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Abstract

Essential proteins are those that are indispensable to cellular survival and development. Existing methods for essential
protein identification generally rely on knock-out experiments and/or the relative density of their interactions (edges) with
other proteins in a Protein-Protein Interaction (PPI) network. Here, we present a computational method, called EW, to first
rank protein-protein interactions in terms of their Edge Weights, and then identify sub-PPI-networks consisting of only the
highly-ranked edges and predict their proteins as essential proteins. We have applied this method to publicly-available PPI
data on Saccharomyces cerevisiae (Yeast) and Escherichia coli (E. coli) for essential protein identification, and demonstrated
that EW achieves better performance than the state-of-the-art methods in terms of the precision-recall and Jackknife
measures. The highly-ranked protein-protein interactions by our prediction tend to be biologically significant in both the
Yeast and E. coli PPI networks. Further analyses on systematically perturbed Yeast and E. coli PPI networks through randomly
deleting edges demonstrate that the proposed method is robust and the top-ranked edges tend to be more associated
with known essential proteins than the lowly-ranked edges.
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Introduction

Essential proteins are indispensable for the survival of an

organism under certain conditions [1]. Reliable identification of

essential proteins can contribute to the understanding of the key

biological processes of an organism at a systems level, with

significant implications to drug design, disease diagnosis and

medical treatments. Experimentally, identifications of essential

proteins are typically performed through gene knock-outs [1,2] or

RNA interference [3], coupled with examination of the viability of

the affected organisms. Over the years, numerous proteins have

been identified to be essential in a variety of organisms. Such data

become particularly useful when used in conjunction with large-

scale protein-protein interaction (PPI) data collected using high-

throughput techniques such as the yeast-hybrid technique [4]. As

of now, a number of PPI networks have been constructed for

Saccharomyces cerevisiae (Yeast) [4], Escherichia coli (E. coli) and

Caenorhabditis elegans (C. elegans) [5], which have been

organized into several PPI databases in the public domain, such

as DIP [6], BioGRID [7], STRING [8] and MIPS [9].

A few studies have been published since 2000, aiming to

establish relationships between experimentally-identified essential

proteins and PPI networks. For example, Jeong et al. noted that

the centrality of a protein in a PPI network, a property based on

the network topology, is strongly related to the essentiality of the

protein [10]. Similarly it has been demonstrated that proteins, that

are interaction hubs in a PPI network tend to be essential as studies

have shown that the deletion of a hub protein tends to be more

lethal than deleting a non-hub protein in Yeast, E. coli and C.
elegans [11–13]. Based on this observation, known as centrality-
lethality rule [10,14], numerous centrality-based measures for

essential protein detection have been developed, such as the

degree centrality [10], betweenness centrality [15], closeness

centrality [16], subgraph centrality [17], eigenvector centrality

[18], information centrality [19], network bottleneck [20,21], and

density of maximum neighbourhood component [22]. Basically

these methods identify essential proteins by ranking them in terms

of their centrality measures in a PPI network. In addition, a few

edge-aided methods for analysing PPI networks PPI network have

also been developed. For example, Radicchi et al. proposed the

edge-clustering coefficient [23] for identifying essential proteins,

considering both edge and node information. The edge clustering
coefficient centrality (NC) is another edge-aided method [24],

which employs the edge clustering coefficient concept to identify

essential proteins in a PPI network. More recently, a number of

studies have been published, which combine PPI networks with

other biological information to further improve the prediction

performance, mainly to overcome issues associated with both

missing and false interactions in the existing PPI data. The group

that developed the NC method recently proposed a strategy for
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constructing a weighted PPI network by considering gene-

annotation information, which has enhanced the performance

by edge-aided methods [25]. Further improvements were achieved

through integration of gene-expression data (PeC) [26] and

phylogenetic profile information (ION) [27] by the same group.

Although the edge information plays an important role in the

identification process, the above-mentioned methods fundamen-

tally rank proteins according to the centrality measure in a PPI

network.

In a different perspective, interactions among essential proteins

have been taken into consideration and some researchers began to

critically consider the traditional explanation of the observed

centrality-lethality relationship to propose different points of view.

