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Abstract

Background: Experiencing emotions engages high-order orbitofrontal and medial prefrontal
areas, and expressing emotions involves low-level autonomic structures and peripheral organs.
How is information from the cortex transmitted to the periphery? We used two parallel
approaches to map simultaneously multiple pathways to determine if hypothalamic autonomic
centres are a key link for orbitofrontal areas and medial prefrontal areas, which have been
associated with emotional processes, as well as low-level spinal and brainstem autonomic
structures. The latter innervate peripheral autonomic organs, whose activity is markedly increased
during emotional arousal.

Results: We first determined if pathways linking the orbitofrontal cortex with the hypothalamus
overlapped with projection neurons directed to the intermediolateral column of the spinal cord,
with the aid of neural tracers injected in these disparate structures. We found that axons from
orbitofrontal and medial prefrontal cortices converged in the hypothalamus with neurons
projecting to brainstem and spinal autonomic centers, linking the highest with the lowest levels of
the neuraxis. Using a parallel approach, we injected bidirectional tracers in the lateral hypothalamic
area, an autonomic center, to label simultaneously cortical pathways leading to the hypothalamus,
as well as hypothalamic axons projecting to low-level brainstem and spinal autonomic centers. We
found densely distributed projection neurons in medial prefrontal and orbitofrontal cortices leading
to the hypothalamus, as well as hypothalamic axonal terminations in several brainstem structures
and the intermediolateral column of the spinal cord, which innervate peripheral autonomic organs.
We then provided direct evidence that axons from medial prefrontal cortex synapse with
hypothalamic neurons, terminating as large boutons, comparable in size to the highly efficient
thalamocortical system. The interlinked orbitofrontal, medial prefrontal areas and hypothalamic
autonomic centers were also connected with the amygdala.

Conclusions: Descending pathways from orbitofrontal and medial prefrontal cortices, which are
also linked with the amygdala, provide the means for speedy influence of the prefrontal cortex on
the autonomic system, in processes underlying appreciation and expression of emotions.
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Background

Neural processing of emotions engages diverse structures
from the highest to the lowest levels of the neuraxis. On
one hand, high-order association areas are necessary to
understand the significance of an emotional situation,
and on the other hand, low level structures must be acti-
vated to express the emotion through changes in the
rhythm of peripheral organs. The orbitofrontal cortex par-
ticipates in both of these processes (reviewed in [1,2]) and
when damaged, patients lack emotional propriety, and do
not show changes in heart rate and skin responses that
normally accompany emotional arousal [3,4]. A related
medial prefrontal area, in the anterior cingulate, has a role
in emotions as well, specializing in the expression of emo-
tions through pathways to autonomic structures in pri-
mates [5,6] as well as in rats (e.g., [7-12]). Both prefrontal
regions are connected with the amygdala, a structure with
a key role in emotions (reviewed in [13-15]).

The existence of diverse pathways that underlie emotional
processing through the prefrontal cortex in primates has
been described in piecemeal fashion in separate studies
(for reviews see [15-17]). It is not clear if pathways from
the prefrontal cortex to autonomic structures are circui-
tous or relatively direct. Another open question is whether
previously described pathways from prefrontal areas syn-
apse in autonomic structures [5,6], or merely pass
through. This information is critical, because key auto-
nomic structures in the hypothalamus and brainstem are
major thoroughfares for numerous and unrelated path-
ways (for review see [18]). Here we provide direct evi-
dence that pathways synapsing in the hypothalamus link
high-level prefrontal association cortex with low-level
autonomic structures. These serial pathways may allow
direct cortical control of autonomic functions in response
to complex emotional situations.

Results

Serial pathways link prefrontal cortices with
hypothalamic, spinal, and brainstem autonomic centers
We first investigated if pathways that can transmit infor-
mation from prefrontal cortex to autonomic centers over-
lap in the hypothalamus with pathways that innervate the
lowest autonomic level in the intermediolateral column
of the spinal cord. We addressed this question by placing
a bidirectional tracer in orbitofrontal area 12 to investi-
gate if axons from this area terminate in the hypothala-
mus (Fig. 1A). In the same animal, we placed a different
retrograde tracer in the intermediolateral column of the
thoracic spinal cord (Fig. 1B) to determine if neurons in
the hypothalamus project to this spinal autonomic region
(Table 1, case AV). This approach indicated that the two
pathways overlap in the hypothalamus, demonstrated by
intermixing of axonal terminations from the prefrontal
pathway, and labeled projection neurons giving rise to the
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lower pathway leading to the spinal cord. Specifically, the
pathways overlapped in several hypothalamic centers that
are involved in autonomic control, including the dorsal
hypothalamic area and tuberomammillary nucleus (Fig.
1C, DA, TM), the perifornical nucleus (Fig. 1D, Pef), and
the fields of Forel (Fig. 1E, FF). Axons originating in pre-
frontal area 12 also reached the lateral hypothalamic area
(LA), anterior hypothalamic area, and posterior hypotha-
lamic area. In the same experiment we found that prefron-
tal area 12 received projections from the basolateral (BL)
and lateral (L) nuclei of the amygdala (Fig. 1F, red dots).

