig. 2D).

To test the second prediction, we performed analyses similar
to those described above but focused on genes with no annotated
uORFs, or with annotated uORFs that did not show any evidence
of translation (39). We searched for rare alleles that increased their
surrounding sequence’s similarity to the maize Kozak sequence
(40), and labeled them as “repressive variants,” based on their
hypothesized effect on mORF protein abundance (Dataset S3).
We compared repressive variants to rare alleles which are located
in genes with no annotated or translated uORFs but decrease the
surrounding sequence’s similarity to the Kozak motif. Repressive
variants are associated with a 45% decrease in protein abundance
of the corresponding mORF (Fig. 2E ; P = 3.3e-03, two-sided
Mann–Whitney test). Comparing individuals with rare alleles at
repressive variants to individuals with common alleles revealed
that 15 out of 25 rare alleles were associated with decreased mORF
protein abundance (Fig. 2F ). For both repressive and derepressive
variants, we observed at least one variant with large effects in the
direction opposite to what we anticipated. These provide evidence
that, although our annotations seem to be identifying SNPs with
the predicted effects, other factors also influence final protein
abundance.

Because variants in the 5′ UTR can also influence mRNA
abundance by affecting mRNA stability (41) and transcription

initiation (42, 43), we performed the same tests described
above, but with mRNA abundance instead of protein abundance
(Dataset S4), to see whether repressive and derepressive variants
are impacting protein abundance through mRNA levels. We
found no evidence that repressive or derepressive variants impact
mRNA abundance, which implies that their hypothesized effects
are taking place during translation (SI Appendix, Figs. S6–S8).

Given that rare, putatively deleterious variants appear to dys-
regulate mORF protein abundance by altering start codons of
uORFs, we wondered whether historical mutations with similar
mechanisms may have conferred adaptive advantage and risen
to a higher allele frequency via positive selection. We identified
common (MAF > 0.1) repressive and derepressive variants using
the same criteria described above (Dataset S5), and tested their
association with mORF protein abundance. We found an enrich-
ment of significant associations between derepressive variants and
mORF protein abundance (Fig. 3A; one-sided Mann–Whitney
test).

We performed an equivalent test with mRNA abundance to
check whether derepressive variants are influencing protein abun-
dance indirectly by altering mRNA levels, and found that, while
some derepressive variants are associated with altered mRNA
levels, they are generally not the same variants as are associated
with altered protein levels (SI Appendix, Figs. S9 and S10). The
derepressive variants that are associated with changes in mRNA
abundance could be acting directly on mRNA stability or tran-
scription factor binding sites (41–43), or they could be in linkage
disequilibrium with other expression quantitative trait loci, for
example, in promoter regions (26).

We reasoned that, if these common alleles are adaptive, they
may also affect metabolic or physical phenotypes. Indeed, dere-
pressive variants show greater than 18% enrichment for GWAS
hits over all common variants in 5′ UTRs, with>80% of derepres-
sive variants associated with at least one phenotype. Derepressive
variants being enriched for GWAS hits may explain previous
observations that the 5′ UTR has an outsized contribution to
quantitative traits in maize (44). The enrichment of GWAS hits
for metabolic phenotypes is particularly notable because uORFs
have been implicated in metabolite-based regulation involving
the translating ribosome (45, 46). On the other hand, repressive
variants show a statistically insignificant 2% enrichment (Fig. 3B;
two-sided binomial test).

Derepressive variants show stronger association with protein
abundance and greater enrichment for GWAS hits than repressive
variants. Although we are studying common SNPs, which we
assume have not been under negative selection, it is possible that
reduced translation of mORFs is under strong negative selection
(47) and that more repressive variants than derepressive variants
are false positives. While derepressive variants disrupt the Kozak
sequence of uORFs that already show evidence of translation,
repressive variants strengthen the Kozak sequence but have not
been shown to result in translation of the putative uORFs they
create. SNPs may be more likely to disrupt existing uORFs than
to create new translated uORFs (48).