In 2005, Pereira-Leal et al. [28] pointed out that essential proteins

tend to be more frequently connected with other essential proteins

rather than to non-essential proteins in Yeast PPI networks. After

removing all the non-essential proteins from a PPI network, they

observed that approximately 97% of the essential proteins are still

connected to each other, suggesting a tight relationship among

essential proteins. In 2006, He et al. [14] reconsidered the reason

why highly connected nodes tend to be essential, and proposed the

concept of essential protein-protein interactions. They argued that

the essentiality of proteins derives from the essentiality of protein-

protein interactions. This new viewpoint about essentiality raises

an issue about how to verify the essentiality of interactions. Some

edge-aided methods that combine PPI networks with other

biological information suggested that edges between two proteins

are related to the essentiality of proteins [24–27]. A number of

computational approaches have been developed to score the

relatedness of proteins connected by edges in a PPI network. Some

of these measures are based on associations between two proteins

obtained by Gene Ontology [25], gene co-expression [26],

number of triangles an edge belongs (NTE) [24] and pairwise

sequence similarities [28,29].

In this paper, we present a novel strategy for essential protein

identification based on edge weights (EW) for ranking protein-

protein interactions within a PPI network. EW scores the

importance of an edge in the network by combining several

widely used PPI topological information and biological measures.

Then it ranks the edges according to their weights and predicts

essential proteins based on identification of sub-networks consist-

ing of only highly ranked edges. Our application of EW on Yeast
and E. coli PPI data for essential protein prediction demonstrated

that it achieves better performance than the state-of-the-art

methods. Our predicted essential protein-protein interactions tend

to be more biologically significant in both the Yeast and E. coli PPI

networks. Its performance on systematically perturbed Yeast and

E. coli PPI networks through randomly deleting edges demon-

strates that the proposed method is robust and the top-ranked

edges tend to be more associated with known essential proteins

than low ranked edges.

Material and Methods

Data Source
1. Protein-Protein Interaction Network and Essential

Proteins List. PPI data of Yeast were downloaded from the

DIP [6] database (release of Oct. 18th, 2012). The dataset consists

of 22,061 distinct interactions among 4,979 proteins. The list of

essential genes of Yeast is collected from the OGEE [30] database,

which groups all genes into three categories: essential, non-

essential and conditional when the essentiality status of the gene

varies in different environments. In our analysis, we consider

conditional genes as essential because interaction-based methods

identify essential genes in different special conditions represented

by PPIs and find out also conditionally essential genes. Overall, the

Yeast network consists of 1,209 essential proteins, 3,322 nones-

sential ones, and 448 unknown proteins that are in DIP but not in

OGEE.

Similarly, we downloaded PPI data of E. coli from DIP [6] and

the essential genes from OGEE [30]. Over 1,000 protein-protein

interactions are either single-pair interactions or part of small and

unconnected networks with fewer than five nodes. We removed

them from our analyses. At the end, the cleaned-up E. coli PPI

network consists of 2,528 proteins and 11,496 interactions. Out of

these proteins, 444 are essential, 1,403 are nonessential, and 671

unknown ones.

2. Gene Expression Data. Gene-expression dataset

GSE3431 of Yeast [31] was downloaded from GEO [32], which

was collected during three successive metabolic cycles, with 12

time points in each cycle, ,25 minutes apart. The dataset contains

36 samples with 6,777 genes of which 4,858 are involved in the

aforementioned Yeast PPI network.

E. coli gene expression data GSE6425 [33] was also download-

ed from GEO, which has expression data of two E. coli strains,

MG1655 and UTI89, harvested at multiple time points during

aerobic or anaerobic growth in Luria-Bertani medium. We used

the MG1655 data which contains 22 samples with 4,345 genes.

The detailed information of these data is given in File S1

through File S4.

Ranking Edges of PPI Networks to get Essential Protein
List

The whole workflow of EW method is easy to implement as

shown in Figure1. We firstly calculate the weights of each edge by

multiple several measures of protein pairs, and then sorted the

weights to get the essential protein candidates list.

1. Edge Weight Computation. We use the following four

commonly used measures for evaluating the relationship between

two proteins, whose nodes are connected by an edge in a PPI

network: GO functional similarity (GE) [34], co-expression levels

among genes (PCC) [26], the number of times that a PPI pair

involved in PPI triangles (NTE) [24], and the protein-protein

sequence similarity measured using the Jukes-Cantor likelihood

(PP) [35] (see File S7). The edge weight EW (u,v)
pro between proteins

u and v is computed as

EW (u,v)
pro KNTE ,KPCC ,KGE ,Kpp

� �
~

NTE(u,v)KNTE � PCC(u,v)KPCC � GE(u,v)KGE � PP(u,v)KPP :::::::::
ð1Þ

where KNTE ,KPCC ,KGE ,Kpp are scaling parameters set to 0 or 1,

representing whether the corresponding measure is used in the

EW (u,v)
pro calculation or not. Here we simply use multiplication

process to combine these measures, because the value ranges of

these measures are different, even the same measures between

different species. In fact, the addition or normalization processes

may influence the final edge order, and therefore the final list of

essential proteins. On the other hand, the multiplication process

may keep the original feature values and is more generalization

across different species. Furthermore, in the pre-test, we have

compared the read out of addition and multiplication, finding that

the latter is the easiest and best approach to get good performance.

