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Gli2 and Gli3 Localize to Cilia and Require
the Intraflagellar Transport Protein Polaris

for Processing and Function
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Intraflagellar transport (IFT) proteins are essential for cilia assembly and have recently been associated with a number
of developmental processes, such as left-right axis specification and limb and neural tube patterning. Genetic studies
indicate that IFT proteins are required for Sonic hedgehog (Shh) signaling downstream of the Smoothened and
Patched membrane proteins but upstream of the Glioma (Gli) transcription factors. However, the role that IFT proteins
play in transduction of Shh signaling and the importance of cilia in this process remain unknown. Here we provide
insights into the mechanism by which defects in an IFT protein, Tg737/Polaris, affect Shh signaling in the murine limb
bud. Our data show that loss of Tg737 results in altered Gli3 processing that abrogates Gli3-mediated repression of Gli1
transcriptional activity. In contrast to the conclusions drawn from genetic analysis, the activity of Gli1 and truncated
forms of Gli3 (Gli3R) are unaffected in Tg737 mutants at the molecular level, indicating that Tg737/Polaris is
differentially involved in specific activities of the Gli proteins. Most important, a negative regulator of Shh signaling,
Suppressor of fused, and the three full-length Gli transcription factors localize to the distal tip of cilia in addition to the
nucleus. Thus, our data support a model where cilia have a direct role in Gli processing and Shh signal transduction.
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Introduction

Cilia are microtubule-based organelles that protrude from
the surface of most cells in the mammalian body and are
formed through a conserved process termed intraflagellar
transport (IFT) [1]. Polaris, the protein encoded by Tg737, is a
core component of the mammalian IFT machinery and is
required for the formation of all cilia and flagella [2,3]. Mice
homozygous for the hypomorphic Tg737""* allele exhibit
phenotypes in many tissues including the formation of cysts
in the kidney, liver, and pancreas, hydrocephalus, and skeletal
patterning defects that include extra molar teeth, cleft palate,
and preaxial polydactyly [2,4-6]. While Tg737"'/'k mutants are
viable, complete loss of Tg737 function in Tg7374%Fs!
mutants results in midgestation lethality, randomization of
the left-right body axis, neural tube closure and patterning
defects, and formation of eight to ten unpatterned digits per
limb [3]. In Tg737’"7’k and Tg7)"7A273B’g"’1 mutant mice, cilia are
severely malformed or absent, respectively, suggesting that
this organelle is required for normal development and
patterning of many tissues in the mammalian body [2,3,5].

The mammalian limb is patterned through the interaction
of three main signaling centers [7]. The apical ectodermal
ridge is necessary for proper limb outgrowth and proximal-
distal length while the surface ectoderm regulates dorsal-
ventral patterning. The zone of polarizing activity, located in
the posterior mesenchyme, is involved in anterior-posterior
patterning including the formation of five digits per limb.
Sonic hedgehog (Shh) is secreted by cells in the zone of
polarizing activity, and many polydactyl mutants in the
mouse have been shown to have ectopic expression of either
Shh or genes activated by Shh. The main targets of Shh
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signaling are the Glioma (Gli) transcription factors [8]. Three
Gli transcription factors (Glil, Gli2, and Gli3) have been
identified in mammals. Gli3 exists as a full-length “activator”
(Gli3A) that is proteolytically processed into a smaller form
with repressor activity (Gli3R) in the absence of Shh ligand
[9]. Binding of Shh to its receptor Patchedl (Ptchl) leads to
the derepression of Smoothened and blocks processing of the
Gli3 transcription factor.

While mutations in Glil or Gli2 alone have no affect on
digit patterning, loss of one or both alleles of Gli3 in GlizX
mice is sufficient to produce ectopic digits [10,11]. The severe
polydactyly in Gli3¥"7 homozygous mutants is associated with
ectopic expression of Shh and its target genes [12]; however,
the loss of Shh in Shhf/f;Glij’X[’] double mutants results in
identical digit patterning defects as seen in Gli3*7 mutants
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Synopsis

Cilia are small projections extending from the surface of most cells.
Research has shown that they are important in diseases such as
cystic kidney diseases as well as during the development of many
tissues including the limb. More recently, proteins such as Polaris,
which is required to build cilia, have been demonstrated to be
essential for the regulation of Sonic hedgehog (Shh) signaling,
although the mechanism has remained elusive. Precise regulation of
Shh signal transduction is important for the proper development of
many tissues. Excessive activation of the Shh pathway results in
severe developmental defects and has been implicated in certain
types of cancer. In the limb, Shh signaling is involved in digit
development, and excess signaling leads to the formation of extra
digits. The main targets of Shh signaling are the Glioma (Gli) family
of transcription factors, and Gli3 has been shown to be processed to
a shortened repressor form when Shh signaling is repressed. The
localization of the Gli transcription factors and Suppressor of fused, a
protein involved in the regulation of Gli protein function, to cilia
suggests that the cilia may be an important site for regulation of Shh
signal transduction by modulating Gli protein function.

alone, leading to the hypothesis that a pentadactyl restraint is
imposed on the limb by Shh counteraction of Gli3 repressor
activity [13,14].

