
S O F TWAR E NO T E

PyUNIxMD: A Python-based excited state molecular dynamics
package

In Seong Lee | Jong-Kwon Ha | Daeho Han | Tae In Kim |

Sung Wook Moon | Seung Kyu Min

Department of Chemistry, Ulsan National

Institute of Science and Technology (UNIST),

Ulsan, South Korea

Correspondence

Seung Kyu Min, Department of Chemistry,

Ulsan National Institute of Science and

Technology (UNIST), 50 UNIST-gil, Ulju-gun,

Ulsan 44919, South Korea.

Email: skmin@unist.ac.kr

Funding information

National Research Foundation of Korea,

Ministry of Science and ICT, Grant/Award

Numbers: NRF-2019R1A2C1007744, NRF-

2019R1A4A1027934; Ulsan National Institute

of Science and Technology, Grant/Award

Number: 1.190123.01

Abstract

Theoretical/computational description of excited state molecular dynamics is nowa-

days a crucial tool for understanding light-matter interactions in many materials. Here

we present an open-source Python-based nonadiabatic molecular dynamics program

package, namely PyUNIxMD, to deal with mixed quantum-classical dynamics for cor-

related electron-nuclear propagation. The PyUNIxMD provides many interfaces for

quantum chemical calculation methods with commercial and noncommercial ab initio

and semiempirical quantum chemistry programs. In addition, the PyUNIxMD offers

many nonadiabatic molecular dynamics algorithms such as fewest-switch surface

hopping and its derivatives as well as decoherence-induced surface hopping based

on the exact factorization (DISH-XF) and coupled-trajectory mixed quantum-classical

dynamics (CTMQC) for general purposes. Detailed structures and flows of

PyUNIxMD are explained for the further implementations by developers. We per-

form a nonadiabatic molecular dynamics simulation for a molecular motor system as

a simple demonstration.

K E YWORD S

decoherence, exact factorization, mixed quantum-classical dynamics, nonadiabatic molecular
dynamics

1 | INTRODUCTION

Nonadiabatic molecular dynamics (NAMD) is a theoretical/computa-

tional tool to describe excited state phenomena such as a

photosynthesis,1–4 photovoltaics,5–8 vision process,9–14 and photo-

chemical reactions.15–19 Especially, understanding molecular mecha-

nisms in photosynthesis and photovoltaics is crucial for the

development of future technology toward sustainable energy. One of

the most popular concepts for NAMD simulation is the mixed

quantum-classical (MQC) approach which treats electronic degrees of

freedom quantum mechanically while nuclear degrees of freedom are

governed by the classical Newtonian equation of motion.20 The most

standard nonadiabatic MQC methods are ab initio multiple spawning

(AIMS),21,22 Ehrenfest dynamics,23 and Tully's fewest switches surface

hopping (FSSH).24 In particular, FSSH and Ehrenfest dynamics are by

far the most popular algorithms due to their efficiency and simplicity.

Moreover, these methods can be implemented readily into modern

quantum chemistry and physics program packages.

Due to the importance of NAMD simulations, lots of program

packages for NAMD have been developed.25–31 Furthermore, there

are many quantum mechanical (QM) programs that provide NAMD

functionalities.32–37 Among them, SHARC25 and Newton-X26 are theIn Seong Lee and Jong-Kwon Ha contributed equally to this study.

Received: 7 May 2021 Revised: 10 June 2021 Accepted: 16 June 2021

DOI: 10.1002/jcc.26711

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

J Comput Chem. 2021;42:1755–1766. wileyonlinelibrary.com/journal/jcc 1755

https://orcid.org/0000-0003-4694-5627
https://orcid.org/0000-0001-5636-3407
mailto:skmin@unist.ac.kr
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/jcc

most dominant programs based on the FSSH algorithm and its deriva-

tives. They provide multiple interfaces to QM programs and NAMD

capabilities such as spin-orbit/laser couplings, absorption/emission

spectra, and QM/MM simulations. Most of the NAMD programs are

written in legacy programming languages such as C/C++ and Fortran

due to the efficiency and the richness of scientific libraries. Nowadays,

Python becomes the most popular language due to its simplicity, and

lots of scientific libraries and environments are optimized for Python.

Furthermore, since Python is suitable for object-oriented program-

ming, modularization can be done directly.

From the perspective of chemical theory, FSSH and Ehrenfest

dynamics have an important limitation, the so-called overcoherence

problem, which is an intrinsic problem due to the independent trajec-

tory approximation.38 Ehrenfest dynamics propagates a classical

nuclear trajectory on an averaged potential energy surface while the

electronic state is evolved by electronic time-dependent Schrödinger

equation (TDSE) along the classical nuclear trajectory. The incorrect

account for the electron-nuclear correlation results in the over-

estimation of electronic coherence along the classical trajectory,39

that is, finite off-diagonal elements in electronic density matrix, and

independent nuclear trajectories do not bifurcate in phase space. On

the other hand, FSSH uses a single Born-Oppenheimer (BO) potential

energy surface in a stochastic way to reproduce the nuclear wave

packet splitting properly. However, off-diagonal elements in electronic

density matrix are finite since FSSH exploits the Ehrenfest

electronic equation of motion. Thus, the separated nuclear wave

packets are still in coherent, that is, the electronic density matrix as a

function of nuclear degrees of freedom is not captured correctly,

resulting in an overestimation of nuclear coherence.40 Thus, many

derivatives of FSSH have been developed so far to account for the

correct electron-nuclear correlation for quantum (de)coherence.41–48

Recently, based on the exact factorization framework,49,50 the

coupled-trajectory MQC (CTMQC) algorithm has been developed to

account for quantum (de)coherence.51–55 Subsequently, decoherence-

induced surface hopping based on the exact factorization (DISH-XF)48

has been developed for efficiency. Compared to Ehrenfest dynamics

and FSSH, the methods for quantum (de)coherence attempt to

describe the nuclear nonadiabatic couplings,40 that is, derivative cou-

pling among nuclear wave functions, effectively in addition to elec-

tronic nonadiabatic couplings, that is, derivative couplings among

electronic states. So far NAMD programs with DISH-XF and CTMQC

for the general purpose have not been published yet.

In this article, we introduce a new open-source program package

for NAMD simulations, namely PyUNIxMD, a Python-based universal

excited state molecular dynamics which is aiming for easy-to-use, ver-

satile MQC dynamics simulations including CTMQC and DISH-XF

algorithms with interfaces for multiple QM programs. PyUNIxMD is

mainly written in Python, with minimal interfaces to C codes via

Cython for a time-consuming electronic propagation part. Since the

codes are well-modularized as classes, it is straightforward to add

other MQC algorithms or QM interfaces.

This article is organized as follows: First, we provide brief

introductions for MQC methods implemented in PyUNIxMD.

Next, we introduce the structure of PyUNIxMD package, a role of

each class, and a workflow of an MQC simulation with

PyUNIxMD. Finally, we show an actual NAMD simulation result

with a molecular motor system as an example, and we summarize

our work.

2 | METHODOLOGY

2.1 | Available mixed quantum-classical methods

The PyUNIxMD package employs multiple MQC approaches for cor-

related electron-nuclear dynamics simulation. In addition to Born-

Oppenheimer molecular dynamics (BOMD), Ehrenfest dynamics,23

and FSSH24 with the decoherence corrections such as the instanta-

neous decoherence correction (IDC)45 and the energy-based

decoherence correction (EDC)42 are implemented in the current ver-

sion of PyUNIxMD. Especially, CTMQC51–55 and DISH-XF48 algo-

rithms are included. In this section, we briefly review MQC methods

implemented in PyUNIxMD.

