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Across different cell types and within single cells, mitochondria are heterogeneous in
form and function. In skeletal muscle cells, morphologically and functionally distinct
subpopulations of mitochondria have been identified, but the mechanisms by which the
subcellular specialization of mitochondria contributes to energy homeostasis in working
muscles remains unclear. Here, we discuss the current data regarding mitochondrial
heterogeneity in skeletal muscle cells and highlight potential new lines of inquiry that
have emerged due to advancements in cellular imaging technologies.
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INTRODUCTION

Skeletal muscle cells function to convert biological fuels to mechanical force and are therefore
critical to many physiological functions, including movement and metabolism. During sustained
muscle contractions, the process of cellular energy transduction is largely mediated by the energy-
converting function of the mitochondria and the force-generating capacity of the myofibrils.
Specifically, mitochondria convert biological fuels to the high energy molecule adenosine
triphosphate (ATP) through oxidative phosphorylation, and ATP is used by the myofibrillar
ATPase to generate force during contraction. Although the vast majority of muscle cell volume
is dedicated to the myofibrillar matrix (Willingham et al., 2020), mammalian skeletal muscles
can be 2–10% mitochondria by volume (Bleck et al., 2018), and muscle cells with higher
mitochondrial content have greater energy-converting capacity (Holloszy, 1967; Schwerzmann
et al., 1989; Ørtenblad et al., 2018). Like most cell types, not all mitochondria within the
muscle cell are the same, and mitochondrial form and function can vary widely within a single
muscle cell (Johnson et al., 2007; Lewis et al., 2016; Valm et al., 2017; Benador et al., 2018).
For the past half-century, experimental studies have consistently demonstrated that muscle cells
contain structurally and functionally distinct subpopulations of mitochondria based on their
proximity to the myofibrils, nuclei, capillaries, and cell membrane (Palmer et al., 1977, 1985;
Cogswell et al., 1993; Takahashi and Hood, 1996; Rothstein et al., 2005; Glancy et al., 2014, 2015,
2018; Figure 1). However, the defining characteristics (e.g., molecular markers) of mitochondrial
subpopulations in skeletal muscle cells remain elusive, and the mechanisms by which the
subcellular specialization of mitochondria contributes to energy homeostasis in working muscles
remains unclear. Here, we review current data regarding mitochondrial heterogeneity in skeletal
muscle cells and discuss potential implications for the subcellular specialization of mitochondrial
form and function. Particularly, we focus on how the development of subcellular imaging
technologies expands our capacity to simultaneously evaluate muscle structure and function and
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FIGURE 1 | Specialization of Mitochondrial Morphology in Skeletal Muscle. (A) Cross-section diagram of muscle cell showing the morphologically distinct
peripherally-located mitochondria (PM) and intermyofibrillar mitochondria (IFM) subpopulations. Inserts provide examples of 3D morphology of PM and IFM.
Mitochondria (green) and Myofibrils (gray). (B) Longitudinal view of muscle cell showing the subcellular location of PM and IFM relative to the sarcolemma (blue),
capillary (red), Myonuclei (cyan), and myofibrils (gray).

highlight potential new lines of inquiry regarding the subcellular
specialization of mitochondria.

SUBCELLULAR SPECIALIZATION OF
MITOCHONDRIAL STRUCTURE

Within the interior region of the muscle cell, the delicate
interaction between the mitochondria and myofibrils supports
precise coordination among the metabolic and mechanical
arms of the muscle cellular energy distribution system. The
intrafibrillar mitochondria (IFMs) form complex, elongated
shapes (Hoppeler et al., 1973a; Picard et al., 2013a,b, 2015;
Glancy et al., 2015; Bleck et al., 2018) with branches that extend
between the crevices of the myofibrillar matrix and wrap around
the I-band of the sarcomere (Hoppeler et al., 1973a; Picard
et al., 2013a,b, 2015; Glancy et al., 2015; Bleck et al., 2018;