Another important component of the Shh signaling path-
way involved in Gli protein regulation is Suppressor of fused
(Sufu). Sufu is a negative regulator of Shh signaling that
interacts with all three Gli proteins and mediates their
nuclear export in the absence of Shh [15-17]. In Drosophila,
Su(fu) is thought to link Ci (Gli homolog) to the ubiquitin
proteasome required for conversion of Ci to the small
repressor form, as well as retain unprocessed Ci in the
cytoplasm in the absence of ligand; however, this has not yet
been demonstrated for the mammalian pathway [8].

Previously, we demonstrated that partial disruption of IFT
function in Tg737""* mutants results duplication of digit I,
while complete loss of IFT in Tg73742- 38
the formation of up to ten unpatterned digits per limb [6].
Despite the formation of excess digits and a known involve-
ment of Shh in ectopic digit formation in many mouse

mutants leads to

models [7], Shh expression is not altered in either Tg737'”pk or
Tg73’7A273ﬁ’g"‘1 mutants [6]. In addition, no alterations in Ptchl
expression in Tg7)"7"'7’k hypomorphic mutants is observed.
Recent evidence from the labs of Anderson and Niswander
has shown that IFT proteins, including 7g737/Polaris, are
essential for Shh signaling in both neural tube and limb
patterning at the level of Gli3 processing, although the
connection between IFT and this signaling pathway remains
enigmatic [18-20]. Previous models have speculated that
there is a cytosolic role for the IFT proteins or that the cilia
generate a signal affecting the activity of the Gli transcription
factors. However, in this report we provide evidence
supporting the hypothesis that there is a direct role for cilia
in Shh signal transduction. Despite normal Shh expression in
homozygous Tg737A27?’B’g“1 mutant limbs [6], expression of the
Shh downstream targets such as Pichl and Glil is lost.
Furthermore, cells isolated from mutant limb buds are
unable to respond to ShhN conditioned medium (ShhN-
CM) in vitro. Even though mutant cells are unable to respond
to ShhN-CM, the pathway can be activated by exogenously
expressed Glil; however, Gli2 and full-length Gli3 were found
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to be inactive in the absence of Polaris. Although full-length
Gli3 was nonfunctional in 7Tg73727°F8 mutant cells,
expression of a processed form of Gli3 (Gli3R) acts as a
potent repressor of Glil-mediated induction of Ptchl
expression. Additionally, the amount of full-length Gli3 was
markedly increased in Tg737*27*F5% mutant embryos relative
to wild-type controls, suggesting that loss of Polaris results in
inefficient Gli3 processing. Most importantly, the data
indicate that all three full-length Gli proteins along with
Sufu colocalize to the distal tips of cilia in primary limb bud
cells. Together our data support a direct role for cilia in the
mammalian hedgehog signaling pathway and raise the
intriguing possibility that the tip of the cilium is a specialized
domain in which proteolytic machinery is concentrated for
processing and regulating the activity of Shh signal trans-
duction.

Results

Cilia Are Present on Both Ectoderm and Mesenchyme
Cells of the Limb Bud

To determine whether cilia are present on the developing
mouse limb bud, we conducted electron microscopic analysis
of embryonic day 11.5 (E11.5) limb buds. Using transmission
electron microscopy, cilia were found on the mesenchyme.
These cilia have a 9 + 0 microtubule structure, were
frequently found in depressions in the cell membrane, and
were always closely associated with the Golgi apparatus
(Figure 1A-1C). In addition, small vesicular structures were
frequently detected near the base of the cilium. Using
scanning electron microscopy, we also determined that most,
if not all, ectodermal cells exhibit a single cilium (Figure 1D
and 1E).

To further confirm the presence of cilia in the limb bud, we
conducted immunofluorescence analysis of frozen sections
using anti-acetylated a-tubulin, which recognizes stabilized
microtubules including the cilium axoneme, and anti-Polaris
antiserum. The data indicate that Polaris concentrates at the
base and distal tip of cilia on both ectodermal and
mesenchymal cells as well as in a punctuate pattern over-
lapping that of acetylated a-tubulin in the axoneme (Figure
1F-1H). In primary cultures of limb bud cells, cilia were
found on most cells when visualized with anti-acetylated o-
tubulin and anti-Polaris antibodies (Figure 1H). In contrast,
the cilia were completely absent from cells isolated from
Tg737A2_3B'g"] mutants (Figure 1I). Domains of stabilized
microtubules were still present around the microtubule
organizing center (MTOC) from which the cilia would have
emerged.

