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Abstract: This review gives an up-to-date overview of the different ways (routes) to the synthesis of
coumarin(benzopyrone)-fused, five-membered aromatic heterocycles with one heteroatom, built on
the pyrone moiety. Covering 1966 to 2020.
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1. Introduction

Coumarins are a family of benzopyrones (1,2-benzopyrones or 2H-[1]benzopyran-
2-ones), which represent an important family of oxygen-containing heterocycles, widely
distributed in nature [1–4]. Coumarins display a broad range of biological and pharma-
cological activities, [5,6] such as antiviral [7–10], anticancer [11–13], antimicrobial [14,15],
and antioxidant [16–18] activities. On the other hand, coumarin represents an ingredi-
ent in perfumes [19], cosmetics [20], and as industrial additives [21,22]. Furthermore,
coumarins play a pivotal role in science and technology as fluorescent sensors, mainly
due to their interesting light-emissive characteristics, which are often responsive to the
environment [23–26]. The coumarin (benzopyrane)-fused, membered aromatic heterocy-
cles built on the α-pyrone moiety are an important scaffold. The only fused heterocycle
with an α-pyrone moiety of coumarin that can be found in nature is the furan ring. One ex-
ample is the naturally occurring furan 4H-furo[3,2-c]benzopyran-4-one, which provides the
main core of many natural compounds of so-called coumestans. These comestans include
coumestan, wedelolactone, and coumestrol. The coumestans are found in a variety of plant
species that are commonly used in traditional medicine [27].Molecules 2021, 26, x FOR PEER REVIEW 2 of 22 
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In order to enrich the limited versatility of the structures found in nature, synthesis of
coumarin (benzopyrane)-fused, membered aromatic heterocycles has received considerable
attention, including numerous reported routes.

This review gives an up-to-date overview of the different ways (routes) to the synthesis
of benzopyrone-fused, five-membered aromatic heterocycles with one heteroatom, built
on the pyrone moiety, from 1966 to 2020. Our main interest in this current work is to
describe the components that have one heteroatom in an alicyclic-fused ring with the
pyrone part of coumarin. The synthetic pathway of the investigated scaffold has provided
systems containing oxygen, nitrogen, sulfur, and selenium in their core structure. The last
heteroatom is less described in the output of the synthetic efforts. The fused heterocycles
that contain more than one heteroatom will be detailed in the next part, which we intend
to publish in the future.

Many strategies have been developed for the synthesis of the fused, five-membered
aromatic heterocycle-benzopyran-4-ones. There are two main approaches to construct-
ing these skeletons: five-membered, aromatic heterocycle construction, and pyrone-ring
construction.

2. Synthesis of Benzopyrone-Fused, Five-Membered Aromatic Heterocycles
2.1. Five-Membered Aromatic Rings with One Heteroatom
2.1.1. Furans

Furobenzopyrone (or furocoumarins) comprises an important class of coumarins
found in a wide variety of plants, particularly in the carrot (Apiaceae/Umbelliferae), legume
(Fabaceae), and citrus families (Rutaceae) [27]. The chemical structure of furobenzopyrone
(furocoumarins) consists of a furan ring fused with coumarin. The fusion of the furan ring
to the α-pyrone moiety of coumarin forms the core structure of the three most common iso-
mers, viz. 4H-furo[2,3-c]chromen(benzopyran)-4-one, 4H-furo[3,4-c]chromen(benzopyran)-
4-one, and 4H-furo[3,2-c]chromen (benzopyran)-4-one (Figure 1).
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4H-Furo[2,3-c]benzopyran-4-one

Furan Construction

The basic building block for the formation of 4H-furo[2,3-c]benzopyran-4-one is the 3-
hydroxycoumarin (1) [28,29]. Pandya and coworkers [30] developed a method to synthesize
some 4H-furo[2,3-c]benzopyran-4-ones starting with 3-hydroxycoumarin using the Nef
reaction. Thus, the reaction of 3-hydroxycoumarin (1) with various 2-aryl-1-nitro ethenes
2a,b, in the presence of piperidine and methanol as a solvent, followed the Nef reaction
condition and afforded a series of 1-aryl-furo[2,3-c]benzopyran-4-ones 3a,b and 1-phenyl-
2-methyl-furo[2,3-c]benzopyran-4-one (4), respectively (Scheme 1). The formation of these
products was explained by the reaction mechanism (Scheme 1).
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Scheme 1. The Nef reaction to synthesize furo[2,3-c]benzopyran-4-ones 3a,b and 4. Reagents and conditions: MeOH,
piperidine, reflux, five outputs in 55%–61% yield.