We then used a different approach to obtain an overview
of the origin and relative strength of serial pathways lead-
ing from the prefrontal cortex to the hypothalamus, and
from the hypothalamus to autonomic regions in the
brainstem, in addition to the spinal autonomic center,
demonstrated above. We addressed this question by plac-
ing a bidirectional tracer in the lateral hypothalamic area
(Fig. 2B; Table 1, case AX), which has robust and bidirec-
tional connections with prefrontal cortices [5]. We then
mapped projection neurons which originated most
densely in posterior orbitofrontal (areas 13, 25, 012) and
medial (areas 24, 32, 14) prefrontal areas, leading to the
hypothalamus (Fig. 2A). In turn, axons from the same
hypothalamic area terminated in the intermediolateral
column (IML) of the spinal cord (Fig. 2E), and in several
brainstem sites (Fig. 2C,2D), including the reticular for-
mation (RF), the parabrachial nucleus (nPB), the raphe
nuclei (nRph), the periaqueductal gray (PAG), all of
which participate in autonomic control (for reviews see
[17,18]). In addition, the amygdala issued projections to
the same hypothalamic site, revealed by labeled projec-
tion neurons in its basal complex, and in the medial, cen-
tral, and cortical nuclei (Fig. 2F). We confirmed these
findings in another case by placing a retrograde tracer in
the lateral hypothalamic area (Fig. 3C; Table 1, case AW).
We mapped projection neurons originating densely from
the medial sector of area 25, area 32, the caudal orbitof-
rontal cortex (areas OPAll, OPro), and in moderate num-
bers from areas 24, 14, 13, 11 and 12 (Fig. 3A,3B) As in
the previous case, we found projection neurons in the
amygdala (Fig. 3D). Double-labeling experiments indi-
cated that a subpopulation of these projection neurons in
the amygdala were positive for the calcium binding pro-
tein calbindin, but not parvalbumin, which label distinct
classes of inhibitory interneurons in the amygdala (e.g.,
[19,20]). We found double-labeled, and presumably
inhibitory projection neurons, mostly in the central and
medial nuclei of the amygdala (not shown), confirming
and extending previous findings [21,22], but not in the
basolateral nucleus (BL), which projects to the hypothala-
mus as well (Figs. 2F; 3D).
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Overlap in hypothalamus of serial pathways from prefrontal area 12 and the intermediolateral spinal column.
(A) The bidirectional tracer fluororuby (fr) was injected in prefrontal area |12 (red area). (B) The injection of the retrograde
tracer fast blue (fb) was in the spinal cord, covering the intermediolateral cell column, the lowest central autonomic center
(blue area). Fast blue labeled neurons projecting to the spinal cord (blue dots) and labeled axons (brown lines) originating in
area |12 were intermingled in the following hypothalamic areas: (C) dorsal hypothalamic area (DA) and tuberomammillary
nucleus (TM); (D) perifornical nucleus (Pef); (E) fields of Forel (FF). (F) In the same case, labeled neurons in the basolateral (BL)
and lateral (L) nuclei of the amygdala projected to area 12 (red dots).

The connections of prefrontal cortices with the lateral
hypothalamic area were bidirectional and showed a spe-
cific laminar distribution. Projection neurons in prefron-
tal cortices originated mostly from the deep layers (V and
VI; Fig. 2A; 3A,3B). Hypothalamic efferents reached all
areas of the prefrontal cortex, terminating most densely in

layer I, followed by the deep layers (V-VI), and then layers
IT and the upper part of layer III (Fig. 2A). Only a small
number of hypothalamic fibres terminated in layer IV (7-
10%), and this pattern was seen only in orbitofrontal area
OPro, area 32, and to a lesser extent in area 24.
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Table I: Summary of cases, injection sites and hemisphere, tracers, and analyses

Case Injection site(s), Tracer Label type* #, areas analysed
(hemisphere)
AV O12, IML (left) fr, fb hypothalamus* (fr); # (fb), amygdala# (fr);
AW LA (right) fb prefrontal cortex#; amygdala#
AX LA (left) BDA prefrontal cortex#,*; amygdala#,*; brainstem, IML*
AY 32 (right) BDA LA*; synapses from area 32 in LA (EM)
BG 32 (right) BDA PA¥*; synapses from area 32 in PA (EM)