The Hedgehog Signaling Pathway Is Repressed in
Tg7372273F9 Mutants

In agreement with previous data in the limb and neural
tube [18-20], there was no significant expression of two
downstream targets of Shh signaling, Ptchl and Glil, in
Tg737*%7*F# hull mutant limb buds (Figure 2A and 2B).
These data suggest that despite normal Shh expression in
these mutants, Shh release or reception is impaired because
of the loss of Polaris. These results confirm our assessment
that the IFT mutant limb phenotype is not due to ectopic
activation of the Shh pathway and that the phenotype in
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Figure 1. Cilia Are Present on Both Mesenchymal and Ectodermal Cells of
the Developing Limb

(A-C) Transmission electron micrographs of limb bud mesenchyme show
cilia (arrows) closely associated with the Golgi apparatus (“G”). The cilia
exhibited a 9+ 0 structure (C) and are often found in deep depressions in
the membranes (B). Frequently, small vesicles are observed fusing or
budding with the surrounding membrane (arrowheads in [B] and [C]).
(D and E) Scanning electron micrographs of the limb ectoderm show a
single cilium (arrows) on nearly all ectodermal cells.

(F and G) Immunolocalization of Polaris (red) and acetylated a-tubulin
(green) in frozen sections of limb buds shows that Polaris concentrates at
the base and tip of the axoneme in both mesenchymal (F) and
ectodermal (G) cells. Nuclei are blue.

(H and ) In primary cultures of cells isolated from E11.5 limb buds, cilia (arrow in
H) are also present when visualized with anti-acetylated a-tubulin (green) and
anti-Polaris (red) antisera (H). Cilia are absent on cells isolated from Tg737A2’3[5*3aI
mutant limb buds (I); however, the stabilized microtubules were still evident
around the basal body region (arrow). The nuclear staining for Polaris is present
in the Tg7374273%93 cells, indicating that it is nonspecific. Nuclei are blue.
DOI: 10.1371/journal.pgen.0010053.g001

Tg73’7A2_3ﬁ">"‘1 mutants resembles that of Gli3 7 ;Shh™”~ em-
bryos [13,14].

Cells Lacking Polaris Are Unable to Respond to ShhN

To test whether Polaris is required for Shh reception, we
isolated cells from Tg737*%7*F#% mutant and wild-type limb
buds (E11.5) and cultured the cells in ShhN-CM. The ability of
the cells to respond to ShhN was determined by induction of

Ptchl and Glil expression using semi-quantitative reverse
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Figure 2. Shh Signaling Is Defective in Tg737422F9 Mutants

(A and B) In situ hybridization analysis of Ptch1 (A) and GliT (B) expression
indicates that they are not expressed in the posterior limb buds of
797372273093 mutant embryos (E10.5; right panels) as they are in wild-
type controls (E10.5, left panels).

(C) Incubation of wild-type limb bud cells with ShhN-CM results in
upregulation of Gli1 and Ptch1 expression (left lanes) compared to vector
conditioned medium, whereas no increase is seen in cells isolated from
Tg737*273F 98 mutant limb buds (right lanes). The relative levels of
induction standardized to actin are indicated below each lane.

DOI: 10.1371/journal.pgen.0010053.9g002

transcription PCR (RT-PCR). While robust response to ShhN-
CM was seen in wild-type cells, cells lacking 7g737 showed no
increase in the expression of Pichl or Glil relative to control
treated cells (Figure 2C). These data indicate that Polaris is
required in Shh responding cells to activate the Shh signaling
pathway in the presence of ligand.

Loss of Polaris Results in Altered Gli Activity and
Processing

Genetic studies have indicated that IFT function is
required for Shh signaling downstream of Ptchl, possibly at
the level of Gli function [18-20]. To further explore the
connection between Gli activity and Polaris, we used
adenoviruses [21] to express the full-length Gli proteins in
Tg737 null cells. Previous results have shown that ectopic
expression of Glil and Gli2 can induce transcription of Shh
target genes while Gli3 has been shown to inhibit Glil-
mediated transcription [8,21,22]. As seen in wild-type cells,
infection of Tg737°**F%* primary limb cells with full-length
Glil resulted in increased transcription of Pichl compared to
infection with green fluorescent protein (GFP)-only virus
(Figure 3A). This indicates that Polaris function is not
required for Glil-mediated pathway activation. However,
infection of Tg7)"7A2_3ﬁ'g'“ll primary limb bud cells with Gli2-
expressing virus failed to induce Ptchl transcription (Figure
3B) suggesting that Gli2 function requires the activity of
Polaris. It is unclear at this time whether the loss of Gli2
function in Tg7)"7A273ﬁ'g4"‘l mutants is due to a requirement of
Polaris for Gli2 stability or other post-translational regu-
lation. As seen in previous studies, infection of cells with the
full-length form of Gli3 was able to repress Glil-mediated
transcription when coexpressed in wild-type cells [22].
However, in cells lacking Polaris, full-length Gli3 failed to
repress pathway activation by Glil, as evidenced by increased
Ptchl expression (Figure 3A).