Pyrone Construction

Dong et al., 2020 developed a novel and facile rhodium(III)-catalyzed process of sul-
foxonium ylide (5) with hydroquinone (6). The carbonyl in the sulfoxonium ylide assisted
the ortho-C–H functionalization of the sulfoxonium ylide, followed by intramolecular
annulation with hydroquinone to afford 8-hydroxy-4H-furo[2,3-c]benzopyran-4-one (7)
(Scheme 2) [31].
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Scheme 2. Rhodium(III)-catalyzed sequential ortho-C–H oxidative arylation/cyclization of sulfoxonium ylide to afford 4H-
furo[2,3-c]benzopyran-4-one (7). Reagents and conditions: [Cp*RhCl2]2 (5 mol %), AgBF4 (20 mol %), Zn(OAc)2 (0.225 mmol),
AcOH (0.3 mmol), and acetone (2 mL), 12 h, in a sealed Schlenk tube under N2 at 100 ◦C, 25% yield.

4H-Furo[3,4-c]benzopyran-4-one

Furan and Pyrone Construction

In the literature, a large number of reports described the synthesis of 4H-furo[2,3-c]
and 4H-furo[3,2-c]benzopyran-4-ones, while synthesis of the 4H-furo[3,4-c]benzopyran-4-
one was reported by only one study, that of Brahmbhatt and his coworkers [32]. The first
4H-furo[3,4-c]benzopyran-4-ones (10) was synthesized by the demethylation–cyclization
reaction of intermediates, 3-substituted-4-ethoxycarbonyl furans 9 (Scheme 3). For the
demethylation and in situ lactonization steps, several reagents were tried, of which pyridine
hydrochloride and HBr in acetic acid were found to be the most promising.
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4H-Furo[3,2-c]benzopyran-4-one

Furan Construction

A wide range of research has demonstrated that 4-hydroxycoumarin is the key com-
pound for the synthesis of 4H-furo[3,2-c]benzopyran-4-ones, which can readily react with
the C=C bond of the alkene, or the C≡C bond of the alkyne [33–37].

Reisch reported the condensation of 4-hydroxycoumarin (11) with 1-phenyl-2-propyn-1-
ol (12) under acidic conditions (a mixture of glacial acetic and concentrated sulfuric acid) to
deliver the corresponding 2-methyl-3-phenylfuro[3,2-c]benzopyran-4-one (13) (Scheme 4) [38].
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A few studies employed the aliphatic aldehydes as building blocks with
4-hydroxycoumarin (11) to synthesize 4H-furo[3,2-c]benzopyran-4-ones [25,39]. This method
was ineffective as it gave a poor yield as well as a mixture of 2,3-dihydrofuran, 4H-furo[3,2-
c]benzopyran-4-ones, and 4H-furo[3,2-c]benzopyran-4-ones [39]. Conversely, in the case
of using the aromatic aldehyde as a building block, the 4H-furo[3,2-c]benzopyran-4-one
was obtained [40]. Kadam et al. developed atom-efficient multicomponent reactions
(MCRs) and step-efficient, one-pot synthesis of 3-(4-bromophenyl)-2-(cyclohexylamino)-4H-
furo[3,2-c]benzopyran-4-one (16) using 4-hydroxycoumarin (11) with 4-bromobenzaldehyde
(14) and cyclohexyl isocyanide (15) as an alkylene source (Scheme 5) [40].
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Scheme 5. Atom-efficient multicomponent reactions (MCRs) and step-efficient, one-pot synthesis of 4H-furo[3,2-
c]benzopyran-4-one (16). Reagents and conditions: DMF or toluene, µw, 80 ◦C, 20 min, 97% yield.

4-Hydroxycoumarin derivatives have received significant attention from researchers,
as these derivatives possess 1,3-dicarbonyl systems. It allows for the easy generation of α,α′-
dicarbonyl radicals, which can be readily added to the C=C bond of the alkene [41]. The first
example of this reaction was described in 1998, by Lee and his coworkers. They reported an
efficient way to prepare 4H-furo[3,2-c]benzopyran-4-ones 19 by Ag2CO3/celite (Fetizon’s
reagent)-mediated oxidative cycloaddition of 4-hydroxycoumarin 17 to olefins, such as
vinyl sulfide and phenyl propenyl sulfide. The resulting dihydrofuro[3,2-c]benzopyran-4-
ones 18 was treated by sodium periodate in aqueous methanol to form the corresponding
sulfoxides, which, upon refluxing with pyridine in carbon tetrachloride, directly delivered
the 4H-furo[3,2-c]benzopyran-4-one 19 in good yields (Scheme 6) [41].
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Scheme 6. A facile synthesis of 4H-furo[3,2-c]benzopyran-4-ones 19 by silver(I)/celite promoted an oxidative cycloaddition
reaction. Reagents and conditions: (a) CH2=CHSPh and/or CH3CH=CHSPh, Ag2CO3/celite, acetonitrile, reflux, 3 h;
(b) NaIO4, MeOH, CCl4, pyridine, Al2O3, four outputs with 71%–82% yield.