In a preliminary analysis on Yeast for the effectiveness of the

parameters of formula (1) (Figure S1 and S2), PP had virtually no

effect on the accuracy identification of essential proteins, and was

therefore removed from our consideration. This consideration

Essential Protein Identification by Edge-Weights
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gives rise to the following edge weight EW (u,v) revised formula (2)

(see Figure 1A).

EW (u,v)~NTE(u,v) � PCC(u,v) � GE(u,v) ð2Þ

2. Essential Protein List based on Edge Weights. After

calculating each edge weight in a PPI network, we sort the edges in

descending order of their weights (see Figure 1B). Let

Edgelist~½e1,e2:::ei:::em� be the sorted list, where ei is the i-th

edge in the list with EW (e1)§EW (e2)§:::§EW (ei):::
§EW (em). For each edge, we create a list containing two

proteins connected by the edge. And we generate a list of ranked

proteins Proteinlist~½p1,p2,:::pj ,:::pk,:::pn�, in such a way that

protein pj precedes protein pk in the list if and only if ea is the first

edge where pj appears and eb is the first edge where pk appears

and EW (ea)§EW (eb). By choosing a different k value, we can

get the top k essential protein candidates. For example in

Figure 1B, Edgelist = [e1,e2,e3,e4…] was obtained after sorting

their edge weights in descending order. We extract edges one by

one from the Edgelist according to the order, and in each extract

process, we put the two nodes belongs to the edge into candidate

proteins set sequentially if they don’t appear in this set before. e1
was the first chosen edge, and then its two nodes p1 and p2 was set

into candidate proteins set. When e3 was chosen, we found p1 and

p3 had appeared in candidate protein set, so in this extraction

process, there was not new protein comer. In a similar way, we

added all the edges’ nodes into protein set without duplicate.

Performance Evaluation
It has been established that NC, PeC and ION methods

perform better than the previously published centrality-based

measures [24,26,27]. Therefore, in our performance assessment

we compare EW against these methods. To evaluate the overall

performance, we use the precision-recall, and Jackknife curves as

presented in [36], which measure the number of true positives

among the top ranked list. In addition, we assesse EW’s

performance on perturbed PPI networks to assess the robustness

of each method, and analysed pathway enrichment by DAVID to

examine the biological functions of the obtained protein modules

[37].

1. Precision-Recall Curve. A Precision–Recall (PR) curve is

obtained by plotting:

Precision(n)~TP(n)=(TP(n)zFP(n)):

Re call(n)~TP(n)=P:

where TP(n) is the number of true positives among the top n
ranked proteins, and FP(n) is the number of non-essential proteins

incorrectly predicted as essential among the top n ranked proteins,

and P is the total number of essential proteins under consider-

ation.

2. Jackknife Curve. We use the Jackknife curve [36] to assess

the generality of our trained predictor. A Jackknife curve

represents the number of samples that are correctly predicted

among a top ranked prediction list, denoted as Jackknife(n) for

the number of true positives among the top n predictions. In a 2D

representation, the x-axis denotes the number of proteins sorted in

a descending order while the y-axis represents the number of

essential proteins correctly predicted among the top n predictions,

with n being a number along the x-axis. When doing performance

comparison, the EW’s Jackknife curve plots the number of

Figure 1. The whole workflow of EW method. (A) Edge Weight Computation; (B) Essential Protein Identification based on Edge Weights.
doi:10.1371/journal.pone.0108716.g001
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essential proteins, namely TP(n) (y-axis) against the length of the

lists, namely n (x-axis).

3. Pathway Enrichment Analysis. We have carried out a

pathway enrichment analysis among the top ranked predictions,

using DAVID along with statistical significant p-values calculated

using a modified Fisher’s exact test [37,38]. To correct the

enrichment p-values and to control the family-wide false discovery

rate (FDR), a Benjamini Hochberg (BH) testing correction is used

by DAVID.