Gli3 Processing Is Inhibited by Loss of Polaris
The above data raised the possibility that loss of Polaris
impaired the conversion of the full-length Gli3 to the
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Figure 3. Gli2 and Full-Length Gli3 Function Is Disrupted in Tg737*2-3#92 Mutant Cells

(A) Infection of primary limb bud cells (E11.5) with Gli1:GFP expressing adenovirus induces increased Ptch1 transcription in wild-type cells when
compared to infection with GFP-only virus (GFP). Coinfection of wild-type cells with Gli1:GFP and Gli3:GFP results in a decrease in the level of Ptch1
expression when compared to cells infected with Gli1:GFP only. As seen in wild-type cells, infection of Tg73742>F92 mutants with Gli1:GFP induced
Ptch1 expression. However, full-length Gli3:GFP was unable to suppress Gli1:GFP-mediated induction of Ptch1 in the absence of Polaris (Tg73722-3f-92)
No expression was seen in controls without reverse transcriptase (—RT).

(B) Infection of wild-type cells with a Gli2::GFP expressing adenovirus induced Ptch1 expression; however, in Tg737A2’3[5'gal primary limb bud cells,
infection with the Gli2::GFP expressing adenovirus failed to induce the pathway, when compared to infection with GFP-only virus (GFP, right lanes).
(C) Western blot analysis of proteins isolated from whole E11.5 wild-type embryos (left lane) shows that Gli3 is predominantly found in the processed
repressor form (Gli3R). While some Gli3R is evident in the mutant samples, a large proportion of Gli3 remains unprocessed (Gli3A) in Tg737423F92l
mutants (right lane).

(D) Coinfection of wild-type or Tg7372273#92 mytant cells with Gli1:GFP and a truncated Gli3R:GFP indicates that Gli3R is able to repress Gli1-mediated

induction of Ptchl.

Numbers below each lane in (A), (B), and (D) indicate the expression level of Ptch1 relative to the actin control for the experiment shown.

DOI: 10.1371/journal.pgen.0010053.g003

truncated repressor form. To determine if this was the case,
we examined the levels of full-length and processed forms of
Gli$ in wild-type and Tg737% %54 \whole embryos (E11.5) by
Western blot analysis using Gli3 antiserum (gift of B. Wang).
In agreement with previously published results [19,20], there
was a marked increase in the ratio of the full-length Gli3 to
the processed form of Gli3R in Tg737 mutants (Figure 3C),
although some Gli3R is clearly evident. Together, these data
suggest that Polaris is required for efficient processing of
Gli3.

To determine if the loss of Gli3-mediated repression in
Tg7)"7A2_3'3'g'('1 mutants was due to defects in processing of
full-length Gli3 to the repressor form, we infected primary
cells with a truncated form of Gli3 (Gli3R) and analyzed the
effect on Glil-mediated transcription. In both wild-type and
Tg737°% %P8 mutant cells, the processed form of Gli3R was
able to function as a potent repressor of Glil-induced
transcription of Ptchl (Figure 3D). These results indicate that
the loss of Gli3 activity observed with the full-length form is
due to a defect in processing and not a loss of repressor
activity or trafficking to the nucleus.

Partial Loss of Polaris Function Exacerbates the Phenotype
of Gli3 Heterozygous Mutants

We predicated that if Polaris is required for proper Gli3
processing, partial loss of Polaris function as seen with the
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Tg737""”k hypomorphic allele would exacerbate the pheno-
type of Gli3 heterozygous mice and cause a phenotype that is
more reminiscent of Gli3 null mutants. To evaluate this
possibility, we crossed Tg75’7‘"7’kpr heterozygous mice with
GU3X T, Tg737"™* compound heterozygotes and correlated
the resulting phenotypes with the genotypes of the embryos.
Heterozygous Gli3™" mice are viable and exhibit a single
additional preaxial digit similar to that seen in homozygous
Tg7370’"/’k/‘”1'k mutants [6,12,23]. In contrast, homozygous
Gli3*XJ mutants are nonviable and have 8-10 nonpat-
terned digits per limb, as is also seen in Tg7j"7A2_3ﬁ'">"11 null
mutants [12]. Intriguingly, no viable GLi3""/"Tg737° %k
offspring were obtained (0/64 pups; seven litters). Analysis at
earlier developmental stages indicated that the GLi3™/*
;Tg7370’pk/orpk mice die during gestation with severe devel-
opmental abnormalities including 6-9 digits per limb,
exencephaly, abdominal closure defects, and edema (Figure
4A-4E; data not shown). These phenotypes are not character-
istic of Gli3¥7" heterozygous or Tg737""*""* homozygous
mice alone but are seen in Gli3*/*"7/ homozygous mutants.
While both Tg737*%F¢1 and G1i3¥7 mutant mice have
similar digit patterning phenotypes, Tg737°%7*#% mutants
do not express Ptchl or Glil in the posterior limb bud while in
Gli3* mutants the expression domains of Pichl or Glil are
expanded. To determine if the limb patterning defects in
Glij’XHH;Tg737‘""’mrpk mutants were due to a loss of Shh