Recently, different catalytic methodologies have been developed for the synthesis of
2H-chromenes, and they are based on three main approaches: catalysis with (transition)
metals, metal-free Brønsted catalysis, and Lewis acid/base catalysis, which includes exam-
ples of nonenantioselective organocatalysis and enantioselective organocatalysis [42–44].
Alkynes have been widely employed as building blocks for this reaction in most cases.

To date, different transition metal (Au, Pt, and Cu) catalyzed/mediated method-
ologies for benzopyrane synthesis have been reported [27,42,45,46]. Cheng and Hu de-
scribed a one-pot cascade of an addition/cyclization/oxidation sequence using CuCl2
as the oxidant and CH3SO3H as the acid for regioselective synthesis of 2-substituted-
4H-furo[3,2-c]benzopyran-4-ones 22 from the substituted 3-alkynyl-4H-benzopyran-4-one
20 (Scheme 7) [47]. This strategy included the CH3SO3H-acid-catalyzed construction of the
furan ring, followed by oxidation of 21 with CuCl2 (Scheme 7) [47]. When the reaction was
carried out in the presence of a catalytic amount of CuCl as a Lewis acid and atmospheric
oxygen as an oxidative reagent, compound 22 was provided directly. On the other hand,
the presence of 10% CuBr and an excess of CuCl2 as the oxidant afforded the corresponding
3-chloro-2-substituted- 4H-furo[3,2-c]benzopyran-4-ones 23 (Scheme 7) [48].
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Brønsted-acid-catalyzed propargylations of several organic substrates, including 1,3-
dicarbonyl compounds, with alkynols have been reported [49]. In most cases, the acid
catalyst is required to promote the propargylation process efficiently. Zhou and coworkers
developed a one-pot Yb(OTf)3 propargylation–cycloisomerization sequence of 4-hydroxy
coumarin (11) with the propargylic alcohol (24) for the synthesis of a 2-benzyl-3- phenyl-
4H-furo[3,2-c]chromen-4-one (25) skeleton using Yb(OTf)3 as a Lewis acid (Scheme 8) [50].
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Similarly, 4H-furo[3,2-c] benzopyran-4-one formation reactions proceeded in higher
yields and in a one-pot manner, employing a catalytic system composed of the 16-electron
allyl–ruthenium(II) complex [Ru(η3-2-C3H4Me)(CO)(dppf)][SbF6] (dppf=1,1′-bis(diphenyl
phosphino)ferrocene) and trifluoroacetic acid (TFA) in the reaction of 4-hydroxycoumarin
(11), with 1-(4-methoxyphenyl)-2-propyn-1-ol (26) as an example. The 4H-furo[3,2-c]benzo
pyran-4-one (27) was synthesized with a 72% yield (Scheme 9) [50–52].
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Scheme 9. The 16-electron allyl–ruthenium(II) complex in preparation of 4H-furo[3,2-
c]benzopyran-4-one (27). Reagents and conditions: 16-electron allyl–ruthenium(II) complex [Ru(η3-2-
C3H4Me)(CO)(dppf)][SbF6] (5 mol %), trifluoroacetic acid (TFA) (50 mol %), THF, 75 ◦C, 5 h, 72% yield.

Extensive work has been done to investigate the utility of an aryl alkynyl ether as
a furan substrate, instead of arylalkynol, in the synthesis of 4H-furo[3,2-c]benzopyran-
4-one [29,35]. The treatment of 3-iodo-4-methoxycoumarin (28) with phenylacetylene
by means of sequential Sonogashira C–C coupling conditions resulted in a high-yield
formation of the 4H-furo[3,2-c]benzopyran-4-one (30) (Scheme 10) [53]. In this reaction,
the triethylamine was used as a base to induce the SN2-type demethylation of the Sono-
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gashira coupling product, followed by an intramolecular attack of the enolate onto the
cuprohalide π-complex of the triple bond (Scheme 10).
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As a follow-up to this type of reaction, a novel and rapid assembly of an interesting
class of 4H-furo[3,2-c]benzopyran-4-ones, 33, was successfully achieved using a one-pot
sequential coupling/cyclization strategy with 3-bromo-4-acetoxycoumarins 31 and dialkyn-
lzincs 32 prepared in situ as reactive acetylides in transition-metal-catalyzed crosscoupling.
The cascade transformation relies on palladium/copper-catalyzed alkynylation and in-
tramolecular hydroalkoxylation (Scheme 11) [54].
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13 outputs with 51%–96% yield.