2.1.1 | Ehrenfest dynamics

In the Ehrenfest dynamics, nuclei move according to the gradient

of the mean potential while electrons propagate using the TDSE

along the classical nuclear trajectory, R tð Þ¼ Rν tð Þf g where ν repre-

sents a nuclear index. The equations of motions are further simplified

by expanding the electronic wave function Φ r,t
� �

with Born-

Oppenheimer (BO) basis functions, Φk r;R tð Þ
� �

, that is, Φ r,t
� �

¼P
kck tð ÞΦk r;R tð Þ

� �
where Φk is the k th eigenfunction of the BO

Hamiltonian with the corresponding eigenvalue Ek , and r is the elec-

tronic degrees of freedom. As a result, the coupled motion of nuclei

and electrons in the Ehrenfest dynamics is described by the following

equations:

Mν
€Rν tð Þ¼�

X
k

c�k tð Þck tð ÞrνEk�
X
j,k

c�j tð Þck tð Þ Ek�Ej
� �

djk,ν ð1Þ

_ck tð Þ¼� i
ℏ
Ekck tð Þ�

X
j

X
ν

dkj,ν� _Rν tð Þcj tð Þ ð2Þ

where Mν is the mass of ν th nucleus, dkj,ν is the nonadiabatic coupling

vectors (NACVs) as dkj,ν ¼
Ð
drΦ�

krνΦj. _Rν tð Þ and €Rν tð Þ are the nuclear

velocity and acceleration for the ν th nuclei, respectively. According to

Equation (1), Ehrenfest dynamics requires NACVs intrinsically.

Thus, Ehrenfest dynamics is only available with QM methods

which can provide NACVs in PyUNIxMD. Equation (2) produces a

coherent electronic state in presence of nonzero NACVs. Thus, an

independent classical trajectory follows the mean-field potential

according to Equation (1) preserving the coherent state even after

the coupling region, which results in the overestimation of elec-

tronic coherence.

1756 LEE ET AL.

2.1.2 | Fewest switches surface hopping dynamics
and decoherence corrections

While nuclei follow the averaged potential in Ehrenfest dynamics, nuclei

in FSSH algorithm follow a single potential energy surface stochastically

to describe nuclear branching phenomena after a nonadiabatic coupling

region. While the electronic equation of motion is same as in the

Ehrenfest dynamics (Equation (2)), nuclei propagate on a single potential

energy surface of a given BO state (El), that is,

Mν
€Rν tð Þ¼�rνEl tð Þ ð3Þ

where l is a “running” state for the given trajectory. The nuclear

trajectory can choose the running state at any time depending on

hopping probabilities where the hopping probability from l to

another state k at time t with a time interval Δt is given as:

Pl!k tð Þ¼max 0,
2Re ρlk tð ÞP

ν
dlk,ν� _Rν tð Þ

� �
ρll tð Þ

Δt

8>><
>>:

9>>=
>>;, ð4Þ

with an electron density matrix element ρlk tð Þ¼ c�l tð Þck tð Þ. At every

time step, a uniform random number ξ ranging from 0 to 1 is gener-

ated. Only if ξ satisfies the condition,
Pk�1

j
Pl!j < ξ<

Pk
j
Pl!j , the hop

from l to k can occur. When a hop (l! k) occurs during a FSSH simula-

tion, we rescale the momentum or velocity of the nuclear trajectory

to compensate a sudden change of potential energy for energy con-

servation, that is,
P

ν
1
2Mν

_Rν

��� ���2þEl tð Þ¼
P

ν
1
2Mν

_R0
ν

��� ���2þEk tð Þ. Various
rescaling methods have been proposed to achieve the energy conser-

vation.56 In PyUNIxMD, three rescaling methods are implemented:

(a) momentum rescaling along the NACV as Mν
_R0
ν tð Þ¼Mν

_Rν tð Þþαdlk,ν

where α is the solution with a smaller absolute value of the equation

α2
P

ν
dlk,νj j2
Mν

þα
P

ν2
_Rν�dlk,νþ2 Ek tð Þ�El tð Þð Þ¼0, (b) an isotropic

rescaling of all atomic velocities as _R0
ν tð Þ¼ α _Rν tð Þ with

α¼
ffi
1� Ek tð Þ�El tð Þ

Ekin

q
, and (c) the combination of (a) and (b) where (a) has

priority over (b). If we cannot determine a suitable α, the hop is

rejected. In this case, the momentum can be either unchanged or reversed

to the direction specified for the rescaling option above. Although the

Equations (2) and (4) require NACVs, the calculation of the NACVs, which

is computationally expensive, can be avoided by direct numerical evalua-

tion of nonadiabatic coupling matrix elements (NACMEs),

σij ¼
P

νdij,ν� _Rν.
57–59 Therefore, in contrast to the Ehrenfest dynamics,

it is possible for FSSH to run NAMD simulations without NACVs.

However, in this case, only the option (b) is available for the rescaling

since dlk,ν 's are not calculated. In addition, due to the stochastic nature

of FSSH, multiple NAMD simulations should be performed with a suit-

able initial distribution of nuclear trajectories from Boltzmann sam-

pling and Wigner sampling to obtain statistically meaningful results.

As mentioned earlier, FSSH suffers from the well-known over-

coherence problem.38 Many decoherence correction methods have been

developed to solve the overcoherence problem. PyUNIxMD provides

IDC,45 EDC,42 and DISH-XF.48 Here we preserve DISH-XF for the latter

section, and we discuss IDC and EDC approaches first. The IDC approach

is the simplest decoherence correction scheme which resets the BO coef-

ficient to 1 for the running state and 0 for the other states whenever the

running state is changed or a hop is rejected. In the EDC method, instead

of instantaneous collapse of the electronic wavefunction to the running

state, exponential decay of the coherence is introduced via a decay-of-

mixing lifetime based on BO energies, Ek , and a pre-determined parame-

ter, C. The BO coefficients, ck tð Þ, are scaled as c0k tð Þ by:

c0k tð Þ¼

ck tð Þe�Δt=τk tð Þ if k≠ l

ck tð Þ
1�
P
j ≠ l

c0j tð Þ
�� ��2

ck tð Þj j2

2
64

3
75

1
2

if k¼ l

0
BBBB@ ð5Þ

with the running state l, and the decoherence time, τk , is given by,

τk tð Þ¼ ℏ
j Ek tð Þ�El tð Þ j 1þ C

Ekin tð Þ

 �

: ð6Þ

Here, Ekin is the nuclear kinetic energy and C is a constant parameter.

In PyUNIxMD, we choose C as 0.1 Hartree by default.42 Thus, IDC

and EDC are rather an artificial correction for decoherence.