Vincent et al., 2019; Figure 1). In human muscles, mitochondria
entrenched within the intermyofibrillar spaces are nearly double
the aspect ratio compared to mitochondria located in the
periphery, resulting in morphologies with a high surface area to
volume ratio (Picard et al., 2013b; Vincent et al., 2019). This high
surface area to volume ratio facilitates the rapid diffusion of high-
energy ATP molecules from the mitochondria to the myofibrillar
ATPase within this region of the cell (Figure 2). During muscle
contraction, the metabolic function of the mitochondria and
contractile function of myofibrils are also mediated by Ca2+

signaling from the sarcoplasmic reticulum (SR) (Figure 2), so
IFMs also utilize their available surface area to form functional
contact-sites (i.e., membranes within 30 nm) with the SR (Eisner
et al., 2013; Tubbs et al., 2018; Figure 1). Studies using high-
resolution 3D electron microscopy to evaluate connectivity in
mouse muscles across several striated muscle types have shown
that nearly all IFM (>97%) contact the SR. Moreover, this same
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FIGURE 2 | Specialization of Mitochondrial Function across Subcellular Regions. (A) Membrane potential generated in PM can be distributed throughout the IFM
network through mitochondrial connectivity. (B) IFM directly supports myofibrillar contraction by generating ATP. Coordination between myofibrillar contraction and
IFM energy conversion are mediated by Ca2+ release from the sarcoplasmic reticulum (SR). Mitochondria (green), SR (magenta), t-tubule (blue), and myofibril (gray).
(C) Mitochondrial membrane potential distributed throughout the mitochondrial network of living skeletal muscle cell.

work also found that ∼20% of the IFM within oxidative muscle
cells directly contact lipid droplets while no lipid droplets were
found in glycolytic muscle cells (Bleck et al., 2018). Although
these data indicate that mitochondria-lipid interactions may
contribute to unique mitochondrial function across different
cell types, information regarding differences in mitochondria-
organelle interactivity between mitochondrial subgroups remains
limited. Studies evaluating the spatial distribution of lipids in
human muscle cells have shown that lipid droplets preferentially
localize to the interfibrillar region of the cell (Nielsen et al.,
2010), but it is still unclear how the subcellular distribution of
mitochondria-lipid droplet interactions might contribute to the
regional specialization of mitochondrial function.

Mitochondria also directly interact with other mitochondria,
and studies have shown that IFM connect together to form
networks that function to distribute energy throughout the
entire cell (Bakeeva et al., 1978; Luo et al., 2013; Picard et al.,
2013a,b, 2015; Eisner et al., 2014; Glancy et al., 2015, 2018;
Bleck et al., 2018; Vincent et al., 2019; Figure 2). Mitochondria-
mitochondria contact sites appear as electron-dense junctions
(Glancy et al., 2015; Picard et al., 2015), and high-resolution
electron microscopy images of these contact sites have shown

that portions of the adjacent outer membranes of these connected
mitochondria are in direct contact (<1 nm separation) (Bakeeva
et al., 1978; Picard et al., 2013a,b, 2015; Glancy et al., 2015, 2018;
Bleck et al., 2018; Vincent et al., 2019) and often exhibit trans-
mitochondrial alignment of cristae (Picard et al., 2015). Thus,
structural capabilities exist within muscle cells for effective energy
distribution, challenging the long-held theory that facilitated
diffusion is the primary means of distributing intracellular
energy within muscles (Wittenberg, 1970; Bessman and Geiger,
1981). Indeed, the phosphocreatine (PCr) shuttle system may
also function to facilitate the subcellular distribution of high
energy phosphates within muscle cells (Bessman and Geiger,
1981), though mice lacking creatine and creatine kinase do
not exhibit robust changes in muscle function (van Deursen
et al., 1993; Lygate et al., 2013). Alternatively, live cell imaging
studies have demonstrated that electrically coupled mitochondria
can transmit membrane potential greater than 10 µm across
the intermyofibrillar space (Bleck et al., 2018), providing an
additional mechanism for the rapid distribution of potential
energy throughout the subcellular environment. Moreover, when
comparing the 3D configuration of mitochondrial networks in
different striated muscle cell types, mitochondrial connectivity
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and overall network configuration are cell-type specific, such that
glycolytic, oxidative, and cardiac muscles have perpendicular,
grid-like, and parallel orientations, respectively (Bleck et al.,
2018; Willingham et al., 2019). These findings suggest that the
degree of connectivity and spatial distribution within the IFM
network are optimized to meet specific regional demands within
different muscle types.