A transition-metal-free approach was developed to achieve 4-H-furo[3,2-c]benzopyran-
4-ones via an iodine-promoted one-pot cyclization between 4-hydroxycoumarins 34 and
acetophenones 35. The transformation spontaneously proceeded to produce (36) in the
presence of NH4OAc. The possible reaction mechanism suggested for the iodine-promoted
one-pot cyclization is depicted (Scheme 12) [55].

Additionally, Traven et al. [56] provided a new short way for the synthesis of 4H-furo-
[3,2-c]benzopyran-4-one, employing the Fries rearrangement of 4-chloroacetoxycoumarin
(37) to yield two products, namely 3-chloroacetyl4-hydroxycoumarin (38) and dihydrofuro
[2,3-c]coumarin-3-one (39), in the ratio of 2:1. Compound (38), which underwent cyclization,
led to the formation of (39). The latter, under reduction and dehydration conditions,
afforded 4H-furo[3,2-c]chromen-4-one (41) (Scheme 13). A closely related reaction that
allowed for the preparation of (41) was developed by Majumdar and Bhattacharyya [57],
following a similar procedure but using chloroacetaldehyde instead of chloroactylchloride
in the presence of aqueous potassium carbonate to give 3-hydroxy-2,3- dihydrofuro[3,2-
c]benzopyran-4-one (40), which upon treatment with aqueous hydrochloric acid provided
4H-furo[3,2-c]benzopyran-4-one (41) with 72% yield (Scheme 13).
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(a) ClCH2COCl, dry pyridine, 40 min, reflux, 85% yield; (b) AlCl3, 140–150 ◦C, 60% yield; (c) AlCl3,
140–150 ◦C, 30–40 min or K2CO3, acetone, 10 min, stirring, r.t., 50% yield; (d) NaBH4, 85% yield;
(e) H2SO4 (30%), EtOH, heat, 30 min, 80% yield; (f) COCH2Cl, K2CO3, 73% yield; (g) HCl, 72% yield.

Pyrone Construction

Recently, much effort has been devoted to the development of oxidative intramolecular
C–O bond-forming cyclization reactions for the synthesis of bioactive benzopyranones.
These methods are limited to being used with arenes building blocks [58–60]. Fu et al.
reported a ligand-enabled, site-selective carboxylation of 2-(furan-3-yl)phenols 42 under
the atmospheric pressure of CO2. It was performed through an Rh(ii)-catalyzed C–H
bond activation, assisted by the ligand chelation of the phenolic hydroxyl group to afford
4H-furo[3,2-c]benzopyran-4-ones 43 (Scheme 14) [61]. This reaction indicates the role of
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phosphine ligands in combination with Rh2(OAc)4 in promoting the reactivity and the
selectivity during C–H carboxylation. The right choice of a suitable basic catalyst is an
additional critical point.
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rin-3-yl-hydrazine [62]. The compound 1-Aryloxy-4-chlorobut-2-ynes reacted with 
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sation of (44) with α-halo ketones, followed by cyclization catalyzed by TFA, led to the 
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c] benzopyran-4-ones 43. Reagents and conditions: (a) Rh2(OAc)4 (1 mol %), tricyclohexylphosphine
PCy3 (2 mol %), t-BuOK (4.5 equiv.), diglyme, 100 ◦C, 48 h, six outputs with 70%–86% yield.

2.1.2. Pyrroles

Fusion of the pyrrole ring with the pyrone ring of coumarin (benzopyrane) leads to
three structural isomers, viz. chromeno[3,4-b]pyrrol-4(3H)-one, chromeno[3,4-c]pyrrol-
4(2H)-one, and chromeno[4,3-b]pyrrol-4(1H)-one (Figure 2).
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3H,4H[1]Benzopyrano[3,4-b]pyrrol-4-one