2.1.3 | Coupled-trajectory mixed quantum-classical
dynamics

Based on the exact factorization, one can derive the coupled equa-

tions of motion for correlated electron-nuclear dynamics where the

coupling is mediated by the so-called electron-nuclear correlation

term.49,50 Systematic approximations provide a MQC approach with

coupled nuclear trajectories, namely the CTMQC method.51–55 Here

we provide working equations for CTMQC approach simply while the

detailed derivations and theoretical explanations can be found in

the original references.51–53

The coupled nuclear and electronic equations of motion are

given as

Mν
€Rν tð Þ¼�

X
k

ρkk tð ÞrνEk�
X
j,k

ρjk tð Þ Ek�Ej
� �

djk,ν

�
X
j

ρjj tð Þ
X
ν0

2
ℏMν0

Pν0 tð Þ�fj,ν0 tð Þ
 ! X

k

ρkk tð Þfk,ν tð Þ� fj,ν tð Þ
" #

,
ð7Þ

and

_ck tð Þ ¼� i
ℏ
Ekck tð Þ�

X
j

X
ν

σkj tð Þcj tð Þ

�
X
ν

Pν tð Þ
ℏMν

�
X
j

ρjj tð Þfj,ν tð Þ� fk,ν tð Þ
" #

ck tð Þ, ð8Þ

respectively, where Pν tð Þ¼�
ℏrν jχ R,t

� �
j

jχ R,t

� �
j

������
R tð Þ

is the so-called nuclear

quantum momentum with a nuclear wave function χ R,t
� �

, and fk,ν tð Þ

LEE ET AL. 1757

is a phase term from the BO coefficient. Compared to Ehrenfest

dynamics (Equations (1) and (2)), Equations (7) and (8) have additional

terms with the quantum momentum Pν. In the extreme case where

the nuclear wave function is localized in a space as a delta function,

the nuclear quantum momentum becomes zero, thus CTMQC equa-

tions collapse to the Ehrenfest dynamics. In CTMQC algorithm, we

approximate Pν from multiple trajectories by putting a multi-

dimensional Gaussian on each trajectory where the variance of each

Gaussian is determined from the variance of the atomic positions of

the overall trajectories. Thus, all nuclear trajectories are coupled to

each other to determine the quantum momentum. In addition, the

phase term fk,ν tð Þ is approximated as the time integration of BO forces

as fk,ν tð Þ¼�Ð trνEk t0ð Þdt0. As a result of the additional terms, elec-

tronic populations can change in the absence of nonadiabatic cou-

plings which can describe decoherence of the electronic state. Since

CTMQC method requires multiple trajectories running at the same

time and the evaluation of BO force for all BO states, CTMQC usually

needs a larger computational cost compared to independent trajec-

tory approaches as FSSH and Ehrenfest. Moreover, the stability of

QM calculations is of paramount importance. Therefore, CTMQC can

be more useful when QM calculations are coupled to machine learn-

ing approaches.60 The CTMQC method has successfully described the

decoherence effects on excited state molecular dynamics simulations

on various model systems and real molecules.51–55,61

2.1.4 | Decoherence-induced surface hopping
based on exact factorization

The DISH-XF method complements the weakness of CTMQC method

while maintaining its strength. The equations of motion for DISH-XF

method consist of electronic part of CTMQC (Equation 8) and nuclear

part of FSSH (Equation 3), thus DISH-XF is another derivative of

FSSH with the decoherence correction. The quantum momentum Pν

in Equation (8) is evaluated from the auxiliary trajectories. There are

several algorithms which exploit auxiliary trajectories such as aug-

mented FSSH (A-FSSH)46 and overlap-based decoherence correction

(ODC).43 The ODC method estimates the decoherence by calculating

nuclear wavefunction overlaps from auxiliary trajectories and ren-

ormalizes BO coefficients whenever the overlap becomes zero. The

A-FSSH stochastically collapses the electronic state to the running

state using decoherence rate calculated from auxiliary trajectories. In

contrast to the above methods, DISH-XF does not require discontinu-

ous renormalization of BO coefficients and the decoherence effect is

included directly in the electronic equation of motion derived from

the exact factorization formalism.

We generate auxiliary trajectories on BO states with nonzero

population except the running state. The momenta of the auxiliary tra-

jectories are calculated with uniform scaling of the real trajectory

based on the energy conservation law. Similar to CTMQC, a multi-

dimensional frozen Gaussian wave function centered at each auxiliary

trajectory is used to calculate the quantum momentum term. How-

ever, in DISH-XF, the variances of the Gaussian are fixed as an initial

parameter. A reasonable choice would be the variance of the

initial distribution. The phase term fk,ν is approximated as a time inte-

gration of the momenta change of auxiliary trajectories on the BO

state. The detailed equations and explanations can be found in the lit-

erature.48 Therefore, DISH-XF is an independent trajectory approach,

and we can preserve the efficiency of FSSH algorithm. Compared to

the conventional FSSH, DISH-XF requires a few additional memories

for decoherence quantities which can be calculated from the informa-

tion for FSSH simulations straightforwardly. Thus, the electrons and

nuclei can be propagated using DISH-XF method with almost same

cost as the FSSH method.

In contrast to the fact that the previous ad-hoc corrections rather

artificially force the wave-function to collapse into a running state,

CTMQC and DISH-XF naturally introduce the decoherence and pro-

vide the norm conservation of the electronic wave function as a result

of the electron-nuclear correlation. The DISH-XF method has been

successfully applied to the excited state molecular dynamics simula-

tions on various models and molecular systems.18,48,62–65

2.2 | PyUNIxMD package

In this section, we introduce the code structure and flow of the

PyUNIxMD package. Then, we explain main components of PyUNIxMD

package for MQC dynamics simulation. Finally, we explain post-

processing scripts for analysis of MQC simulations included in the

PyUNIxMD package. The names used in PyUNIxMD for classes,

objects, methods, files, and variables are represented in italic font. In

addition, we use the name of an object related to a class as same as the

name of the class. PyUNIxMD is distributed via GitHub repository

(https://github.com/skmin-lab/unixmd) under the MIT license.

2.2.1 | Structure and flow

The PyUNIxMD package consists of three main classes: Molecule,

QM_calculator and MQC classes. Molecule defines a target system.

QM_calculator interfaces several QM programs and methodologies to

calculate the electronic structures. MQC has information about molecu-

lar dynamics. Detailed contents about each class will be discussed in the

following sections. In addition, MM_calculator handles QM/MM calcula-

tion and Thermostat controls temperature of a target system.

Figure 1 shows the flow of the dynamics to execute PyUNIxMD

and the corresponding running script. The flow is summarized as fol-

lows: (a) Define information for a target system in the Molecule object.

(b) Define a QM_calculator object which has the level of computations

to calculate the target system. One can also define optional condition

such as thermostat. (c) Create a MQC object which includes the

dynamics information as well as the previously defined Molecule

object. (d) Execute the run method of the MQC object with the

defined QM_calculator object. As a result, the information about the

target system such as atomic positions, energies and BO populations

is updated and written in several output files during time propagation.

1758 LEE ET AL.

https://github.com/skmin-lab/unixmd

Molecule class

Molecule has basic information about the system such as geometries,

velocities, charge and the number of states. Since the Molecule object

is used for creating MQC and QM_calculator objects, the Molecule

object must be defined prior to other objects. Molecule employs an

extended XYZ format to set a geometry and a velocity. Especially,

PyUNIxMD handles state-specific information such as energy and

force with State class for each BO state, and Molecule.states object is

declared as the State class. Hence, one can easily access the state-

specific information with Molecule.states objects for specific purposes.

MQC class

The MQC class is the central class of PyUNIxMD which defines and

runs NAMD simulation. Subclasses of the MQC class determine a

MQC dynamics method as BOMD for BOMD, Eh for Ehrenfest

dynamics, SH for FSSH and its derivatives, SHXF for DISH-XF and CT

for CTMQC. As common variables, the subclasses requires a geometry

object (molecule), the number of nuclear time steps (nsteps), a time

step size (dt), and the initial electronic state (istate). Of course, each

subclass has its own input parameters. For example, one can choose

the rescaling method by defining hop_rescale variable for SH and

SHXF. For IDC and EDC decoherence corrections, one can define

dec_correction as “idc” and “edc”, respectively, in SH.

• run method

After the MQC object is created, the dynamics simulation is exe-

cuted by calling run method of the MQC object. In order to integrate

the equation of motions for the dynamics, the run method requires

electronic structure calculation of the molecule at every time step.

(A)

(B)

F IGURE 1 (A) Structure of the PyUNIxMD package and data flow in a NAMD simulation using PyUNIxMD. The Molecule object is updated by
the MQC object during the dynamics while properties are calculated by the QM_calculator (and MM_calculator, optionally). (B) An example of a
typical running script for the PyUNIxMD execution

LEE ET AL. 1759

Therefore, the run method takes a QM_calculator object that inter-

faces with the external QM program. If one wants to conduct the

dynamics with a thermostat, a Thermostat object must be additionally

provided. Detailed description about QM_calculator and Thermostat

classes will be given in the following sections.