Early imaging studies in muscle cell biology used 2D electron
microscopy (Romanul, 1964, 1965; Bubenzer, 1966; Gauthier
and Padykula, 1966) to reveal a second, morphologically-
distinct, subgroup of peripherally-located mitochondria (PM).
In the peripheral regions of the muscle cell, pools of globular
mitochondria were found clustered together in the intracellular
space between the sarcolemma and myofibrils (Romanul,
1964, 1965; Bubenzer, 1966; Gauthier and Padykula, 1966;
Hoppeler et al., 1973a; Figure 1). Not long after these
initial observations, studies by Bubenzer (1966), and later
Bakeeva et al. (1978), demonstrated that PM extend into
the intermyofibrillar space and form direct connections with
the IFM. These authors proposed that mitochondria connect
across all subcellular regions to work together as an “effective
mechanism of energy transport” (Bakeeva et al., 1978). Under
this model, the morphologically distinct PM subgroups are
functionally specialized to support the intermyofibrillar regions
of the mitochondrial networks (Figure 2). When comparing
the morphology of individual mitochondria within the IFM
and PM subgroups, PM are larger and less branched than
IFM (Bakeeva et al., 1978; Picard et al., 2013a,b, 2015;
Glancy et al., 2015, 2018; Bleck et al., 2018; Vincent et al.,
2019), dedicating more of their volume to cristae and matrix,
providing greater structural capacity for energy conversion.
Studies in creatine kinase (CK) knockout mice have reported
that PM subgroups increase in response to inhibiting the
PCr shuttle system suggesting that increasing PM volume
may compensate for the loss of the diffusion-mediated energy
distribution (Novotova et al., 2006) though these data may
simply reflect a fiber type shift toward a more oxidative
phenotype. High-resolution imaging of human and mouse
muscles have also shown that PM form frequent connections
with other mitochondria, but few studies have directly quantified
mitochondrial-organelle interactions of PM in skeletal muscle
cells (Picard et al., 2013a,b; Bleck et al., 2018). Thus, it is
currently unclear how differences in organelle interactivity
may contribute to structural mechanisms of mitochondrial
specialization.

The functional specificity of PM may also be related to
their subcellular location. Historically, PM have been classified
as subsarcolemmal mitochondria (SSM) (Muller, 1976; Palmer
et al., 1977, 1985; Elander et al., 1985; Cogswell et al., 1993;
Manneschi and Federico, 1995; Takahashi and Hood, 1996), but
much of the subsarcolemmal space within a muscle cell is densely
packed with myofibrils rather than mitochondria (Figure 1).
More recent studies (Rothstein et al., 2005; Glancy et al.,
2014, 2015, 2018) have demonstrated that peripherally-located
subgroups are essentially “paravascular” mitochondria (PVM)
or “paranuclear” mitochondria (PNM) that specifically localize
to the intracellular space surrounding embedded capillaries

and nuclei (Rothstein et al., 2005; Glancy et al., 2014, 2015;
Figure 1). These high-resolution 3D imaging studies revealed
that capillaries favorably embed into oxidative muscle cells and
that 50% of capillaries located near oxidative muscle cells had
a large proportion of their circumference (≥50%) embedded
into the sarcolemma of muscle cell (Glancy et al., 2014).
Thus, PVM subgroups were found predominantly within the
more metabolically active muscle cells (oxidative fiber types)
and may indeed provide additional metabolic support to the
high energy demands generated within the intermyofibrillar
regions of these cells (Figure 2). Moreover, clusters of PNM
(Rothstein et al., 2005; Glancy et al., 2014) were also found in the
intracellular space flanking nuclei, suggesting that PM subgroups
may indiscriminately fill in any myofibrillar void caused by the
presence of embedded capillaries and nuclei (Glancy et al., 2014).
Therefore, the available research suggests that mitochondria
subpopulations that have been historically associated with the
sarcolemma are actually localized to other cellular structures
that displace myofibrils at the periphery of the cell. However,
limited studies exist that explicitly delineate the morphological
or biochemical differences in mitochondria associated with either
capillaries or nuclei, and future work is needed to establish the
functional implications of peripheral mitochondrial distribution
in muscle cells.