Pyrrole Construction

The 3-Aminocoumarin (44) is considered the starting compound for the preparation of
fused 3H,4H[1]benzopyrano[3,4-b]pyrrol-4-ones. The amino group represents the key moi-
ety of this cyclization process in the reaction with different reagents [30,62–64]. Compound
45 was prepared by the reaction of 3-aminocoumarin (44) with different carbonyls via Fis-
cher indole synthesis after being diazotized and reduced to coumarin-3-yl-hydrazine [62].
The compound 1-Aryloxy-4-chlorobut-2-ynes reacted with 3-aminocoumarin (44) to afford
47 through amino-Claisen rearrangement [64]. Condensation of (44) with α-halo ketones,
followed by cyclization catalyzed by TFA, led to the formation of 49 [63], while 50 was
prepared under Nef conditions using 2-aryl-1- nitro ethenes [30] (Scheme 15).
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3H,4H[1]Benzopyrano[3,4-e]pyrrol-4-one

Pyrrole Construction

A one-pot, three-component reaction of phenylsulphinyl-2H-benzopyran-2-one (51),
phenylglycine (52), and benzaldehyde (53) led to the formation of 1,3-diphenyl[l]benzopy-
rano[3,4-e]pyrrol-4-one (55) (Scheme 16) [65].
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Scheme 16. Synthesis of 1,3-diphenyl[l]benzopyrano[3,4-e]pyrrol-4-one (55). Reagents and conditions: DMF, stirring, 120 ◦C,
24 h, 51% yield.

Xue et al. developed an efficient and straightforward synthetic protocol for the prepa-
ration of [1]benzopyrano[3,4-e]pyrrol-4-ones 59 through FeCl3-promoted, three-component
reactions between substituted 2-(2-nitrovinyl)phenols 58, acetylene dicarboxylate (57),
and amines 58 (Scheme 17) [66]. This reaction involved the sequential FeCl3-mediated
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nucleophilic addition of acetylenedicarboxylates, amines, and 2-(2-nitrovinyl)phenols, fol-
lowing intramolecular transesterifcation to form a coumarin core. This strategy offers a
complementary approach to substituted pyrrolo[3,4-c]coumarin compounds, with advan-
tages that include a variety of cheap and readily available reactants and a wide range of
substrates with dense or flexible substitution patterns [66].
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Alizadeh et al. reported a sequential three-component reaction of salicylaldehydes 60,
β-keto esters 61, and p-toluenesulfonylmethyl isocyanide (TosMIC) (62) via [1,3] acyl shift
to give 2-acyl[1] benzopyrano[3,4-e]pyrrol-4-ones 63 (Scheme 18) [67]. A simple workup
procedure, mild reaction conditions, lack of side products, and good yields of 62%–95% are
the main aspects of this method.
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Recently, Khavasi and his coworkers investigated the reactivity, chemo-, region-,
and diastreo-selectivity of p-toluenesulfonylmethyl isocyanide (TosMIC) (62) in Van Leusen-
type [3 + 2] cycloaddition reactions with the 3-acetylcoumarins 64 to give [1]benzopyrano
[3,4-e]pyrrol-4-ones 65 (Scheme 19) [68]. This method offers several advantages, such as
being inexpensive, providing good to excellent yields, producing short reaction times, high
atom economy, and ease of product isolation under catalyst-free conditions without any
activation at ambient temperature.
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[1]Benzopyrano[4,3-b]pyrrol-4-one

Pyrrole Construction

Many synthetic protocols have been reported for the synthesis of [l]benzopyrano
[4,3-b]pyrrole-4(1H)-ones, including the reaction of β-nitroalkenes 67 and 4-phenylamino
coumarins 66 under solvent-free conditions to afford 68 (Scheme 20) [69]. Moreover,
the reaction of the 4-aminocoumarin (69), amines 70, and glyoxal monohydrates 71 in the
presence of nanocrystalline CuFe2O4 [70], or KHSO4, led to the formation of [l]benzopyrano
[4,3-b]pyrrole-4(1H)-ones 72 (Scheme 21) [71]. The synthesis of 71 using nanocrystalline
CuFe2O4 discloses a rapid, high-yielding, green synthetic protocol for a variety of chromeno
[4,3-b]pyrrol-4(1H)-one derivatives by assembling the basic building blocks in an aqueous
medium using nano CuFe2O4 as the efficient, magnetically recoverable catalyst [70].
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Scheme 21. Synthetic protocol to synthesize [l]benzopyrano[4,3-b]pyrrole-4(1H)-ones 72. Reagents and conditions: CuFe2O4,
H2O, 70 ◦C, 25 outputs with 68%–94% yield; or KHSO4, toluene, reflux, 23 outputs with 37%–93% yield.