October 2005 | Volume 1 | Issue 4 | e53



responsiveness, as seen in Tg7j’7A275B’gb11 mutants, or more
closely resembled the phenotype of Gli3¥'7 mutants, we
tested primary cells derived from these embryos for their
ability to induce Glil expression in response to ShhN-CM. In
contrast to Tg737°%*F 8 mutants, GlizX/"Tg737PP* cells
responded to ShhN-CM with increased expression of Glil
when analyzed by quantitative RT-PCR, although at reduced
levels compared to wild-type cells (Figure 4F). In agreement
with the quantitative RT-PCR data, Glil expression was
observed in the posterior region of all embryos by in situ
hybridization (data not shown). No overt or consistent
differences were evident in Gli3X¥* or GU3z 7" Tg737° "tk
embryos when compared to wild-type (data not shown).
Together these data indicate that the Gli3Xl’]H;Tg737"T”k/"rpk
phenotype more closely resembles that of Gli3 homozygotes
than that of Tg737 null mutants, which are nonresponsive to
ShhN-CM.

Exogenously Expressed Components of the Shh Signaling
Pathway Localize to the Cilia

While it is known that IFT is required for Shh signaling
[18,19], it remains unclear whether this is due to a require-
ment for cilia in Shh pathway activation, production of a
secondary signal by cilia, or a novel non-ciliary role for IFT.
To begin distinguishing between these possibilities, we
evaluated the subcellular localization of several key proteins
involved in the Shh signaling pathway, including Glil, Gli2,
Gli3, Gli3R, and Sufu relative to cilia and the IFT protein
Polaris.

In the case of the Glil, Gli2, Gli3, and Gli3R proteins,
localization was determined by infection of primary 7g7374%
g2l mutant and wild-type limb bud cells with adenoviral
vectors that express the full-length Gli proteins or the
truncated Gli3R fused to GFP [21]. Infections were performed
such that greater than 75% of the cells expressed GFP. For
these studies, we focused on cells that had low levels of
exogenous expression to minimize any effects that over-
expression may have on protein localization. For all three
full-length Gli proteins, expression was detected in the
nucleus in cells that expressed high levels of GFP (Figure 5;
data not shown), as reported previously [22]. However, we also
detected a small domain of GFP in all cells expressing the
tagged protein that was located near the cilium axoneme as
visualized with anti-acetylated o-tubulin antibodies (Figure
5A-5C). The GFP signals failed to colocalize with y-tubulin
(basal body marker), indicating that the Gli::GFP proteins do
not localize to the basal body at the base of the cilia (Figure
5E; data not shown). Rather, the GFP signal was found to
colocalize with a subdomain of Polaris (Figure 5F and 5G;
data not shown). The colocalization of Gli::GFP with a domain
of Polaris, but not with y-tubulin, indicates that the full-
length Gli proteins concentrate at the tip of the cilium but
not at the base. Treatment of infected cells with ShhN-CM did
not alter the distribution of Glil, Gli2, or Gli3 at the distal
tips of cilia (data not shown). However, it may be difficult to
assess any changes in localization since GFP is fused to the C-
terminus of the Gli proteins. Thus, processing that occurs in
the case of full-length Gli3 would remove the GFP tag and
prevent visualization of the truncated N-terminal form of the
protein that traffics to the nucleus.

In contrast to the localization observed for the three full-
length Gli proteins, Gli3R::GFP was detected predominantly
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Figure 4. Gli3X"™*Tg737°P*/*Pk Embryos Resemble Gz Null
Embryos and Are Responsive to ShhN-CM

(A) Example of exencephaly observed in Gli3Xt%*;Tg737°P*/°"Pk ambryos
that is never observed in Gli3X™** or Tg737°Pk°Pk mutants alone.

(B-E) Functional interaction of Gli3 and Tg737 in digit development.
Whereas Gli3X”* (C) and Tg737°7Pk/°"Pk (D) embryos each develop one
extra preaxial digit (asterisks), Gli3"/*;Tg737°Pk/°Pk embryos (E)
develop multiple ectopic digits compared to wild-type embryos (B).
Anterior is to the top.

(F) Incubation of cells from Gli3"*;Tg737 ", Gli3*"*";19737"", and
Gli3X7*;1g737 °P¥°Pk mutant mice with ShhN-CM resulted in increased
expression of Glil when compared to cells from the same embryo
treated with control medium, as determined by quantitative RT-PCR
analysis. The results are reported for four littermates of the indicated
genotypes. Each sample was analyzed in duplicate, and results are
reported as the average fold increase. Unlike Tg737A2’BB'gal (null)
mutants, which are nonresponsive to ShhN-CM, the Gli3*t*/*+;Tg737°P¥
Pk samples are able to respond and activate the pathway, indicating
that the Gli3™/+;Tg737°P*°* phenotype does not resemble that of
Tg737223F92! (null) mutants but rather that of GIi3*™ X/,

DOI: 10.1371/journal.pgen.0010053.g004

in the nucleus. We could detect no GFP signal at the distal tip
of cilia, suggesting that after processing, Gli3R is released
from the cilia or that the cilia targeting domain is located in
the C-terminus of Gli3 (Figure 5D). These possibilities are
currently being explored.