SUBCELLULAR SPECIALIZATION OF
MITOCHONDRIAL FUNCTION

While the primary function of the IFM is somewhat intuitive
when considering their intricate spatial relationships with the
energy-hungry myofibrils, it is unclear why evolution would favor
the separate subgroups of morphologically distinct mitochondria
found in clusters near the cell boundary. As noted above, greater
mitochondrial volume observed near the cell boundary supports
greater energy conversion than the smaller mitochondria
residing within the intermyofibrillar spaces, and therefore, some
investigators have postulated that PM function to directly
support the IFM by generating and distributing energy. As
early as the 1960s, Romanul and colleagues found mitochondrial
oxidative enzyme activity to be higher in mitochondria located
adjacent to capillaries compared to mitochondria within the
interior regions of the muscle cell (Romanul, 1964, 1965).
Undoubtedly, oxygen is a primary substrate for mitochondrial
respiration, and it may be beneficial for mitochondria to
crowd the intracellular space near the capillary oxygen supply.
However, previous experiments have been limited in their
ability to evaluate oxygen kinetics and/or mitochondrial function
with subcellular resolution, and therefore, the relationship
between PVM function and their proximity to the capillary
remains unclear.

To explore the subcellular specialization of mitochondrial
function within skeletal muscle cells, investigators have
established techniques that aim to specifically isolate
intermyofibrillar mitochondria from the total mitochondria
pool within muscles. These techniques typically incorporate
a tiered purification method that separates mitochondria
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according to their degree of interactivity with contractile
proteins. Mitochondria isolated from homogenized muscle
tissues before protease treatment are considered to have less
interaction with contractile proteins and are therefore classified
as SSM, whereas mitochondria isolated after digestion are
classified as IFM. Although this approach has been implemented
in many studies and models (Palmer et al., 1977; Krieger et al.,
1980; Cogswell et al., 1993), experiments directly comparing
the protein composition and function between subgroups of
isolated mitochondria have produced conflicting results (Krieger
et al., 1980; Elander et al., 1985; Cogswell et al., 1993; Manneschi
and Federico, 1995; Takahashi and Hood, 1996; Jimenez et al.,
2002; Adhihetty et al., 2005; Mollica et al., 2006). In several early
experiments using protease to separately isolate the IFM and
SSM subgroups in rodent skeletal muscle, it was determined that
IFM have higher mitochondrial respiration enzyme activities
and greater capacity to metabolize oxygen compared to SSM
(Krieger et al., 1980; Cogswell et al., 1993; Adhihetty et al., 2005).
Furthermore, subsequent work found that IFM import fuels,
such as malate, at a 3–4-fold greater rate than SSM (Takahashi
and Hood, 1996). While these initial observations indicate
that mitochondrial metabolic capacity may be impacted by
subcellular localization, experiments using isolated IFM and SSM
from human muscle biopsies found oxygen consumption rates
similar between the groups (Elander et al., 1985; Fischer et al.,
1985). Indeed, some aspects of mitochondrial specialization may
be influenced by species-specific changes in cellular ultrastructure
and physiological demand. For example although PM and IFM
subpopulations are consistently observed in humans, mice, and
shrews, mitochondria within the shrew oxidative muscle fibers
are primarily aligned along the transverse axis of the cell (Chung
et al., 2021) whereas oxidative mouse and human muscles display
more grid-like mitochondrial networks (Bleck et al., 2018;
Caffrey et al., 2019). However, inconsistencies surrounding the
function of mitochondrial subpopulations may be more closely
related to experimental procedures. Specifically, the procedures
used to isolate mitochondria disrupt critical functional aspects
of mitochondrial structure, such as mitochondria-mitochondria
contact sites. Furthermore, work from Hoppel and others
has revealed key limitations to mitochondrial subpopulation
isolation techniques (Kras et al., 2016; Lai et al., 2019) and
demonstrated that previous preparations of SSM may have
been contaminated with membranous proteins that would have
resulted in lower measures of mitochondrial energy conversion.
Using a revised protocol, the same group demonstrated
that the rates of energy conversion and enzymatic activities
are consistent between the IFM and SSM subpopulations,
except for SSM having a 10% lower oxygen consumption rate
when stimulated with saturating ADP concentrations. This
reduction in oxygen consumption capacity in the SSM was also
associated with lower cytochrome C content, but it is unclear
if the difference in the cytochrome profile between these two
mitochondria subpopulations is related to the metabolic or
apoptotic functions. Indeed, cytochrome C is associated with
mitochondrial apoptotic pathways, and earlier studies have
suggested that IFM may be more sensitive to apoptotic stimuli

while PM may be more inclined to produce ROS or proton leak
(Adhihetty et al., 2005).