None of the derepressive or repressive variants we identified
overlap with genes that have conserved peptide uORFs
(CPuORFs) across angiosperms (49). This is possibly because the
strong conservation of CPuORFs means any new mutations are
subject to strong negative selection. Studies identifying CPuORFs
have also been largely focused on dicots. However, many of the
uORFs containing derepressive and repressive variants that we
identified are conserved between members of the Andropogoneae
tribe (50), although they are not significantly more or less
conserved than all other uORFs (SI Appendix, Fig. S11).
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Fig. 2. (A) Rare SNP alleles which disrupt or weaken the start codon of an existing translated uORF are associated with derepression of the mORF, whereas
(B) rare alleles which cause a new start codon or strengthen an existing start codon in the 5′ UTR are associated with repression of the mORF. C and E show
the effects of derepressive and repressive rare alleles, compared to the effects of other rare alleles in similar contexts (two-sided Mann–Whitney test; box
plots show median and first and third quartiles, and whiskers extend no farther than 1.5 times the interquartile range; outliers are displayed as points). D and
F show the effect that derepressive and repressive alleles have on protein abundance, on a per-gene basis. Individuals with derepressive alleles often show
an increase in protein abundance over individuals with the common allele. Individuals with repressive alleles often show a decrease in protein abundance.
Each point represents, for a single gene, the difference in median protein abundance of between individuals with the rare (derepressive or repressive) allele
and individuals with the common allele. Note that the differences between individuals with rare alleles and individuals with common alleles are often of low
confidence due to the fact that the rare allele group frequently contains only one or two observations. In C–F, protein abundance is represented as a log2 ratio
against B73.

All results up to this point have been based on genes that
have protein abundance data. We expanded our scope to all
annotated genes in B73 and identified variants that may have
repressive or derepressive function (Dataset S6). Genes with
derepressive variants were enriched for biological process gene

ontology (GO) terms related to metabolic and biosynthetic
processes (Dataset S7), consistent with evidence that uORFs
contribute to regulation of metabolic pathways in plants (51,
52). We identified a potential derepressive variant in the 5′ UTR
of an adenosylmethionine decarboxylase, Zm00001eb184470,
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Fig. 3. (A) Common variants (MAF > 0.1) show significant association with mORF protein abundance based on one-sided t test for increased (derepressive
variants; n = 183) or decreased (repressive variants; n = 144) mORF protein abundance. A random effect to control for kinship was included in the model, and
SNPs with less than three individuals having either allele were excluded. Shaded areas show distribution of P values over 100 permutation tests; dashed line
marks a one-to-one relationship. (B) Common derepressive variants show a significantly increased number of GWAS hits relative to all common SNPs in 5′ UTRs
(two-sided binomial test; derepressive n = 191, repressive n = 153).

the ortholog of which has been shown to be regulated by uORFs
in A. thaliana (53).

Beyond plants, it may be the case that certain protein
families are regulated by uORFs across eukaryotes. We found
derepressive variants in the uORFs of Zm00001eb252410 and
Zm00001eb136490, which both encode proteins from the heat
shock protein 70 family, a member of which has been shown to be
regulated by uORFs in humans (54). Another derepressive variant
is in the uORF of Zm00001eb070400, which is a multidrug
resistance–associated protein (ABC transporter C family
member 2), also shown to be regulated by uORFs in humans
(55).

These results demonstrate that rare alleles in the 5′ UTR have
dysregulatory effects on the proteome. Investigating that pattern
further, we have also shown that variation in uORF start codons
contributes to allelic differences in mORF protein abundance.
Not only do these effects show up at the protein abundance
level, but variants in uORFs are enriched for GWAS hits of
metabolic and physiological traits. These findings could be used to
prioritize derepressive variants, particularly ones at common allele
frequencies, in genomic prediction models. They are also a step
toward building models of allelic variation between individuals,
based on mechanistic effects of sequence variation. Although
rare alleles are infrequent within a given site, hundreds of rare
variants in each individual contribute to genetic burden, which
can be better modeled by categorizing the effects of particular
rare alleles. Because these effects relate to fundamental aspects of
the translational machinery, we anticipate that these findings will
extend beyond maize and be applicable in most eukaryotes. These
findings can be used to engineer or predict variation in protein
regulation and can potentially be applied to address problems in
synthetic biology, genome editing, crop improvement, and human
disease.