In Tg737%7%F8 mutant cells that lack cilia, the GlizGFP
fusion proteins were seen in the nucleus, as observed in wild-
type samples. Additionally, Glil::GFP, Gli2::GFP, and
Gli3::GFP were localized around the MTOC, where the cilia
would have formed (Figure 5H-5]). In contrast, Gli3R was
present mainly in the nucleus and was not detected around
the MTOC in either the wild-type or Tg737A2_3'3'gal mutant
cells (Figure 5D and bK). The nuclear localization of the
GlizGFP proteins in Tg737°%7%% mutants suggests that
Polaris is not required for nuclear import of the Gli
transcription factors.

Endogenous GIi3 and Sufu Localize to the Tip of Cilia

To confirm the localization of GFP-tagged Gli3 at the tip of
cilia, and to determine if this was the full-length Gli3 protein
or only the GFP-tagged C-terminus, we conducted immuno-
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Figure 5. GFP-Tagged Gli Proteins Localize to the Distal Tip of the Cilium in Primary Limb Cell Cultures

(A-D) Cells were isolated from limb buds of wild-type embryos at E11.5 and infected with the indicated adenovirus. All three full-length GFP-tagged Gli
proteins (green) localize to a domain in the cilium axoneme, which is visualized with anti-acetylated a-tubulin staining (red). In contrast, Gli3R::GFP is

restricted to the nucleus and is not detected in this domain (D).

(E) The full-length Gli::GFP proteins (Gli2::GFP shown here) do not colocalize with the basal body at the base of the cilium, which is visualized with anti-
v-tubulin staining (red), indicating that the full-length Gli proteins localize to the tips of the cilia.

(F and G) GIli2::GFP (F) and Gli3:GFP (G) colocalize with a subdomain of Polaris (red) at the distal tip of the cilium.

(H-K) In Tg737A2’3ﬁ'gal mutant limb bud cells, the GFP-tagged Gli1 (H), Gli2 (1), and Gli3 (J) proteins localize to the nucleus and in the region of stabilized
microtubules around the MTOC marked by anti-acetylated a-tubulin. In contrast, the processed form of Gli3 (Gli3R:GFP) (K) is detected only in the

nucleus.

Insets in all panels show the GFP (green) and nuclear (blue) staining only for the indicated cilium (arrow) or region (box).

DOI: 10.1371/journal.pgen.0010053.g005

fluorescence analysis of endogenous Gli3 in noninfected
primary limb cells using Gli3 antisera generated against the
N-terminus of the protein (Figure 6). The data indicate that,
as seen with exogenously expressed Gli3:GFP, endogenous
Gli3 was concentrated at the tip of cilia (Figure 6A; data not
shown). Since the Gli3 antiserum recognizes the N-terminus
of Gli3, and GFP is fused to the C-terminus in Gli3::GFP virus,
the data suggest that it is the full-length form of Gli3 that
localizes to the cilium tip.

Since all three Gli proteins localize to the tip of the cilium
and to the nucleus, and since Sufu has been shown to directly
interact with the Gli proteins [17], we predicted that Sufu
would also be present in these two regions of the cell. To
explore this possibility, we analyzed the localization of
endogenous Sufu by immunofluorescence in primary limb
bud cultures. The data confirm that endogenous Sufu
colocalized with endogenous Gli3 and with the Gli:GFP
fusion proteins, and partially overlapped with Polaris (Figure
6A and 6D; data not shown). It was also present adjacent to
acetylated o-tubulin in the cilium axoneme and did not
localize with y-tubulin at the basal body, again indicating that
these proteins concentrate at the tip of the cilium (Figure 6B
and 6C). A low level of Sufu was also evident in the nucleus
but was in a different plane of focus when the Sufu image for
Figure 6 was captured. In addition, Sufu was detected in the
cytosol; however, whereas the nuclear and cilium tip signals
were blocked by preincubation with the immunizing peptide,
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the cytoplasmic signal remained unchanged (Figure 6E and
6F), suggesting that it may be nonspecific.