In the MQC.run method, the following process is repeated until

the dynamics reaches the maximum time step (nsteps): (a) The molecu-

lar geometry is transferred to the QM_calculator object. (b) QM calcu-

lation is executed, and the calculated properties are stored to the

Molecule object. (c) Using the properties, the run method updates the

atomic positions and the electronic properties according to the

selected MQC algorithm. (d) If Thermostat object exists, the velocities

are adjusted according to the thermostat. (e) Finally, the run method

writes the information about the trajectory. PyUNIxMD writes the

following output files during a simulation depending on the type of

MQC algorithm: RESTART.bin, MDENERGY, BOPOP, BOCOH, NACME,

MOVIE.xyz, SHPROB, and SHSTATE contain dynamics information at

the last successful step, energies, BO populations, BO coherence,

NACMEs, the nuclear trajectory, hopping probabilities, and the run-

ning state, respectively (Figure 2).

Since QM calculations at different time steps are independent,

the phases of the wavefunctions and the NACVs are arbitrary.

PyUNIxMD aligns the phases of NACVs at every nuclear time step

after QM calculations using the dot products of normalized NACVs at

t and t�dt, that is, djk,ν tð Þ!�djk,ν tð Þ if

P
ν
djk,ν tð Þ�djk,ν t�dtð Þ���djk,ν tð Þ
������djk,ν t�dtð Þ

��� < 0.
PyUNIxMD package employs velocity-Verlet66 algorithm for the

nuclear propagation and the 4th order Runge–Kutta scheme (RK4)67

for the electronic propagation (Equations 2 and 8). Electronic state is

more sensitive to the time interval than nuclear motion, therefore, a

smaller electronic time step is usually used and propagated with linear

interpolation of properties between adjacent nuclear time steps.

PyUNIxMD uses the nuclear time step size (dt) as 0.5 fs and the num-

ber of electronic time steps for each nuclear step (nesteps) as 20 by

default, which is obtained from convergence tests with several models

and realistic molecular systems. However, simulation results may be

different from the choice of nesteps depending on the system. There-

fore, the convergence test is required for more rigorous simulations.

Especially, a system with extremely localized nonadiabatic coupling

regions requires a completely different electronic propagation scheme

such as local diabatization with exponential time propagator68 which

is under development in PyUNIxMD. Since the electronic propagation

is computationally expensive, the corresponding codes are written in

C and interfaced to the MQC class via Cython.

QM_calculator class

QM_calculator class provides interfaces to various external (or internal, for

simple model calculations) QM programs. PyUNIxMD supports complete

active space self-consistent field (CASSCF) in Columbus69 and Molpro,33

multireference configuration interaction (MRCI) in Columbus, time-

dependent density-functional theory (TDDFT) in Gaussian 0970 and Q-

Chem,32 state-interaction state-averaged spin-restricted ensemble Kohn-

Sham (SSR) in TeraChem,71 time-dependent density-functional tight-binding

(TDDFTB) and density-functional tight-binding based on SSR (DFTB/

SSR) in DFTB+.72 PyUNIxMD has two level subclasses related to

QM_calculator: A higher subclass which inherits the QM_calculator class

to determine a QM program, and a lower subclass to further choose a

specific QM method in the corresponding QM program. For example,

an interfacing class for CASSCF calculation using Molpro is CASSCF sub-

class ofMolpro subclass that inherits the QM_calculator class.

Depending on the availability of NACVs calculations, PyUNIxMD

supports Ehrenfest and CTMQC dynamics. For example, NACVs can be

calculated with CASSCF or SSR method. Thus, all MQC dynamics are pos-

sible with these methods. In contrast, the NACVs cannot be provided

from TDDFT method except Q-Chem. Instead, the numerical evaluation

of NACMEs59 is supported in PyUNIxMD so that surface hopping based

dynamics can be exploited with TDDFT of Gaussian 09 or TDDFTB of

DFTB þ. The compatibility between MQC dynamics and QM methods

in the current version of PyUNIxMD is given in Table 1.

• get_data method

In the MQC.run method, the get_data method of the

QM_calculator class carries out the QM calculation by executing

the QM program with an input based on the information of the Mole-

cule object. After QM calculation, the get_data reads the resulting out-

put data, and assigns the energies, forces and NACVs to Molecule

object for the nuclear and electronic propagations. One can easily add

new QM interfaces to PyUNIxMD by making subclasses of

QM_calculator class with proper get_data method. In addition, get_data

provides NACMEs calculations from CIS coefficients (CK
ia) and Kohn-

Sham molecular orbitals (ϕi) for TDDFTB in DFTB+ and TDDFT in

Gaussian 09 as59:

F IGURE 2 A file tree generated by PyUNIxMD. PyUNIxMD
generates directories for MD outputs, logs from QM and MM
calculations. The MD outputs vary according to the MQC method.
The blue and light green boxes represent directories and files,
respectively. The purple boxes distinguish output files that vary
according to the MQC method

1760 LEE ET AL.

σKJ ¼
X
ia

CK
ia∂tC

J
iaþ

X
iab

CK
iaC

J
ibhϕaj∂tϕbi�

X
ija

PijC
K
iaC

J
ja ϕj ∂tϕij i, ð9Þ

where i, jð Þ, a,bð Þ and K,Jð Þ are indices for occupied orbitals, virtual

orbitals, and total electronic states, respectively, and Pij is a phase

factor (1 or �1ð Þji�jj) depending on the orbital ordering convention

for slater determinants. The phase freedom of the NACMEs are

adjusted during the calculation of wavefunction overlaps between

t and t�dt. Similar to the electronic propagation, Equation (9) is writ-

ten in C interfaced via Cython due to the scaling with the orbital

size (�N3).

MM_calculator class

MM_calculator is an optional class of PyUNIxMD that interfaces to

the MM programs for QM/MM calculations. Currently only Tin-

ker73 is interfaced with PyUNIxMD. As in the QM_calculator

object, the get_data method runs the external MM calculation by

generating an input file based on Molecule object. After the MM

calculation, get_data assigns the resulting energies and forces to

Molecule object. As a summary, one can perform QM/MM-based

NAMD simulations by putting the MM_calculator object in the

MQC.run method after defining the MM_calculator object. Other

MM programs or detailed QM/MM schemes will be implemented

in the future.

Thermostat class

A temperature of the system can be controlled by a thermostat during

the dynamics. PyUNIxMD provides three types of thermostat classes;

velocity-rescaling, Berendsen,74 and Nose-Hoover chain.75 Two types

of velocity-rescaling thermostat are implemented in PyUNIxMD: A

simple rescaling at every n step to a target temperature, and

a rescaling only if a current temperature deviates from the target tem-

perature by a certain amount. Berendsen and Nose-Hoover chain

thermostats are implemented as demonstrated in the references.74,75

Since the MQC object uses Thermostat object, one must define the

Thermostat prior to the MQC object.

Auxiliary scripts

PyUNIxMD provides several scripts for analysis with the multiple out-

put files in Figure 2. One can calculate an averaged value of any

observable O tð Þh i over multiple trajectories as:

O tð Þh i¼
XNtraj

I

O Ið Þ tð Þ
Ntraj

, ð10Þ

where O Ið Þ tð Þ is an observable of the I th trajectory at time t. The script

statistical_analysis.py calculates averaged values of BO populations

(ρii tð Þh i), coherence indicators ð ρij tð Þ
�� ��2D E

Þ, and NACMEs

ð σij tð Þ
�� �� �¼ P

νdij,ν tð Þ� _Rν tð Þ
��� ���D E

Þ. For FSSH simulations, the script cal-

culates another average BO populations based on running states of

the trajectories given by:

pi tð Þ¼
Ni tð Þ
Ntraj

, ð11Þ

where Ni tð Þ is the number of trajectories with the running state i.