4. Robustness Test. To assess the robustness of the EW

method, we have perturbed the original PPI data by deleting X

edges, for X = 100, 500 and 1,000, from the top, the bottom and

randomly in the ranked EW edge list, respectively. We then

applied EW, PeC and NC on these perturbed networks and

observed the changes in identification read out.

Results

EW Performance on Yeast and E. coli
1. Comparison on Yeast PPI data. We compared EW with

NC and PeC in terms of number of essential proteins among their

top-ranked proteins (Figure 2A), and found that EW performs

substantially better than the other two programs on the Yeast
dataset described in the Methods section. Specifically, among the

top 100, 200 and 600 ranked predictions, EW correctly predicts

83, 158 and 374 essential proteins and in comparison, NC

correctly predicts 55, 125 and 327 proteins, and PeC correctly

predicts 83, 146 and 348 verified essential proteins, respectively.

For this prediction, we used the default parameters of each

programs.

We also compared the three programs measured using the

precision-recall and Jackknife curves, and found that EW

consistently outperforms PeC and NC, as shown in Figure 2C

and Figure S3A.

Some proteins are predicted to be essential by the DIP database

but are unknown proteins in the OGEE database. We noted that

at least two of such unknown proteins are among our top

predictions, SMX2 and TRA1. SMX2 ranks as the top 186th

prediction by EW, and was reported as an essential protein by

Guri et al. [1]. TRA1 is ranked number 300 among EW’s

prediction, and was found to be essential by Saleh et al. [39].

2. Comparison on E. coli PPI data. EW shows substantially

better performance than NC and PeC on the E. coli PPI data (see

Methods section). Among the top 100, 200, 400 and 600

predictions, EW correctly predicts 57, 109, 172 and 221 verified

essential proteins. In comparison, NC correctly predicts 35, 62,

113 and 160, and PeC correctly predicts 46, 76, 129 and 177. The

detailed data for this comparison is given in Figure 2B. Similar

results are observed in terms of precision-recall and Jackknife

curve as illustrated in Figure 2D and Figure S3B.

Similar to what observed in Yeast, we found a number of E. coli
proteins not included in OGEE, which were reported to be

essential proteins in the literature and are predicted by our

program. For example, FUSA, which is ranked as the 3rd protein

by EW, was reported to be an essential protein according to the

DEG database (DEG10040515) and in Baba, et al. [40].

Finally, we compared the predictions of EW against ION. The

NC’s performance curves on the tested dataset are almost the

same of those shown in Figure 2C, 2D and in the ION paper [27].

Figure 2. EW performance compare with NC and PeC methods. (A)(B): Comparison among the numbers of essential proteins identified by
EW, NC and PeC on Yeast and E.coli, respectively, when selecting 50, 100, 200, 300, 400, 500 and 600 top ranked proteins; (C)(D): PR curves of EW, NC
and PeC on Yeast and E.coli.
doi:10.1371/journal.pone.0108716.g002

Essential Protein Identification by Edge-Weights

PLOS ONE | www.plosone.org 4 September 2014 | Volume 9 | Issue 9 | e108716



Though the shape of the PR curve is slightly better than NC on

Yeast, ION’s performance has low precision at low recall values on

the E. coli dataset, while different from the performance on Yeast.
In comparison, EW and PeC display high precisions at low recall

values, similarly to the performance on Yeast shown in Figure 2C,

and EW has even better performance than PeC. The high-level of

performance on the two very different datasets indicates that EW

is generally stable.

Importance of Top Edges Found by EW and Its
Robustness

In order to study the importance of the edges found with EW

and the robustness of the method, we run EW on a series of

perturbed PPIs as shown in Figure 3.

Perturbations on the Yeast PPI was obtained by deleting 100

edges in 10 steps from the top edges in the ranked edge list of EW

(see Figure 3A1). We observed that the edge removal through each

step substantially degrades the prediction results in all the

methods. We further noted that deleting 5% from the top of all

ranked edges, the essential-protein prediction can significantly

change.

In comparison, when deleting edges from the PPI chosen the

bottom of the ranked edge list, e.g. by deleting 1000 edges each

step, each deletion step did not change our essential protein

prediction. The same happened when deleting 10,000, almost half

of the edges of the whole PPI network. These results indicate that

the edge ranking list by EW indeed capture the key information

associated with essential proteins.

Similar results were achieved on the E. coli PPI as shown in

Figure 3B1–3B3.

When applying the above analyses to the PeC and NC methods,

we found that the top proteins identified by EW are also more

important than the bottom proteins of the ranked edge list, which

may influence PeC and NC performance more (Figure S4 and S5).