Discussion

Cilia are expressed on many different cell types in the
mammalian body. They are formed and maintained by a
highly conserved process termed IFT, but they perform
diverse functions on various cell types [1]. In mammals, cilia
have been demonstrated to play a critical role in devel-
opmental processes—from left-right axis specification and
skeletal patterning to normal kidney, pancreas, and liver
physiology—as well as disease processes [2-4,6,24]. Recent
data have demonstrated that the IFT proteins, which are
necessary for cilia formation, are also required for proper
limb and neural tube patterning [6,18-20]. Furthermore, the
IFT proteins have been shown to function as part of the Shh
signal transduction pathway and in regulating Gli activity
[19,20]. Here we show that Gli2 and full-length Gli3 function
are disrupted in the T,¢DT737A27‘9’B'g*ll cilium mutants. In
contrast, our data indicate that Glil and a processed form
of Gli3 (Gli3R) are able to induce or repress the Shh pathway,
respectively, regardless of the presence or absence of Polaris.
Most important, all three full-length Gli::GFP proteins, as well
as endogenous Gli3 and Sufu, localize to the distal tip of cilia
in primary limb bud cell cultures, supporting a direct role for
cilia in regulating Shh signal transduction.

=orpk

Mice homozygous for the hypomorphic Tg737 allele
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Blocking peptide

Figure 6. Endogenous Sufu and Gli3 Localize to the Distal Tip of the
Cilium in Wild-Type Primary Limb Cell Cultures

Sufu (green) and endogenous Gli3 (red) concentrate in the same domain
in cultured wild-type limb bud cells (A). As shown for the full-length
Gli::GFP proteins, endogenous Sufu does not colocalize with y-tubulin
(red) (B), but is concentrated in a domain at the distal end of the
acetylated o-tubulin staining (red) (C). Sufu also partially overlaps with a
domain of Polaris (red) (D) in cultured wild-type limb bud cells. Pre-
incubation of anti-Sufu antiserum with the immunizing peptide (E), but
not with a nonspecific peptide (F), blocks staining at the distal tip of the
cilium (anti-Polaris, red; anti-Sufu, green). Inset in all panels shows Gli3
(A) or Sufu (B-F) staining only in the indicated cilium (arrow).

DOI: 10.1371/journal.pgen.0010053.9006

have preaxial polydactyly, but no alterations in expression of
Shh or its downstream targets are evident [6]. Preaxial
polydactyly is also seen in mice heterozygous for the Xi-/
allele of Gli3 [10]. Interestingly, Gliz~7""Tg737""""* mice
develop multiple ectopic digits on all four limbs and die
during gestation. This phenotype is reminiscent of both
Gli3*7 and Tg737A2’3B'gal homozygous mutants. However,

7427388l yhutants, cells from GLi3¥X Y

unlike cells from Tg73
Tg737 PPk mice are able to induce Glil transcription in
response to ShhN-CM. These data suggest that the hypomor-
phic Tg737°"* allele further disrupts Gli3 function and
converts the Gli3~X* heterozygotes to a phenotype more
similar to that seen in the Gli3 null mutants.

Previous genetic studies on IFT mutant mice have
indicated that IFT proteins function in Shh signal trans-
duction at a step downstream from the membrane proteins
Ptch and Smoothened and are required for all Gli function
[18-20]. In contrast, our data suggest Polaris is required for
specific Gli functions since Glil and truncated Gli3 (Gli3R)
are active in the absence of Polaris while Gli2 and full-length
Gli3 are not. These data suggest that the defects observed
when mutant cells are infected with full-length Gli3 are likely
due to loss of processing of Gli3 to form the repressor, but
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not loss of repressor activity. While processing of Gli2
remains controversial, Gli2 function is disrupted in
Tg737*%*F# mice, suggesting that IFT or cilia are required
for some aspect of Gli2 regulation or activity. This does not
appear to involve translocation of the Gli proteins to the
nucleus since they are all detectable in the nucleus of
'1‘g737A2’3B’g“1 mutant cells.

In Drosophila, Su(fu) is involved in the negative regulation of
Ci (Gli homolog) transcriptional activity by sequestering it in
the cytoplasm and targeting it for proteolytic processing to
produce a transcriptional repressor [8]. Whether the role of
Sufu in targeting Gli proteins for proteolytic processing is
conserved in mammals has yet to be determined. Mammalian
Sufu has been shown to interact with all three Gli proteins
through a conserved SYGH motif in the N-terminus of the Gli
proteins in addition to a region in the C-terminus of Glil,
and negatively regulates Glil transcriptional activity [16,17].
The colocalization of Sufu and the Gli proteins to the tip of
the cilium, along with a requirement for IFT in proper Gli3
processing, suggests that mammalian Sufu may have a similar
role in Gli regulation and, furthermore, that proteolytic
processing may occur at the tip of the cilium.

Huangfu et al. [18] proposed two possible models for how
IFT may regulate Shh signaling, one suggesting the involve-
ment of a cilia-derived signal that is required for Shh pathway
activation and a second model in which IFT has two separate
functions, one in ciliogenesis and a second one in intra-
cellular transport. While testing these models is hindered by
our inability to specifically disrupt cilia formation without
also perturbing IFT, the data presented here support a direct
role for cilia in Shh pathway regulation. This is based on the
localization of multiple components of the Shh pathway in
the cilia of wild-type cells, and on altered Gli3 processing and
impaired Gli2 function detected in cells lacking this
organelle. While we cannot conclusively rule out a non-
ciliary function of IFT, we propose that IFT functions to
direct and concentrate the Gli proteins, Sufu, and possibly
the proteolytic machinery needed for efficient processing of
the Gli proteins to a domain located at the distal tips of cilia.
In the absence of the cilium, the Gli proteins localize diffusely
around the basal body region and fail to undergo normal
processing, resulting in their impaired activity.