Materials and Methods

Proteomic Datasets. Two distinct proteomic datasets were used in this study.
The first consisted of four inbred lines (B73, Mo17, CML103, and P39) for which
genome assemblies are publicly available (56). These were used for analyses
in which accurate genomic sequence or biological replication was needed. The
second dataset was generated by Jiang et al. (3), which consists of 98 diverse
inbred lines. Protein abundance data for these lines were determined by using
B73 as the reference for aligning peptides to the proteome. These data were used
for analyses requiring a larger sample size and SNP sets called against a common
reference genome.

Replicated Proteomics on Four Diverse Inbreds. The plants were grown us-
ing 3:1 Metromix 900 (SunGro)/Turface MVP (Profile Products) in the greenhouse
under a 16-h light/8-h dark photoperiod and 27 ◦C/22 ◦C day/night tempera-
tures. Third and fourth leaves of 2-wk-old plants were collected separately, flash
frozen, and stored at –80 ◦C. Sample preparation and mass spectrometry analysis
were performed as described by McLoughlin et al. (57). Each genotype was ana-
lyzed with five biological and three technical replicates. Raw mass spectrometry
data were analyzed against the B73 v5 proteome (58) with Proteome Discoverer
(version 2.0.0.802; Thermo Fisher Scientific). Peptides were assigned by SEQUEST
HT, allowing one missed tryptic cleavage, a precursor mass tolerance of 10 ppm,
and a fragment mass tolerance of 0.02 Da. Carbamidomethylation of cysteines
and oxidation of methionine were used as static and dynamic modifications,
respectively. Only peptides with false discovery rates of 0.01 (high confidence)
were used for data analysis.

Heritability Calculations. We fit each peptide with the model yij = gi + eij,
where yij is the abundance of the peptide in replicate j of inbred i, gi is the genetic
effect of inbred i, and eij is the residual for replicate j of inbred i. Both terms g and
e were random effects, with variances σ2

g and σ2
e , respectively. Heritability was

calculated as H2 = σ2
g/(σ

2
g + σ2

e ).

Protein Abundance Prediction. We attempted to predict peptide abundance,
using several sequence-based models that predict protein or mRNA abundance.
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The first model we tested was described by Washburn et al. (38), who developed
it to predict which of two orthologous genes in Z. mays and Sorghum bicolor had
higher mRNA expression levels. We used the same inputs, namely, 1,500 base
pairs (bp) of DNA sequence from each of the promoter and terminator regions of
each gene, and attempted to predict which of two inbred lines had higher peptide
abundance.

The second model we tested was published by Cuperus et al. (11), who
trained their model on a library of random Saccharomyces cerevisiae 5′ UTRs
and corresponding protein abundances. We used their pretrained model to try
to predict peptide abundance in maize. Because the peptide abundances in our
dataset cannot be compared between genes, we instead compared the log2
ratio of observed peptide abundances to the log2 ratio of predicted peptide
abundances for each pairwise comparison between inbreds at each peptide in
our dataset.

The third model we tested was based on the observation that codon bias
can be predictive of protein abundance (59–61). We trained a multiple linear
regression model to predict the log ratio of peptide abundance between two
inbreds, using, as explanatory variables, the differences in codon counts between
alleles of genes encoding the same peptide.

Uplifting Jiang Proteomic Data. The proteomic data generated by Jiang
et al. (3) was uplifted to version 5 of the B73 proteome (58). The Uniprot IDs in
the published data were used to obtain protein sequences, which were searched
in v5 using blastp (62). Proteins with a match in the v5 proteome that had
>90% identity and >90% coverage (2,523 out of 2,750) were kept. Similar to
the four-inbred experiment described above, the protein abundances reported
by Jiang et al. were normalized by calculating the log2 ratio against B73. For
example, if, for a given gene, inbred X had a protein abundance of 20 and B73
had a protein abundance of 10, the transformed protein abundance for inbred
X would be represented as log2(20/10) = 1. This log ratio transformation was
done to enable comparisons between genes, which otherwise cannot be directly
compared, due to the nature of the proteomic data.

Calling HapMap SNPs on Jiang Inbreds. The maize HapMap3.2.1 (34) SNP
data were uplifted to B73 v5 coordinates using CrossMap (63). Whole-genome
sequencing was available for 95 of the 98 maize inbreds (64), and was used to
call SNPs at the same v5 positions and using the same methods as HapMap3.2.1
(34, 65).