Case studies on selected clusters with high-ranking
genes in PPI Networks

It is difficult to give a fixed cut-off value for the final candidate

list. The final number of top proteins selected for further analysis

depends on related available information and on the overall

capabilities that a lab can deploy for a particular research purpose.

We examined the sub-networks consisting of only high-ranking

edges in a PPI network, each of which is termed as a network

module. We use Cytoscape (version 2.8.0) [41] to show the

identified modules in Figure 4, and list of proteins of modules in

Figure 4 are shown in File S6.

We carried out pathway enrichment analyses of each network

module consisting of only the top 100 edges of the E. coli PPI

network; and of only the top 200 edges of the Yeast PPI network

which found by EW (File S5 for the top protein lists on E. coli and

Yeast, respectively). We found that genes belonging to network

modules with at least ten proteins are generally involved in the

same pathways or protein complexes, such as the identified

Figure 3. PR curves of EW methods on the perturbed Yeast and E.coli PPI networks for essential protein identification. The PPI
networks are perturbed from the top, the bottom and randomly by deleting X edges in 10 steps in the ranked EW edge list. (A1, B1) From the top for
X = 100 on Yeast and E. coli; (A2, B2) Form the bottom for X = 1000 and 500 on Yeast and E. coli, respectively; (A3, B3) For X = 1000 and 500 randomly
on Yeast and E. coli, respectively.
doi:10.1371/journal.pone.0108716.g003

Essential Protein Identification by Edge-Weights
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modules A1 and A2 of E. coli and module B1 of Yeast have high

Benjamini scores for the pathway-enrichment at 1.9E–47, 4.4E–10

and 5.3E–21, respectively (Table 1).

1. E. coli modules. For the identified E. coli modules,

module A1 consists of genes that encodes for ribosome related

proteins and module A2 consists of proteins associated to ribosome

biogenesis. All these proteins are related to post-transcriptional

modification of RNA, in particular RNA methylation. Out of the

55 ribosomal genes in module A1, two major hubs appear

connecting ribosomal proteins. The first hub is organized around

RPL4 (rplD in Figure 5A1) which is a translational repressor and

known to regulate the expression of the S10 operon by

transcription attenuation[42]. The second hub is centered around

RPL23 (rplW in Figure 5A1). As far as we know, this protein is not

known to play specific roles in controlling the expression of other

ribosomal proteins so it could be an interesting candidate for

further investigation. Note that the transcripts of rpoS in A1 are

targets of the cold shock protein C (CspC) which plays a role in the

mRNA stability [43], and connects modules A1 and A2.

Module A2 consists mainly of non-essential proteins with a

central hub in deadD. The protein has been demonstrated to

restore the presence of both RPS1 and RPSS2 in ribosomes of the

rpsB(ts) strain grown in non-permissive temperature, indicating its

involvement in ribosome biogenesis [44]. Beside this protein, most

of the interactions in Figure 5A2 involve enzymes relevant to

RNA processing, which is increasingly recognized as potential sites

of post-transcriptional regulation [45–48].

2. Yeast modules. Module B1(Figure 5B1) of Yeast consists

of proteasome proteins and 13 out of 19 proteins of module

B2(Figure 5B2) are involved in ribosome biogenesis [49–53].

Among the essential protein interactions in module B1 are those

involving ATPases Rpt1-Rpt6 [54] and the non-ATPase protea-

some subunits, Rpn1-3, Rpn5-13 and Rpn15 [55]. The central

role of ribosome biogenesis and ribosome regulation found in E.
coli is also found in the Yeast data. The B2 module not only

represents the essential interactions involved in rRNA pre-

processing but also covers connections with the cytoskeleton

organization (such as actin depolarization, sda1 and microtubule

association, YTM1), the translation initiation (tif6) and the

proteolytic surveillance (CIC1). In addition, a number of nodes

such as tif6 [56], NOP2P [57], NSA2 [58], and RPF2, which is a

central node in module B2, are known to be essential players for

processing of 27SB pre-rRNA.

Figure 4. Sub-networks in (A) E.coli and (B) Yeast PPI network formed by top edges. The red nodes are essential proteins and the green
ones are non-essential proteins.
doi:10.1371/journal.pone.0108716.g004

Table 1. Modular examples pathway enrichment analysis by DAVID.