While a molecule undergoes a nonadiabatic process, the nuclear wave

packet may branch into different reaction pathways. The script

motion_analysis.py extracts bond lengths, bond angles, or dihedral

angles between selected atoms from the MOVIE.xyz file and store

values in separate files. The script also provides mean values of bond

lengths, bond angles, or dihedral angles over an ensemble of trajecto-

ries. One can analyze the reaction pathways by monitoring these fun-

damental geometric parameters. The example results generated by

these scripts are illustrated in the following section.

3 | EXAMPLES

As a demonstration of the NAMD simulation with the PyUNIxMD

package, we study photoisomerization dynamics of a molecular motor

in the gas phase.76 The chemical structure and numbering of the

molecular motor used in this article are given in Figure 3. The initial

conditions for photoisomerization dynamics can be obtained from

Boltzmann or Wigner sampling. Here we prepare the initial conditions

based on Boltzmann sampling by performing BOMD on the ground

state for 20 ps with a time step of 0.5 fs using randomly distorted

structures from the optimized structure. We employ the velocity

rescaling thermostat after every 10 fs at 300 K. After the thermal

equilibrium, 100 trajectories from 10 ps to 20 ps are extracted for the

initial conditions of excited state molecular dynamics simulations.

Using the 100 initial conditions, we perform FSSH, FSSH with EDC

(SHEDC), and DISH-XF dynamics with a time step of 0.5 fs without

TABLE 1 Compatibility between QM
programs and MQC methods in
PyUNIxMD

Program Method BOMD Ehrenfest FSSH DISH-XF CTMQC

Columbus69 CASSCF ✓ ✓ ✓ ✓ ✓

MRCI ✓ ✓ ✓ ✓ ✓

DFTB þ72 TDDFTB ✓ — ✓ ✓ —

DFTB/SSR ✓ ✓ ✓ ✓ ✓

Gaussian 0970 TDDFT ✓ — ✓ ✓ —

Molpro33 CASSCF ✓ ✓ ✓ ✓ ✓

Q-Chem32 TDDFT ✓ ✓ ✓ ✓ ✓

TeraChem71 SSR ✓ ✓ ✓ ✓ ✓

LEE ET AL. 1761

thermostat for 5 ps on the S1 state initially. In addition, we use the

momentum rescaling along NACVs after a hop occurs and preserve

the momentum for a rejected hop. For SHEDC, we use a default value

for a pre-determined parameter, C as 0.1 Hartree. For DISH-XF, we

use width of 0.1 a.u. initially. We choose long-range corrected and

onsite corrected DFTB/SSR (LC-OC-DFTB/SSR) method with ob2

parameters77 for QM calculation where the LC-OC-DFTB/SSR

method is a modification of LC-DFTB/SSR method78 by implementing

onsite correction scheme.79

Figure 4 shows average populations and coherences with the

FSSH, SHEDC, and DISH-XF methods. We can calculate the average

populations from BO populations (ρiih i) or running states (pi) using

Equations (10) and (11). While pi and ρiih i show completely different

behaviors for FSSH, the average populations are almost on top of

each other for DISH-XF and SHEDC indicating decoherence correc-

tion recovers internal consistency (pi ≈ ρiih i). We notice that three

methods show similar behavior up to earlier 500 fs and yield different

propagation for pi, ρiih i, and ρij
�� ��2D E

afterwards. The lifetimes on the

S1 state can be calculated from the monoexponential fitting process

for S1 population. The lifetime of the S1 state calculated from the

FSSH method is 600 fs similar to 710 fs from FSSH with

OM2/MRCI.76 While the DISH-XF and SHEDC method shows the

lifetime as 1.97 and 2.15ps, respectively. In FSSH, the lifetime

becomes small because of the overestimation of the hopping probabil-

ities. The lack of decoherence induces the accumulation of the off-

diagonal elements in the electronic density matrix which results in the

increase of hopping probabilities. In addition, once the system goes to

the ground state, the opposite hopping is mostly forbidden due to the

energy conservation in this particular example. For DISH-XF and

SHEDC, they show similar averaged electronic populations

although the equations of motion are different. For SHEDC, the

decoherence depends on a damping parameter determined from

the kinetic energy and the difference between potential energies,

see Equations (5) and (6). Thus, the electronic populations expo-

nentially decay to the running state at every step. In DISH-XF,

the decoherence term becomes nonzero which induces further

population transfer from one state to the other state after

nonadiabatic coupling region. Depending on auxiliary trajectories

and phase factors, the direction of population transfer is deter-

mined (Equation 8).48 Due to the decoherence, the trajectory with

DISH-XF and SHEDC tends to stay longer on the initial S1 state

showing the slower decay of S1 population. In lower panel of Figure 5,

average coherences for DISH-XF and SHEDC show several peaks

with the period of �800 fs, while the FSSH shows an accumulation of

coherence. SHEDC shows several sharp peaks caused from the fast

exponential decay, while DISH-XF shows broad peaks due to the rela-

tively slow decoherence. Thus, in this example, the decoherence of

SHEDC is stronger than DISH-XF. Overall, the results of DISH-XF and

SHEDC indicate that the S1 population decays discretely with a

certain period.

The role of decoherence is more clear when we analyze individual

trajectories. Figure 5 shows BO energies, BO populations, and a

CH3

1

2

3
4

5

6

7 8 9

10

11
12

13

15

14

16

17 18

19
20

21

22

23

24

25

26

27

F IGURE 3 Chemical structure of the molecular motor used in the
molecular dynamics. The motor shows photoisomerization dynamics
around center C7 = C18 double bond after a light absorption. All
carbon atoms are labeled. The dihedral angle (θ) around the central
C7 = C18 is defined as the angle between a plane with C7, C4, and
C8 and a plane with C18, C17, and C14

0.00

0.50

1.00

0.0 1.0 2.0 3.0 4.0 5.0

<
ρ i

i>

Time (ps)

DISH-XF

SHEDC

FSSH

0.00

0.50

1.00

0.0 1.0 2.0 3.0 4.0 5.0

p
i

Time (ps)

DISH-XF

SHEDC

FSSH

0.00

0.04

0.08

0.0 1.0 2.0 3.0 4.0 5.0

<
|ρ

ij|
2
>

Time (ps)

DISH-XF

SHEDC

FSSH

F IGURE 4 Averaged electronic populations, pi and ρiih i, and
coherences, ρij

�� ��2D E
from FSSH, SHEDC, and DISH-XF simulations for

the molecular motor system. Red, green, and blue solid lines represent
the results calculated from DISH-XF, SHEDC, and FSSH, respectively.
The bold and dotted lines for electronic populations represent the
population of S1 and S0 states, respectively

1762 LEE ET AL.

coherence indicator of a selected trajectory for FSSH, SHEDC, and

DISH-XF. The initial conditions are all identical in this case. BO

populations of FSSH shows gradual increase (or decrease) and the

hop from S1 to S0 occurs directly in the earlier time. However,

the additional decoherence effect makes the BO population recover

the pure electronic state (ρ11 ¼1) for DISH-XF and SHEDC. Thus, the

overall BO population exchanges are slower in DISH-XF and SHEDC.

We can also notice that ρ11 becomes 1 or 0 eventually when the run-

ning state is S1 or S0, respectively. As a result, ρ12 tð Þj j2 shows a trivial

difference between FSSH and the other two methods. In FSSH, the

ρ12 tð Þj j2 remains finite after a hop without any decay. However, the

ρ12 tð Þj j2 from DISH-XF and SHEDC increases as the trajectory passes

the nonadiabatic coupling region, and decreases as the

trajectory leaves the region.