Many articles have found that the 4-chlorocoumarin is the key compound for the
preparation of various [l]benzopyrano[4,3-b]pyrrol-4-ones by Knorr- or Fischer–Fink-type
reactions [72,73]. Albrola et al. indicated the preparation of N(α)-(2-oxo-2H-l-benzopyran-
4-yl)Weinreb-α-aminoamides 75 from 4-chlorocoumarin (73) and different α-aminoacids 74.
The reaction of 75 with various organometallic compounds, followed by cyclization, led to
the formation of [l]benzopyrano[4,3-b]pyrrol-4-ones 76 (Scheme 22) [74,75].
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On the other hand, the 4-amino-2H-benzopyran-2-one is employed as a key compound
for the preparation of [l]benzopyrano[4,3-b]pyrrol-4-one [76,77]. Peng et al. synthesized
a series of [l]benzopyrano[4,3-b]pyrrol-4-ones 79 via a palladium-catalyzed oxidative an-
nulation reaction of 4-amino-2H-benzopyran-2-ones 77, with electron-withdrawing or
electron-donating groups with different alkynes 78 (Scheme 23) [76]. The method utilizes
simple and readily available enamines and alkynes, and employs direct Pd(II)-catalyzed
oxidative annulation to synthesize [l]benzopyrano[4,3-b]pyrrol-4-ones in high yields of
72%–99%.
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Scheme 23. The scope of 4-aminocoumarins in the preparation of [l]benzopyrano[4,3-b]pyrrol-4-ones 79. Reagents and
conditions: Pd(OAc)2, oxidant, DMSO, 100 ◦C, 12 outputs with 72%–99% yield.

Recently, Yang et al. reported a one-pot, two-step reaction of 4-amino-2H-benzopyran-
2-one (69) with arylglyoxal monohydrates 80 and p-toluenesulfonates 81 to afford a se-
ries of 3-alkoxy-substituted [l]benzopyrano[4,3-b]pyrrol-4-ones 82 and 83, respectively
(Scheme 24) [78]. On the other hand, Yahyavi et al. described the Knoevenagle treatment
of the arylglyoxals 84 with active methylene compounds and consequently an iodine-
activated Michael-type reaction with 4-aminocoumarin (69) in a one-pot manner to afford
disubstituted [l]benzopyrano[4,3-b]pyrrol-4-ones 85 (Scheme 24) [79].
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Scheme 24. Various arylglyoxals in the synthesis of [l]benzopyrano[4,3-b]pyrrol-4-ones 82, 83, and 85. Reagents and conditions:
(a) i: AcOH, reflux, 40 min; ii: an appropriate alkyl p-toluenesulfonate (TsOR2), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU),
toluene, reflux, 1.5 h, 14 outputs with 73%–89% yield; (b) R1=Ph, 4-CH3OC6H4, 4-CH3C6H4, 4-FC6H4, 4-ClC6H4, 4-BrC6H4,
2-thienyl; dimedone, 2-hydroxy-1,4-naphtoquinone barbituric acid, 1,3 dimethyl barbituric acid, I2, DMSO, stirring, 100 ◦C,
7 h, 15 outputs with 15%–80% yield.

2.1.3. Thiophenes

Fusion of the thiophene ring with the pyrone ring of coumarin(benzopyrane) leads to
three structural isomers, viz. 4H-thieno[2,3-c]chromen(benzopyran)-4-one, 4H-thieno[3,4-
c]chromen(benzopyran)-4-one, and 4H-thieno[3,2-c] chromen(benzopyran)-4-one (Figure 3)
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4H-Thieno[2,3-c]benzopyran-4-one

Thiophene Construction

The one-pot cascade addition/condensation/intramolecular cyclization sequence of
chromone (86) with ethyl 2-mercaptoacetate (87) using a complexing ligand 1,8-diazabicyclo
[5.4.0]undec-7-ene (DBU) in 1,4-dioxane led to the formation of 4H-thieno[2,3-c]benzopyran-
4-one (88) (Scheme 25) [80].
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1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,4-dioxane, 60 ◦C, 12 h, N2, 95% yield.

Pyrone Construction

The Suzuki–Miyaura cross coupling of bromoarylcarboxylates and o-hydroxy(methoxy)
arylboronic acids is one of the methods that plays an important role in the preparation of
4H-thieno[2,3-c] 91 and 4H-thieno[3,4-c]benzopyran-4-ones 92 (Scheme 26) [81–83].
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4H-Thieno[3,4-c]benzopyran-4-one

Thiophene Construction

4H-thieno[3,4-c]benzopyran-4-ones (94) were meanly prepared through the Gewald
reaction (Scheme 27) [84–90]. Low yields of 37% and 48% were observed using these methods.
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Yu et al. created a new technique for the preparation of 4H-thieno[3,4-c] [1]benzopyran-
4(4H)-ones 97 by applying a chemoselective reaction of thioamides 95 with α-bromoaceto-
phenones 96 (Scheme 28) [91].
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Scheme 28. Synthesis of 4H-thieno[3,4-c] [1]benzopyran-4(4H)-ones 97 via [4 + 1] annulations. Reagents and conditions:
NaOH, diethyl azodicarboxylate (DEAD), MeCN, r.t., 20 min, 17 outputs with 68%–95% yield.