Despite these methodological concerns surrounding isolated
preparations of mitochondrial subgroups, experiments in isolated
mitochondria have produced interesting results when evaluating
the apoptotic and ROS-generating capacity of mitochondria.
For example, Hood and collaborators demonstrated that IFM
isolated from the quadriceps muscles of mice are more sensitive
to the apoptotic stimulus hydrogen peroxide compared to
SSM (Adhihetty et al., 2005). Although IFM released 10-fold
the amount of apoptosis-inducing factor upon exposure to
hydrogen peroxide, the same work also demonstrated that SSM
produced nearly a threefold greater rate of ROS production
compared to the IFM (Adhihetty et al., 2005). Moreover,
studies looking at proton leak rate and protein expression
have found that IFM may express less uncoupling proteins
(UCP3) (Jimenez et al., 2002) and be more efficient (less
proton leak) than SSM (Iossa et al., 2001; Mollica et al., 2006).
These findings suggest that mitochondrial subpopulations differ
remarkably in their capacity to handle oxidative stress and
may provide insight regarding the distribution of signaling
responsibilities within the mitochondrial reticulum. Specifically,
the increased capacity of SSM to generate ROS while also
being less prone to ROS-induced apoptosis may indicate that
the mitochondria residing within these subgroups are uniquely
designed to produce ROS as part of a more integrated
cell signaling mechanism rather than isolated local apoptotic
pathways. Undoubtedly, mitochondria in PM subgroups are
in close proximity to embedded capillaries and peripherally-
located myonuclei, and therefore, the reported differences in
ROS production and thermodynamic driving forces between
mitochondrial subgroups may be associated with proximity
to a cellular oxygen supply and/or mitochondria-nuclear
signaling (Dominy and Puigserver, 2013; Soledad et al., 2019).

More recent imaging studies have brought some clarity
to the diversification of mitochondrial function within living
cells by using 3D and 4D imaging strategies to directly
evaluate mitochondrial respiratory enzymes, mitochondrial
redox, and even the rate of mitochondrial energy conversion
within an intact network (Schroeder et al., 2010; Glancy
et al., 2015; Willingham et al., 2019). Certainly, spatially
resolved measurements within intact cells provide far more
specificity regarding the subcellular distribution of mitochondrial
heterogeneity compared to studies in isolated mitochondria. For
example, imaging studies measuring the spatial distribution of
mitochondrial enzymes have found that the membrane potential-
generating element (complex IV) and the complex responsible
for ATP production (complex V) preferentially localize to
mitochondria within the peripheral and intermyofibrillar spaces
of the muscle cell, respectively. Specifically, the peripheral
localization of Complex IV suggests that PM subgroups
may support the IFM by generating proton-motive force
and distributing it through the IFM network where it is
used to synthesize ATP (Figure 2). Moreover, we recently
established a metabolic imaging approach to quantitatively
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assess mitochondrial function and measure redox kinetics
with subcellular resolution (Willingham et al., 2019). The
application of this technique in living tissues has provided
the first spatially-resolved measure of the rate of in vivo
mitochondrial energy conversion. Although this work found
the energy conversion rate to be consistent across PVM and
IFM subpopulations, we found the PVM to be more oxidized
than the IFM (Schroeder et al., 2010; Willingham et al.,
2019). In keeping with data from isolated mitochondria, these
imaging studies demonstrate the functional specialization and
differential distribution of thermodynamics across subfractions
of the intact mitochondrial reticulum in skeletal muscle cells, but
further work is warranted to determine whether subpopulations
of muscle mitochondria play distinct roles in other key
functions such as Ca2+ signaling, apoptosis, fuel importation,
and biosynthesis.