The structure analysis with motion_analysis.py provides the time

evolution of the dihedral angle around C7 = C18 double bond (see

Figure 3) from the selected trajectory for the DISH-XF, SHEDC, and

FSSH. FSSH shows a fast isomerization via a conical intersection while

DISH-XF and SHEDC preserve the running state for a while showing

an oscillation of the dihedral angle. Based on time-dependent energy

profiles and dihedral angles in Figure 5, the molecular motor reaches a

coupling region with a small energy gap as the diheral angle becomes

�90 ∘ . In this case, the DISH-XF and SHEDC trajectories cross the

coupling region five and three times, respectively, while the FSSH

trajectory crosses the coupling region one time, which indicates the

DISH-XF and SHEDC trajectories stay on the upper state longer than

the FSSH trajectory. Overall, these trajectories eventually show suc-

cessful isomerization with the dihedral angle of �210 ∘ . Finally, we

calculate the quantum yield of photoisomerization based on the num-

ber of trajectories showing the isomerization over the total number of

trajectories. The quantum yield for the isomerization from the FSSH is

0.68 while the yield from the DISH-XF and SHEDC becomes 0.59 and

0.46, respectively. The quantum yield in the reference is 0.6 based on

semiempirical methods.76 We notice that the calculated quantum

yields are considerably larger than the experimental result showing

0.14 in presence of toluene solvents.80 Thus, the correct consider-

ation of thermal effects due to environments is crucial to describe

molecular rotors in a solution.

4 | CONCLUSIONS

In this article, we presented an open-source Python-based NAMD

program, PyUNIxMD package. PyUNIxMD provides wide choices of

MQC methods and QM interfaces. Especially, CTMQC and DISH-XF

are implemented for general purposes for the first time. PyUNIxMD

also offers several auxiliary scripts for preparation of NAMD simula-

tions and analysis. We performed FSSH and DISH-XF simulations for

0

50

100

150

200

0.0 1.0 2.0 3.0 4.0 5.0

Δ
E

 (
k
c
a
l/
m

o
l)

Time (ps)

DISH-XF

E0

E1

pot

tot

0

50

100

150

200

0.0 1.0 2.0 3.0 4.0 5.0

Δ
E

 (
k
c
a
l/
m

o
l)

Time (ps)

SHEDC

E0

E1

pot

tot

0

50

100

150

200

0.0 1.0 2.0 3.0 4.0 5.0

Δ
E

 (
k
c
a
l/
m

o
l)

Time (ps)

FSSH

E0

E1

pot

tot

-30

60

150

240

0.0 1.0 2.0 3.0 4.0 5.0

θ
(d

e
g
)

Time (ps)

DISH-XF

SHEDC

FSSH

0.00

0.50

1.00

0.0 1.0 2.0 3.0 4.0 5.0

ρ ii

Time (ps)

DISH-XF

SHEDC

FSSH

0.00

0.10

0.20

0.30

0.0 1.0 2.0 3.0 4.0 5.0
|ρ

ij|
2

Time (ps)

DISH-XF

SHEDC

FSSH

(A)

(B)

(C)

(D)

(E)

(F)

F IGURE 5 The time evolution of
(A, B, C) energies, (D) the dihedral angle
along the central C═C bond, (E) BO
populations and (F) the coherence for a
selected trajectory in DISH-XF, SHEDC,
and FSSH simulations. In (A, B, C),
yellow, green, black, and purple lines
represent potential energies of S0, S1,
and the running state, and the total

energy, respectively

LEE ET AL. 1763

photoisomerization dynamics of a molecular motor system as a dem-

onstration of the PyUNIxMD package. Compared to FSSH, DISH-XF

exhibits distinct decoherence effect with better internal consistency,

and a longer lifetime. Since the overall code structure of the

PyUNIxMD is straightforward and well-organized, it is easy to per-

form NAMD simulations and add new interfaces and features for QM

and MQC methods. We expect that PyUNIxMD provides an efficient

NAMD simulation tool and development platform of new NAMD

methods. In addition, automation of multiple NAMD simulations can

easily be achieved via simple scripts with PyUNIxMD. Such automa-

tion is important in terms of congruency, reproducibility, and user

independency as addressed in molecular model construction stud-

ies.81,82 We plan to implement AIMS, and to update interfaces for

QM/MM environments, other QM methods such as CASPT2, various

electronic propagators, and additional scripts for Wigner sampling and

result analysis.

ACKNOWLEDGMENTS

This work was supported by the research fund (1.190123.01) of Ulsan

National Institute of Science and Technology (UNIST) and the research

fund (NRF-2019R1A2C1007744 and NRF-2019R1A4A1027934) of

the National Research Foundation of Korea (NRF) by the Ministry of

Science and ICT.

DATA AVAILABILITY STATEMENT

The PyUNIxMD code, presented and used within this study, is openly

available at GitHub (https://github.com/skmin-lab/unixmd). Initial

sample is available in Supporting Information.

ORCID

Jong-Kwon Ha https://orcid.org/0000-0003-4694-5627

Seung Kyu Min https://orcid.org/0000-0001-5636-3407

REFERENCES

[1] G. D. Scholes, Nature 2017, 543, 647.
[2] E. Romero, V. I. Novoderezhkin, R. van Grondelle, Nature 2017,

543, 355.

[3] M. Kaucikas, K. Maghlaoui, J. Barber, T. Renger, J. J. Van Thor, Nat.

Commun. 2016, 7, 13977.
[4] D. J. Nürnberg, J. Morton, S. Santabarbara, A. Telfer, P. Joliot, L. A.

Antonaru, A. V. Ruban, T. Cardona, E. Krausz, A. Boussac, A. Fantuzzi,

A. W. Rutherford, Science 2018, 360, 1210.
[5] J. C. Blancon, Science 2017, 355, 1288.
[6] S. Nah, B. Spokoyny, C. Stoumpos, C. Soe, M. Kanatzidis, E. Harel,

Nat. Photonics 2017, 11, 285.
[7] J. Huang, Y. Yuan, Y. Shao, Y. Yan, Nat. Rev. Mater. 2017, 2, 17042.

[8] L. Qiao, W.-H. Fang, R. Long, O. V. Prezhdo, J. Phys. Chem. Lett. 2020,
11, 7066.

[9] M. Garavelli, P. Celani, F. Bernardi, M. A. Robb, M. Olivucci, J. Am.

Chem. Soc. 1997, 119, 6891.

[10] L. M. Frutos, T. Andruni�ow, F. Santoro, N. Ferré, M. Olivucci, Proc.

Natl. Acad. Sci. USA 2007, 104, 7764.
[11] D. Polli, P. Altoé, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G.

Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, G.

Cerullo, Nature 2010, 467, 440.

[12] E. Nango, A. Royant, M. Kubo, T. Nakane, C. Wickstrand, T. Kimura,

T. Tanaka, K. Tono, C. Song, R. Tanaka, T. Arima, A. Yamashita, J.

Kobayashi, T. Hosaka, E. Mizohata, P. Nogly, M. Sugahara, D. Nam, T.

Nomura, D. Shimamura, T. Im, T. Fujiwara, Y. Yamanaka, B. Jeon, T.

Nishizawa, K. Oda, M. Fukuda, R. Andersson, P. Båth, J. Dods, R.

Davidsson, S. Matsuoka, S. Kawatake, M. Murata, O. Nureki, S.

Owada, T. Kameshima, T. Hatsui, Y. Joti, G. Schertler, M. Yabashi, A.-

N. Bondar, R. Standfuss, Jörg, Neutze, S. Iwata, Science 2016, 354,
1552.

[13] S. Gozem, H. L. Luk, I. Schapiro, M. Olivucci, Chem. Rev. 2017, 117,

13502.