A rhodium-catalyzed intramolecular transannulation reaction of alkynyl thiadiazoles
98 provided 4H-thieno[3,4-c][1]benzopyran-4(4H)-ones 99. A plausible reaction mechanism
proposed for the Rh-catalyzed intramolecular transannulation of alkynyl thiadiazoles is
outlined in (Scheme 29) [92].
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Scheme 29. A plausible reaction mechanism proposed for the preparation of 4H-thieno[3,4-c][1] benzopyran-4(4H)-ones
99. Reagents and conditions: [Rh(COD)Cl]2 (5 mol %), 1,1′-Ferrocenediyl-bis(diphenylphosphine) (DPPF) (12 mol %), PhCl,
130 ◦C, 30 min, three outputs with 75%–90% yield.
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4H-Thieno[3,2-c][1]benzopyran-4(4H)-one

Thiophene Construction

Numerous articles state the use of 4-chloro-2-H-benzopyran-3-carboxaldehydes 101 as
a key compound in the preparation of a series of 4H-thieno[3,2-c][1]benzopyran-4(4H)-ones.
This compound was prepared by a Vilsmeier–Haack reaction, and the cyclization process
was performed through a rection with thioglycolate or dithiane to produce 102 and 103,
respectively (Scheme 30) [25,26,93,94].
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Pyrone Construction

The palladium-catalyzed oxidative carbonylation of 2-(thiophen-3-yl)phenol (104)
under acid-base-free and mild conditions yielded the corresponding 4H-thieno[3,2-c][1]
benzopyran-4(4H)-one (105) (Scheme 31) [58].
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2.1.4. Selenophene

The fusion of the selenophene ring with the pyrone ring of coumarin leads to two struc-
tural isomers, viz. 4H-selenophen[2,3-c]chromen(benzopyran)-4-one and 4H-selenophen[3,2-
c]chromen(benzopyran)-4-one (Figure 4).
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4H-Selenophen[2,3-c] and [3,2-c]benzopyran-4-ones

A few articles have discussed the possibility of synthesizing the fused selenophen-
chromen-(benzopyran)-4-one moiety. A simple method for the synthesis of substituted 4H-
selenopheno[2,3-c] benzopyran-4-ones 108 is by the treatment of 3-ethynylcoumarins 107
with selenium (IV) oxide and concentrated hydrobromic acid at room temperature [16,95].
Similarly, 4H-selenopheno-[3,2-c]benzopyran-4-ones 111 was prepared under the same
conditions using 4-ethynylcoumarins 110. The alkenyl derivatives were obtained from
bromocoumarin (106) and 4-(trifluoromethane-sulfonyl)coumarin (109) by Sonogashira
coupling. All the reaction steps were carried out in situ from the starting materials and
until the end product (Scheme 32) [16,95].
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In conclusion, since coumarins have versatile applications, the synthesis of different 
structures of the coumarin-based scaffold was attempted. Among all the heterocycles 
built on the α-pyrone moiety of coumarin, the furan ring is the only available structure in 
nature. Thus, it has inspired a lot of researchers to replace the oxygen atom with other 

Scheme 32. Reagents and reaction conditions: a: PdCl2 (10 mol %), Ph3P (20 mol %), CuI (10 mol %),
terminal acetylene (1.5 equiv.), NMP, Et3N, 55 ◦C, 20 h; b: (Ph3P)4Pd (5 mol %), CuI (20 mol %),
terminal acetylene (1.5 equiv.), DMF, Et3N, r.t., 20 h; c: SeO2 (2 equiv.), conc. HBr, dioxane, r.t., 24–48 h,
compounds 108, four outputs with 68%–75% yield; compounds 111, four outputs with 64%–70% yield.