Effects of Rare Variants on Protein Abundance. To study the relationship
between rare, putatively deleterious variants and protein abundance, we classi-
fied SNPs as rare if they had a MAF of <0.02 in the maize HapMap 3.2.1 panel,
which contains over 1,200 diverse maize varieties and wild relatives, and repre-
sents an independent dataset from the Jiang inbred lines for defining MAF (34).

Variants were categorized based on overlap with five annotated features: pro-
moters (2,000 bp upstream of the transcription start site), 5′ UTRs, 3′ UTRs, CDS,
and introns. SNPs were categorized using the GenomicFeatures (66) package in
R (67), based on the Zm00001eb.1 annotation of B73 (58). Each combination
of gene, feature, and inbred was given a binary classification for whether or not
it contained a rare (MAF < 0.02) SNP allele. Within each feature, the relative
protein abundance of all gene–inbred combinations that did contain a rare allele
was compared to a null consisting of protein abundances in gene–inbred com-
binations that did not have rare variants in any of the five features. The number
of individuals per gene in the null group ranged from 14 to 95. Distributions of
protein abundance between the rare variant and null categories were statistically
compared by the Kolmogorov–Smirnov test (68, 69), Mann-Whitney test, and
F-test for equality of variance.

Identifying Translated uORFs. Two biological samples of riboseq data gen-
erated by Lei et al. (39) on nonstressed B73 seedlings were obtained from
National Center for Biotechnology Information Sequence Read Archive accessions
SRX845439 and SRX845455. Riboseq data consist of sequenced fragments of
mRNA which are bound by ribosomes and therefore assumed to be undergoing
translation. Cutadapt (70) version 1.18 was run using the parameters “-a CTG-
TAGGCACCATCAAT -m 20” to remove adapters and discard any reads shorter than
20 bp. Reads were mapped against version 5 of the B73 genome using hisat2
(71) version 2.2.1 with default parameters except for “–trim5 1” to remove the
first base pair from each read, which the original authors describe as frequently

representing an untemplated addition during reverse transcription (39). The
alignments were sorted and indexed with samtools (72) version 1.11, and reads
that mapped to more than one location in the genome were discarded.

The uORFs were computationally identified using the R (67) package ORFik
(73). The uORFs were identified using the pattern (ATG|TTG|CTG-3n-TAA|TAG|TGA),
since translated uORFs can initiate on noncanonical start codons (74–76). Any
uORFs that overlapped with annotated CDSs were discarded, and the remaining
uORFs were used as targets for read counting. Reads overlapping computation-
ally identified uORFs were counted by htseq (77) version 0.11.3 using htseq-
count with the argument “–nonunique all” so that reads were not discarded if
they mapped to multiple overlapping uORFs or uORFs on different annotated
transcripts. Read positions were shifted to reflect the location of the ribosome P
site by using the functions detectRibosomeShifts() and shiftFootprints() in ORFik
(73). Only reads with lengths between 26 and 34 bp (89% of reads) were used.

The log(fragments per kilobase million [FPKM] + 1) values for the two bio-
logical samples were correlated, r = 0.99 for CDS, r = 0.78 for uORFs. The lower
correlation for uORFs was primarily due to uORFs with reads in one sample but
not the other; discounting those, the correlation of log(FPKM) between samples
was r = 0.87. These correlations were high enough that read counts from both
samples were pooled, and FPKM was calculated on the pooled counts.

Translated uORFs were defined as computationally identified uORFs that had
FPKM > 20, FPKM < 1,759, total length > 15 bp, and total length < 333
bp. These cutoffs were chosen based on the fifth and 95th percentiles of the
distributions of FPKM and length across all uORFs, in order to exclude uORFs
that may be in misannotated 5′ UTRs or have an unusually high number of
reads mapping to them. We were relatively lenient with calling translated uORFs
because, as described below, we were more interested in identifying uORFs
that may be translated than in obtaining a highly accurate quantification of
translation.