Materials and Methods

Mouse strains and methods. Tg737°% 35 1573 777% and Gliz*"7
mice have been previously described [3,4,23]. Tg75'7A27‘2'B’gul mice were
maintained on a mixed FVB X BALB/c background and genotyped as
described [3]. 'I‘g737’”/'k mice were maintained on an FVB background
and genotyped as described [8]. Gli3¥'/ mice were maintained on a
C57BL/6 background and were genotyped as described [3,25].
Analysis of phenotypes for Gli}x'fl;Tg737'"' "t mice was performed on
pups or embryos from F; intercrosses. For staged embryos, noon of
the day of the vaginal plug appeared was considered E0.5.

In situ hybridization analysis was performed according to standard
protocols [26]. Ptchl and Glil probes were previously described
[27,28].

Skeletal stains were performed as described [29].

Cell culture. ShhN-CM and vector-only control conditioned
medium were generated as previously described [30]. For induction
assays, cells were cultured in a 1:1 mixture of conditioned medium
and DMEM + 15% FBS overnight prior to RNA isolation. )

Embryos were isolated and identified by phenotype (’I:LJ'T75'7A275B’g"l
mutants) or by PCR using DNA isolated from yolk sacs. Limb buds for
cell culture experiments were removed and treated with 0.25%
trypsin in PBS for 15 min at room temperature. Following trypsin
treatment, cells were mechanically dissociated and FBS was added to
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10%. Cells were collected by centrifugation and plated with DMEM +
15% FBS.

Glil::GFP, Gli2:GFP, and Gli3::GFP adenovirus constructs encod-
ing C-terminal GFP fusions have been previously described [21]. The
Gli3R:GFP adenovirus was generated by replacing the full-length
cDNA in the Gli3::GFP vector with the coding region corresponding
to amino acids 1-677. This truncated form of Gli3 (Gli3R) has been
previously shown to act as a constitutive repressor of Shh signaling
[31]. All infections were optimized to produce greater than 75%
infection and were done at least three times. To determine if
expression levels were consistent between samples, we examined the
level of expression of the GlizGFP genes by RT-PCR using primers
specific for the GFP coding region. Similar levels of expression were
seen in wild-type and mutant samples under the same infection
conditions. All localization data shown are representative of the
pattern observed in the majority of the cells from all experiments. An
identical pattern of localization was observed in the IMCD mouse
kidney cell line. No specific localization of GFP was found for cells
infected with GFP control virus only.

RNA isolation and RT-PCR. RNA was isolated using TRIzol
(Invitrogen, Carlsbad, California, United States) according to the
manufacturer’s instructions. Reverse transcription was performed
using SuperScript II reverse transcriptase (Invitrogen) according to
the manufacturer’s instructions. Equal amounts of cDNA were used as
templates for PCR with Taq Polymerase (Brinkman Instruments,
Westbury, New York, United States) according to the manufacturer’s
instructions. Relative expression levels were calculated by comparing
the intensity of the Ptchl or Glil PCR product to the actin PCR
product in the same reaction using LabWorks 4.0 software (UVP,
Upland, California, United States). Primer sequences are available
upon request.

Quantitative RT-PCR measurement was performed using the
SmartCycler machine (Cepheid, Sunnyvale, California, United States).
The TaqgMan primer and probe sets, for Glil and 185 rRNA (TagMan
Assays-on-Demand Products), were purchased from Applied Bio-
systems (Foster City, California, United States). The 185 rRNA gene
was used as an internal control. The threshold cycle (Cy) for Glil was
first normalized to the corresponding 18S rRNA Cy. Relative fold
differences were then determined using the 948D method [32] by
comparing the expression levels in ShhN-CM-induced cells to their
vector conditioned medium controls. No significant difference in
basal Glil expression in vector conditioned medium-treated cells was
evident between wild-type and GL3~ T samples.

Immunofluorescence. For analysis of cilia in vivo, limb buds were
dissected from wild-type embryos (E10.5), embedded in OCT, and
snap frozen. Sections of 20 um were cut and stained as previously
described [33] using 0.2% Triton X-100 for permeabilization.
Cultured primary cells were fixed, permeabilized, and stained using
an identical procedure. Anti-Polaris polyclonal antibody was gen-
erated by Sigma-Genosys (The Woodlands, Texas, United States) and
screened for specificity by Western blot analysis and immunofluor-
escence. The antiserum recognized a single band of the correct size in
wild-type samples by Western blot analysis; this band was absent in
Tg7374%-38-8al samples. Only faint nuclear staining was observed in
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