Additionally, Kirsch and his coworkers reported the synthesis of selenopheno[2,3-
c]benzopyran-4-ones (115) via a multistep reaction. This reaction cascade started by
Vilsmeier formylation of 4-hydroxycoumarine (111). The formylated product reacted with
hydroxyl amine to afford (113) according to the reaction conditions, which subsequently
transformed into 3-cyano-4-coumarinselenol (114), by refluxing with selenium and sodium-
borohydride in ethanol (Scheme 33). It was the precursor of selenopheno[2,3-c]benzopyran-
4-ones (115) as it was reactive towards a series of haloacids, such as chloroacetonitrile, ethyl
chloroacetoacetate, and chloroacetamide [96].

Molecules 2021, 26, x FOR PEER REVIEW 17 of 22 
 

 

4H-Selenophen[2,3-c] and [3,2-c]benzopyran-4-ones 
A few articles have discussed the possibility of synthesizing the fused seleno-

phen-chromen-(benzopyran)-4-one moiety. A simple method for the synthesis of sub-
stituted 4H-selenopheno[2,3-c] benzopyran-4-ones 108 is by the treatment of 
3-ethynylcoumarins 107 with selenium (IV) oxide and concentrated hydrobromic acid at 
room temperature [16,95]. Similarly, 4H-selenopheno-[3,2-c]benzopyran-4-ones 111 was 
prepared under the same conditions using 4-ethynylcoumarins 110. The alkenyl deriva-
tives were obtained from bromocoumarin (106) and 
4-(trifluoromethane-sulfonyl)coumarin (109) by Sonogashira coupling. All the reaction 
steps were carried out in situ from the starting materials and until the end product 
(Scheme 32) [16,95]. 

 
Scheme 32. Reagents and reaction conditions: a: PdCl2 (10 mol %), Ph3P (20 mol %), CuI (10 mol %), 
terminal acetylene (1.5 equiv.), NMP, Et3N, 55 °C, 20 h; b: (Ph3P)4Pd (5 mol %), CuI (20 mol %), 
terminal acetylene (1.5 equiv.), DMF, Et3N, r.t., 20 h; c: SeO2 (2 equiv.), conc. HBr, dioxane, r.t., 
24–48 h, compounds 108, four outputs with 68%–75% yield; compounds 111, four outputs with 
64%–70% yield. 

Additionally, Kirsch and his coworkers reported the synthesis of selenophe-
no[2,3-c]benzopyran-4-ones (115) via a multistep reaction. This reaction cascade started 
by Vilsmeier formylation of 4-hydroxycoumarine (111). The formylated product reacted 
with hydroxyl amine to afford (113) according to the reaction conditions, which subse-
quently transformed into 3-cyano-4-coumarinselenol (114), by refluxing with selenium 
and sodiumborohydride in ethanol (Scheme 33). It was the precursor of selenophe-
no[2,3-c]benzopyran-4-ones (115) as it was reactive towards a series of haloacids, such as 
chloroacetonitrile, ethyl chloroacetoacetate, and chloroacetamide [96]. 

 

Scheme 33. Synthesis of selenopheno[2,3-c]benzopyran-4-ones (115) from 4-hydroxycoumarin. Reagents and reaction con-
ditions: a: POCl3, DMF, 84% yield; b: NH2OH.HCl, 80% yield; c: Se, NaBH4, EtOH, 85% yield; d: ClCH2CN(R), DMF, stir-
ring, r.t., 2 h, three outputs with 80%–88% yield. 

In conclusion, since coumarins have versatile applications, the synthesis of different 
structures of the coumarin-based scaffold was attempted. Among all the heterocycles 
built on the α-pyrone moiety of coumarin, the furan ring is the only available structure in 
nature. Thus, it has inspired a lot of researchers to replace the oxygen atom with other 

Scheme 33. Synthesis of selenopheno[2,3-c]benzopyran-4-ones (115) from 4-hydroxycoumarin. Reagents and reaction
conditions: a: POCl3, DMF, 84% yield; b: NH2OH.HCl, 80% yield; c: Se, NaBH4, EtOH, 85% yield; d: ClCH2CN(R), DMF,
stirring, r.t., 2 h, three outputs with 80%–88% yield.

In conclusion, since coumarins have versatile applications, the synthesis of different
structures of the coumarin-based scaffold was attempted. Among all the heterocycles built
on the α-pyrone moiety of coumarin, the furan ring is the only available structure in nature.
Thus, it has inspired a lot of researchers to replace the oxygen atom with other heteroatoms.
Wide varieties of heterocycles were constructed by a synthetic pathway to introduce furans,
pyrroles, thiophenes, and selenophenes as a fused ring that is characterized by a single
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heteroatom to the α-pyrone moiety of coumarin. The fused heterocycles that contain more
than one heteroatom will be described in the next part, which we intend to publish in
the future.
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