Organism Modular example GO term Count (%) p-value Benjamini

Yeast B1 Proteasome 13 (87%) 5.3E–21 5.3E–21

B2 – – – –

E.coli A1 Ribosome 27 (50%) 1.5E–49 1.9E–47

A2 RNA degradation 7 (13%) 4.5E–11 4.4E–10

doi:10.1371/journal.pone.0108716.t001

Essential Protein Identification by Edge-Weights
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Conclusions

Unlike the centrality-based measures and edge-aided methods

for essential protein identification, we proposed a method EW to

rank protein-protein interactions in a PPI network through

comparison of their edge weights, and identify essential proteins

as connected sub-networks by top ranked edges. EW achieves

better performance in terms of precision-recall and Jackknife

measures than the state-of-the-art methods when applied to

detection of essential proteins in both Yeast and E. coli. The

analysis on perturbed PPI networks shows that our program also

has higher prediction stability than the compared programs. We

expect that the EW program will serve as a useful tool for

identification of essential proteins in PPI networks of any

organisms.

Supporting Information

Figure S1 PR curves of different combination of mea-
sures in EW on Yeast PPI networks. 15 PR curves with

different combination of KNTE ,KPCC ,KGE ,KPP of EW (u,v)
pro in

formula (1) are illustrated. It can be seen that the results using the

combination KNTE~1,KPCC~1,KGE~1,KPP~0, which is the

top red line above all the others, has the best performance, which

leads to EW (u,v)~NTE(u,v) � PCC(u,v) � GE(u,v) as the for-

mula (2) for the EW method.

(TIF)

Figure S2 PR curves of different measures combination
in EW without PP vs. with PP on Yeast PPI networks. And

PP vs. average performance by 10 times randomly sorted all edges

on Yeast PPI networks. From the PR curves in (A)–(G), we can see

that PP has virtually no effect on to the combination identification,

except when combined with GE. In (H), the performance with PP

alone is very similar to the PR curve performance of randomly

sorted all edges (by 10 times average).

(TIFF)

Figure S3 Jackknife curves of EW, NC and PeC on Yeast
and E.coli PPI networks. The yellow line whose slope is equal

to the ratio between the total number of essential proteins and the

total number of all the proteins is plotted as a baseline. It

represents the expected performance of the probability for a

random selection that how many essential proteins will randomly

appear in a chosen protein list and it is used as a standard

reference for comparison.

(TIF)

Figure S4 PR curves of EW, PeC and NC methods on the
perturbed Yeast PPI networks for essential proteins
identification. The Yeast PPI networks are perturbed from the

top, the bottom and randomly by deleting X edges in 10 steps in

the ranked EW edge lists. (A1, A4, A7) are the EW, PeC and NC

performance of deleting edges from the top for X = 100; (A2, A5,

A8) are the EW, PeC and NC performance of deleting edges from

the bottom for X = 1000; (A3, A6, A9) are the EW, PeC and NC

performance of deleting edges randomly for X = 1000.

(TIF)

Figure S5 PR curves of EW, PeC and NC methods on the
perturbed E.coli PPI networks for essential proteins
identification. The E. coli PPI networks are perturbed from the

top, the bottom and randomly by deleting X edges in 10 steps in

the ranked EW edge lists. (B1, B4, B7) are the EW, PeC and NC

performance of deleting edges from the top for X = 100; (B2, B5,

B8) are the EW, PeC and NC performance of deleting edges from

the bottom for X = 500; (B3, B6, B9) are the EW, PeC and NC

performance of deleting edges randomly for X = 500.

(TIF)

Figure 5. Modular examples in Yeast and E.coli PPI network by top edges. The red nodes are essential proteins and the green ones are non-
essential proteins.
doi:10.1371/journal.pone.0108716.g005
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File S1 Protein Information of Yeast, include protein
uniprot ID and essential status.
(XLS)

File S2 Protein-Protein Interaction Information of
Yeast, include protein pairs’ uniprot IDs, GO semantics
similarity, gene co-expression, number of triangles an
edge belongs and pairwise sequence distance.
(XLS)

File S3 Protein Information of E. coli, include protein
uniprot ID and essential status.
(XLS)

File S4 Protein-Protein Interaction Information of E.
coli, include protein pairs’ uniprot IDs, GO semantics
similarity, gene co-expression and number of triangles
an edge belongs.
(XLS)

File S5 Top protein list in Yeast (within top 200 edges)
and E. coli (within top 100 edges).
(XLS)

File S6 Proteins list of modules A1, A2, B1 and B2 in
Figure 4.

(XLS)

File S7 Measures in Edge Weight.

(DOC)
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