Identifying Variants That Strengthen or Weaken uORF Start Sequence.
An empirical maize Kozak sequence was determined by creating a position
weight matrix of the sequence spanning –3 to +4 nucleotides relative to the
translation start site of all annotated maize gene model CDSs. The range of –
3 to +4 was chosen to reflect the portion of the larger Kozak sequence (–6 to
+4) that is highly conserved in green plants (78). Variants that weaken the Kozak
of existing uORFs were identified by searching for variants that fell within the
–3 to +4 range around the start of uORFs that show evidence of translation
(described above). Two versions of the 7-bp sequence around the start codon were
created, one with each SNP allele, and they were scored for their similarity to the
Kozak sequence using the R package Biostrings (79). Variants that decreased the
similarity to the Kozak sequence by 0.5 or more were classified as “derepressive.”

Identification of “repressive” variants was performed similarly, but with rare
variants that were in the 5′ UTR of genes with no annotated uORFs, or of genes
with all annotated uORFs having FPKM< 5. Because an annotated uORF was not
present in all instances, unlike in the preceding paragraph, it was not obvious
where to position the variants within the Kozak sequence. We calculated the
similarity score against the Kozak with the variant site in all positions from –3 to
+4, and chose the position with the highest score, reasoning that it represented
the context that was closest to making a uORF start. We then substituted the
alternate allele at the SNP site and compared the Kozak score, classifying variants
that increased the score by >0.25 as “repressive.”

Identifying and Testing Adaptive Variants. Repressive and derepressive
variants with MAF > 0.1 were identified by the same criteria as described above
for rare alleles. Of 115,836 common variants in the 5′ UTR of all genes, 9,117
were in the 5′ UTR of genes with protein abundance information. Of those, we
identified 191 derepressive and 153 repressive variants. One-sided t tests were
performed to test for increase or decrease of protein abundance associated with
derepressive or repressive alleles, respectively. Models included a random effect
to account for kinship between individuals, using the R package sommer (80). The
results from these tests were compared to P values from shuffling the genotypes
and performing the same test 100 times for each variant.

GWAS Hit Enrichment. To determine the number of physiological and
metabolic traits associated with SNPs within 5′ UTR regions, a graph database
was used to store and query GWAS results with additional biological information
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in maize. Neo4j (v4.2.0) and Cypher (v4.2.0) were used as the graph database
management system and querying language, respectively (81). Results were
obtained by interfacing with the database using the Neo4j diver, neo4r (67,
82). In total, 3,874 metabolite traits collected from the Goodman diversity panel
(83) and 333 physiological traits collected from both the Goodman diversity and
Nested Association Mapping panels (84, 85) were used for association testing
and SNP–trait relation queries. Significant counts were obtained by filtering
associations between SNP and trait with P value < 10e-5. Enrichment for GWAS
hits among repressive and derepressive variants was performed using a one-
sided binomial test of the alternative hypothesis that the proportion of repressive
or derepressive GWAS hits was greater than the proportion of all 5′ UTR GWAS
hits.

Conservation among Andropogoneae. Alignments between maize and five
other grasses from the Andropogoneae tribe (50) were filtered to regions that
overlap the annotated B73 5′ UTRs. The uORFs, identified above, were classified
based on whether at least one other species had alignments covering 90% or
more of the uORF. The uORFs with rare or common repressive or derepressive
variants were tested against all uORFs by two-sidedχ2 test to see whether repres-
sive and derepressive variants are associated with greater or lesser conservation
among the Andropogoneae.

GO Enrichment. All repressive or derepressive variants and their cognate
genes were identified genome-wide using the criteria previously described. GO
enrichment was performed using the R package topGO (86). Fisher’s test was
used to compare Biological Process GO categories for genes with repressive

or derepressive variants against all genes, using the GO annotations avail-
able at https://download.maizegdb.org/Zm-B73-REFERENCE-NAM-5.0/Zm-B73-
REFERENCE-NAM-5.0 Zm00001eb.1.interproscan.tsv.gz.

Data Availability. SNP data can be found at http://datacommons.cyverse.org/
browse/iplant/home/shared/commons repo/curated/Gage uORF allelic
variation 2021. The mass spectrometry proteomics data for four maize
inbreds have been deposited to the ProteomeXchange Consortium via
the PRIDE (79) partner repository with the dataset identifier PXD026378
(https://www.ebi.ac.uk/pride/archive/projects/PXD026378). All other data can
be found in SI Appendix.

Code Availability. Code for all analyses can be found at https://bitbucket.org/
bucklerlab/p protein diverse maize/.
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