MORPHOLOGICAL AND FUNCTIONAL
PLASTICITY IN MITOCHONDRIAL
SUBPOPULATIONS

Subpopulations of mitochondria may also be differentially
influenced by exercise training and pathologies. For example,
over 40 years ago, a series of imaging studies provided evidence
that SSM are more responsive to changes in energetic demand
than IFM (Hoppeler et al., 1973a; Muller, 1976) by showing
that the relative exercise-induced increases in mitochondrial
volume were more significant in the SSM compared to the
IFM. In human volunteers, Hoppeler et al. (1973b) found PM
to be 3.2-fold higher in exercise-trained muscles compared
to untrained while IFM was only increased by 30% with
training. These findings have been supported by subsequent
experiments in isolated mitochondria that demonstrated SSM
experience greater increases metabolic capacity with exercise
training compared to IFM. For example, Koves et al. (2005)
demonstrated that 10 weeks of exercise training increases
fatty acid oxidation ∼100% in SSM but only 50% in IFM,
indicating that subpopulations of mitochondria differentially
adapt to sustain energy homeostasis in the face of metabolic
challenge. Although few studies have compared the function of
mitochondrial subgroups in models of skeletal muscle pathology,
some experiments in isolated mitochondria have also found
that SSM may be more susceptible to dysfunction in the
presence of metabolic pathology or inactivation (Kras et al.,
2018, 2019). While it is difficult to interpret these findings
considering the limitations of isolation techniques, these results
are consistent with imaging studies demonstrating that PM
subgroups are more affected by pathologies associated with
obesity and insulin resistance (Ritov et al., 2005; Nielsen
et al., 2010; Chomentowski et al., 2011; Lai et al., 2017).
Furthermore, obesity and diabetes are also associated with
increased accumulation of lipids within the subsarcolemmal
space (Nielsen et al., 2010), but it is unclear how changes
in muscle lipid content may influence mitochondria-lipid
interactivity, and function, of peripherally-located mitochondria.

Changes in muscle metabolic capacity may also be regulated
by changes in PM and IFM mitochondrial network structures.
While the mechanisms that regulate mitochondrial network
configuration in skeletal muscle remain unclear, the overall
dynamics of mitochondrial morphology are regulated in part
by the balance of fusion/fission events and the cytoskeletal
framework (Glancy et al., 2020; Glancy and Balaban, 2021),
and pathologies and changes in metabolic demand that
influence these key regulators may alter muscle metabolism
through changes in mitochondrial network ultrastructure (Shah
et al., 2019; Liu et al., 2020). Future studies are needed to
establish the link between the subcellular specialization of
mitochondria and the functional plasticity of skeletal muscle
cells and determine how pathology influences the mitochondria-
organelle interactome.

NEW FRONTIERS IN MUSCLE
MITOCHONDRIAL BIOLOGY

Recent advancements in nanoscale imaging technologies
have greatly expanded our capacity to investigate subcellular
structure, and applications of contemporary techniques
have shed new light on mitochondrial biology. Work from
Lippincott-Schwartz (Valm et al., 2017), Nunnari (Lewis
et al., 2016), and others have used high-resolution live-cell
imaging to demonstrate that cellular functions are modulated
by a complex network of functional mitochondrial-organelle
interactions. In brief, mitochondria form contact sites with the
ER, lipid-droplets, vesicles, and the sarcolemma that facilitates
a broad range of cellular functions, including metabolism,
biosynthesis, apoptosis, and fusion/fission. Although most
of the new information regarding functional relationships
among subcellular structures has been derived from cell culture
models, some studies have found mitochondria-organelle
interactions to be associated with functional specialization
of mitochondria in the cells of salivary (Porat-Shliom et al.,
2019) glands, pancreatic tissues (Johnson et al., 2003),
and cardiomyocytes (Lu et al., 2019). While this work
suggests that mitochondrial-organelle interactions play key
roles in physiological function, further work is needed to
characterize the subcellular distribution of mitochondria-
organelle interactions in striated muscle cells and determine
if differences in organelle interactivity contribute to the
specialization of function between the IFM and PM subgroups.
Additionally, the in vivo functions of many mitochondria-
organelle contact sites have not been determined in striated
muscle cells, and it is unclear whether or not the molecular
architecture of mitochondria-organelle contact sites within
skeletal muscle cells is consistent with those observed in cell
cultures and other tissues. Future experiments may address
these questions by using high-resolution and live-cell imaging
strategies to map organelle connectivity across large subcellular
volumes and comparing the functional capabilities between
subpopulations of mitochondria under different experimental
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conditions. As discussed, recent advancements in high-resolution
3D imaging and automated image analysis have greatly
expanded our capacity to measure the subcellular distribution
of mitochondrial morphology and mitochondria-organelle
interactivity, but contemporary nanoscale imaging strategies,
such as EM, are still limited in their ability to provide molecular
and functional information. Therefore, answering the many
questions that remain surrounding the subcellular specialization
of mitochondrial form and function in skeletal muscle cells will
require innovative imaging strategies that evaluate mitochondrial
function, composition, and structure at the subcellular level with
molecular specificity.
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