[14] C. Schnedermann, X. Yang, M. Liebel, K. M. Spillane, J. Lugtenburg, I.

Fernandez, A. Valentini, I. Schapiro, M. Olivucci, P. Kukura, R. A.

Mathies, Nat. Chem. 2018, 10, 449.
[15] Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 2019, 48, 2109.

[16] V. K. Singh, C. Yu, S. Badgujar, Y. Kim, Y. Kwon, D. Kim, J. Lee, T.

Akhter, G. Thangavel, L. S. Park, J. Lee, P. C. Nandajan, R.

Wannemacher, B. N. Mili�an-Medina, Lüer, K. S. Kim, J. Gierschner,

M. S. Kwon, Nat. Catal. 2018, 1, 794.
[17] S. Poplata, A. Troester, Y.-Q. Zou, T. Bach, Chem. Rev. 2016, 116,

9748.

[18] M. Filatov, S. K. Min, K. S. Kim, Mol. Phys. 2019, 117, 1128.
[19] T. J. A. Wolf, R. M. Parrish, R. H. Myhre, T. J. Martínez, H. Koch, M.

Gühr, J. Phys. Chem. A 2019, 123, 6897.
[20] R. Crespo-Otero, M. Barbatti, Chem. Rev. 2018, 118, 7026.

[21] M. Ben-Nun, J. Quenneville, T. J. Martínez, J. Chem. Phys. A 2000,
104, 5161.

[22] B. F. E. Curchod, T. J. Martínez, Chem. Rev. 2018, 118, 3305.
[23] A. D. McLachlan, Mol. Phys. 1964, 8, 39.

[24] J. C. Tully, J. Chem. Phys. 1990, 93, 1061.
[25] S. Mai, P. Marquetand, L. Gonz�alez, WIREs Comput. Mol. Sci. 2018, 8,

e1370.

[26] M. Barbatti, M. Ruckenbauer, F. Plasser, J. Pittner, G. Granucci, M.

Persico, H. Lischka, WIREs Comput. Mol. Sci. 2014, 4, 26.

[27] A. V. Akimov, J. Comput. Chem. 2016, 37, 1626.
[28] A. V. Akimov, O. V. Prezhdo, J. Chem. Theory Comput. 2013, 9, 4959.
[29] L. Du, Z. Lan, J. Chem. Theory Comput. 2015, 11, 1360.
[30] D. A. Fedorov, S. Seritan, B. S. Fales, T. J. Martínez, B. G. Levine,

J. Chem. Theory Comput. 2020, 16, 5485.

[31] W. Malone, B. Nebgen, A. White, Y. Zhang, H. Song, J. A. Bjorgaard,

A. E. Sifain, B. Rodriguez-Hernandez, V. M. Freixas, S. Fernandez-

Alberti, A. E. Roitberg, T. R. Nelson, S. Tretiak, J. Chem. Theory Com-

put. 2020, 16, 5771.
[32] Y. Shao, Z. Gan, E. Epifanovsky, A. T. Gilbert, M. Wormit, J.

Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M.

Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Ku�s,

A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A.

Rohrdanz, R. P. Steele, E. J. Sundstrom, P. M. Zimmerman, D. Zuev, B.

Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E.

Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-

M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M.

Diedenhofen, H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-

Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W.

Hanson-Heine, P. H. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C.

Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A.

King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U.

Lao, A. D. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E.

Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P.

Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, E.

Neuscamman, C. M. Oana, R. Olivares-Amaya, D. P. O'Neill, J. A.

Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, E. Rosta,

N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein, D.

Stück, Y.-C. Su, A. J. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt, O.

Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams,

J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y.

Zhao, B. R. Brooks, G. K. Chan, D. M. Chipman, C. J. Cramer, M. S.

Gordon, W. J. Hehre, A. Klamt, H. F. S. III, M. W. Schmidt, C. D.

1764 LEE ET AL.

https://github.com/skmin-lab/unixmd
https://orcid.org/0000-0003-4694-5627
https://orcid.org/0000-0003-4694-5627
https://orcid.org/0000-0001-5636-3407
https://orcid.org/0000-0001-5636-3407

Sherrill, D. G. Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer,

A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R.

Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht,

W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E.

Subotnik, T. V. Voorhis, J. M. Herbert, A. I. Krylov, P. M. Gill, M.

Head-Gordon, Mol. Phys. 2015, 113, 184.
[33] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, WIREs

Comput. Mol. Sci. 2012, 2, 242.

[34] G. M. J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J. E.

Deustua, D. G. Fedorov, J. R. Gour, A. O. Gunina, E. Guidez, T.

Harville, S. Irle, J. Ivanic, K. Kowalski, S. S. Leang, H. Li, W. Li, J. J.

Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata, B. Q. Pham, P.

Piecuch, D. Poole, S. R. Pruitt, A. P. Rendell, L. B. Roskop, K.

Ruedenberg, T. Sattasathuchana, M. W. Schmidt, J. Shen, L.

Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari, J. L. G. Vallejo, B.

Westheimer, M. Wloch, P. Xu, F. Zahariev, M. S. Gordon, J. Chem.

Phys. 2020, 152, 154102.
[35] S. G. Balasubramani, G. P. Chen, S. Coriani, M. Diedenhofen, M. S.

Frank, Y. J. Franzke, F. Furche, R. Grotjahn, M. E. Harding, C. Hättig,

A. Hellweg, B. Helmich-Paris, C. Holzer, U. Huniar, M. Kaupp, A.

Marefat Khah, S. Karbalaei Khani, T. Müller, F. Mack, B. D. Nguyen,

S. M. Parker, E. Perlt, D. Rappoport, K. Reiter, S. Roy, M. Rückert, G.

Schmitz, M. Sierka, E. Tapavicza, D. P. Tew, C. van Wüllen, V. K.

Voora, F. Weigend, A. Wody�nski, J. M. Yu, J. Chem. Phys. 2020, 152,
184107.

[36] N. Tancogne-Dejean, M. J. T. Oliveira, X. Andrade, H. Appel, C. H.

Borca, G. Le Breton, F. Buchholz, A. Castro, S. Corni, A. A. Correa, U.

De Giovannini, A. Delgado, F. G. Eich, J. Flick, G. Gil, A. Gomez, N.

Helbig, H. Hübener, R. Jestädt, J. Jornet-Somoza, A. H. Larsen, I. V.

Lebedeva, M. Lüders, M. A. L. Marques, S. T. Ohlmann, S. Pipolo, M.

Rampp, C. A. Rozzi, D. A. Strubbe, S. A. Sato, C. Schäfer, I.

Theophilou, A. Welden, A. Rubio, J. Chem. Phys. 2020, 152, 124119.

[37] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma,

H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, W. A.

de Jong, Comput. Phys. Commun. 2010, 181, 1477.
[38] J. E. Subotnik, A. Jain, B. Landry, A. Petit, W. Ouyang, N. Bellonzi,

Annu. Rev. Phys. Chem. 2016, 67, 387.

[39] A. W. Jasper, S. Nangia, C. Zhu, D. G. Truhlar, Acc. Chem. Res. 2006,
39, 101.

[40] O. V. Prezhdo, P. J. Rossky, J. Chem. Phys. 1997, 107, 5863.
[41] C. Zhu, S. Nangia, A. W. Jasper, D. G. Truhlar, J. Chem. Phys. 2004,

121, 7658.

[42] G. Granucci, M. Persico, J. Chem. Phys. 2007, 126, 134114.
[43] G. Granucci, M. Persico, A. Zoccante, J. Chem. Phys. 2010, 133,

134111.

[44] H. M. Jaeger, S. Fischer, O. V. Prezhdo, J. Chem. Phys. 2012, 137,

22A545.

[45] T. Nelson, S. Fernandez-Alberti, A. E. Roitberg, S. Tretiak, J. Chem.

Phys. 2013, 138, 224111.
[46] A. Jain, E. Alguire, J. E. Subotnik, J. Chem. Theory Comput. 2016, 12,

5256.

[47] X. Gao, W. Thiel, Phys. Rev. E 2017, 95, 013308.
[48] J.-K. Ha, I. S. Lee, S. K. Min, J. Phys. Chem. Lett. 2018, 9, 1097.
[49] A. Abedi, N. T. Maitra, E. K. U. Gross, Phys. Rev. Lett. 2010, 105,

123002.

[50] A. Abedi, N. T. Maitra, E. K. U. Gross, J. Chem. Phys. 2012, 137,

22A530.

[51] S. K. Min, F. Agostini, E. K. U. Gross, Phys. Rev. Lett. 2015, 115,
073001.

[52] F. Agostini, S. K. Min, A. Abedi, E. K. U. Gross, J. Chem. Theory Com-

put. 2016, 12, 2127.

[53] S. K. Min, F. Agostini, I. Tavernelli, E. K. U. Gross, J. Phys. Chem. Lett.

2017, 8, 3048.
[54] B. F. E. Curchod, F. Agostini, I. Tavernelli, Eur. Phys. J. B. 2018,

91, 168.

[55] G. H. Gossel, F. Agostini, N. T. Maitra, J. Chem. Theory Comput. 2018,
14, 4513.

[56] A. Carof, S. Giannini, J. Blumberger, J. Chem. Phys. 2017, 147,

214113.

[57] S. Hammes-Schiffer, J. C. Tully, J. Chem. Phys. 1994, 101, 4657.
[58] J. Pittner, H. Lischka, M. Barbatti, Chem. Phys. 2009, 356, 147.
[59] I. G. Ryabinkin, J. Nagesh, A. F. Izmaylov, J. Phys. Chem. Lett. 2015, 6,

4200.

[60] J.-K. Ha, K. Kim, S. K. Min, J. Chem. Theory Comput. 2021, 17, 694.
[61] E. Marsili, M. Olivucci, D. Lauvergnat, F. Agostini, J. Chem. Theory

Comput. 2020, 16, 6032.
[62] M. Filatov, S. K. Min, K. S. Kim, J. Chem. Theory Comput. 2018, 14,

4499.

[63] M. Filatov, M. Paolino, S. K. Min, K. S. Kim, J. Phys. Chem. Lett. 2018,
9, 4995.

[64] M. Filatov, S. K. Min, C. H. Choi, Phys. Chem. Chem. Phys. 2019, 21,
2489.

[65] M. Filatov, M. Paolino, S. K. Min, C. H. Choi, Chem. Commun. 2019,

55, 5247.

[66] L. Verlet, Phys. Rev. 1967, 159, 98.
[67] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,

Numerical Recipes, 3rd ed., The Cambridge University Press, New

York 2007.

[68] G. Granucci, M. Persico, A. Toniolo, J. Chem. Phys. 2001, 114, 10608.
[69] H. Lischka, T. Müller, P. G. Szalay, I. Shavitt, R. M. Pitzer, R. Shepard,

WIREs Comput. Mol. Sci. 2011, 1, 191.
[70] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,

J. R. Cheese-Man, G. Scalmani, V. Barone, B. Mennucci, G. A.

Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.

Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K.

Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.

Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro,

M. Bearpark, J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R.

Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S.

Iyengar, J. Tomasi, M. Cossi, N. Rega, M. Millam, M. Klene, J. E. Knox,

J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.

Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.

Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,

P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas,

J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 Revi-

sion A.02, Gaussian Inc, Wallingford CT 2009.
[71] S. Seritan, C. Bannwarth, B. S. Fales, E. G. Hohenstein, S. I. L. Kokkila-

Schumacher, N. Luehr, J. W. Snyder, C. Song, A. V. Titov, I. S.

Ufimtsev, T. J. Martínez, J. Chem. Phys. 2020, 152, 224110.
[72] B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C.

Camacho, C. Cevallos, M. Y. Deshaye, T. Dumitric�a, A.

Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S.

Irle, J. J. Kranz, C. Köhler, T. Kowalczyk, T. Kubař, I. S. Lee, V.
Lutsker, R. J. Maurer, S. K. Min, I. Mitchell, C. Negre, T. A.

Niehaus, A. M. N. Niklasson, A. J. Page, A. Pecchia, G. Penazzi,

M. P. Persson, J. Řez�ač, C. G. S�anchez, M. Sternberg, M. Stöhr, F.

Stuckenberg, A. Tkatchenko, V. W.-Z. Yu, T. Frauenheim, J. Chem.

Phys. 2020, 152, 124101.
[73] J. A. Rackers, Z. Wang, C. Lu, M. L. Laury, L. Lagardère, M. J.

Schnieders, J.-P. Piquemal, P. Ren, J. W. Ponder, J. Chem. Theory Com-

put. 2018, 14, 5273.

[74] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola,

J. R. Haak, J. Chem. Phys. 1984, 81, 3684.
[75] G. J. Martyna, M. E. Tuckerman, D. J. Tobias, M. L. Klein, Mol. Phys.

1996, 87, 1117.
[76] X. Pang, X. Cui, D. Hu, C. Jiang, D. Zhao, Z. Lan, F. Li, J. Phys. Chem. A

2017, 121, 1240.
[77] V. Q. Vuong, J. Akkarapattiakal Kuriappan, M. Kubillus, J. J. Kranz, T.

Mast, T. A. Niehaus, S. Irle, M. Elstner, J. Chem. Theory Comput. 2018,
14, 115.

LEE ET AL. 1765

[78] I. S. Lee, M. Filatov, S. K. Min, J. Chem. Theory Comput. 2019, 15,
3021.

[79] A. Domínguez, B. Aradi, T. Frauenheim, V. Lutsker, T. A. Niehaus,

J. Chem. Theory Comput. 2013, 9, 4901.
[80] J. Conyard, A. Cnossen, W. R. Browne, B. L. Feringa, S. R. Meech,

J. Am. Chem. Soc. 2014, 136, 9692.
[81] L. Pedraza-Gonz�alez, L. De Vico, M. D. C. Marin, F. Fanelli, M.

Olivucci, J. Chem. Theory Comput. 2019, 15, 3134.

[82] C. Brunken, M. Reiher, J. Chem. Theory Comput. 2021 , 17 ,
3797.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: I. S. Lee, J.-K. Ha, D. Han, T. I. Kim, S.

W. Moon, S. K. Min, J Comput Chem 2021, 42(24), 1755.

https://doi.org/10.1002/jcc.26711

1766 LEE ET AL.

https://doi.org/10.1002/jcc.26711

	PyUNIxMD: A Python-based excited state molecular dynamics package
	1 INTRODUCTION
	2 METHODOLOGY
	2.1 Available mixed quantum-classical methods
	2.1.1 Ehrenfest dynamics
	2.1.2 Fewest switches surface hopping dynamics and decoherence corrections
	2.1.3 Coupled-trajectory mixed quantum-classical dynamics
	2.1.4 Decoherence-induced surface hopping based on exact factorization

	2.2 PyUNIxMD package
	2.2.1 Structure and flow
	2.2.1 Molecule class
	2.2.1 MQC class
	2.2.1 QM_calculator class
	2.2.1 MM_calculator class
	2.2.1 Thermostat class
	2.2.1 Auxiliary scripts

	3 EXAMPLES
	4 CONCLUSIONS
	ACKNOWLEDGMENTS
	 DATA AVAILABILITY STATEMENT

	REFERENCES