*Anterograde label; #retrograde label

Pathways from medial area 32 synapse in hypothalamic
autonomic centers

The independent observations from the two approaches
suggest that descending pathways from the prefrontal cor-
tex to the hypothalamus, and from the hypothalamus to
the brainstem and the spinal cord are serially connected.
However, because numerous pathways pass through the
hypothalamus, it was necessary to determine if labeled
axons from the prefrontal cortex synapse there, or simply
pass through. We addressed this question at the electron
microscopic level by investigating if axons from prefrontal
area 32 synapse in hypothalamic autonomic centers
(Table 1, case AY). We focused on area 32 because we pre-
viously found that it is heavily and bidirectionally con-
nected with the amygdala [23,24], and issues robust
projections to hypothalamic autonomic areas, including
the lateral hypothalamic area, the dorsal hypothalamic
area, the posterior hypothalamic area, the perifornical
nucleus, the paramammillary nucleus, the supramammil-
lary nucleus and the tuberomammillary nucleus [5]. Con-
sistent with previous findings in macaque monkeys
[5,6,25], projections from area 32 did not extend to the
endocrine-related paraventricular nucleus of the hypotha-
lamus (for review see [26]), a pathway described in rats

(e.g., [27]).

For analysis at the ultrastructural level we focused on syn-
apses formed between axonal boutons from area 32 in the
lateral hypothalamic area (LA). We found many synaptic
interactions between boutons from axons emanating
from area 32 and neuronal elements in the lateral hypoth-
alamic area (Fig. 4), and all synapses were asymmetric,
suggesting that they are excitatory (n = 143). Boutons
from medial area 32 synapsed with spines (55%; Fig. 4A)
and dendrites (45%; Fig. 4B) of the lateral hypothalamic
area. The distribution of labeled synapses differed signifi-
cantly from a randomly selected population of unlabeled
synapses in the region (n = 112), most of which involved
dendrites (79%), while a smaller proportion (21%)
involved spines (X2, P << 0.00001). Moreover, there were
significant differences in the synaptic features of a sample
of labeled (n = 108), in comparison with unlabeled syn-

apses (n = 75). The average area of profiles of labeled bou-
tons (0.701 + 0.003 pm?2) was higher than the unlabeled
(0.50 + 0.03 umZ; P < 0.0001), as was the average length
of the synaptic density of labeled terminals (0.592 + 0.015
pm), in comparison with unlabeled terminals (0.382 +
0.014 pum; P < 0.0001). These findings indicate that pre-
frontal axons target a specific population of postsynaptic
elements.

We confirmed and extended the above data in another
case, by demonstrating synaptic interactions between
boutons from prefrontal area 32 and postsynaptic ele-
ments of another area engaged in autonomic control, the
posterior hypothalamic area (Table 1, case BG). Double-
labeling for GABA revealed that while a significant pro-
portion of hypothalamic elements were positive for
GABA, none formed synapses with boutons from the pre-
frontal cortex.

Discussion

Combining two independent approaches to label multi-
ple pathways simultaneously, we have demonstrated that
the prefrontal cortex has relatively direct access to central
autonomic structures. This evidence suggests that high-
level prefrontal association areas in the posterior medial
and orbitofrontal cortex can rapidly influence autonomic
organs in complex emotional situations. This influence
reaches as far as the spinal cord, the final central auto-
nomic site, now demonstrated in a primate species. The
present data do not directly address whether prefrontal
axons terminate directly on projection neurons that inner-
vate spinal or brainstem autonomic centers. However, in
view of the massive projections from medial prefrontal
cortices to hypothalamic autonomic centers [5], their
strong synaptic interactions with presumptive excitatory
neurons demonstrated here, and the robust projections
leading from the hypothalamus to brainstem autonomic
centers (e.g., [28]), it is highly likely that the serial path-
ways are relatively direct.

Although presumptive support for some of these path-
ways was provided previously [5,6,25], the possibility was
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Serial pathways from the prefrontal cortex reach central autonomic structures. Pathways were mapped after injec-
tion of the bidirectional tracer BDA in the lateral (LA) hypothalamic area. (A) The first pathway is marked by projection neu-
rons (blue dots) originating most densely from orbitofrontal and medial prefrontal cortices leading to the injection site (brown
area in B). (B) The second pathway is marked by labelled axons emanating from the injection site and terminating in several
autonomic nuclei (brown lines): (C, D) brainstem nuclei; (E) the thoracic spinal cord; (F) A bidirectional pathway links the amy-
gdala with the same hypothalamic nuclei. The shaded areas in the amygdala show the specific termination zones of axons from
orbitofrontal cortex (yellow), and the diffuse termination zone by axons from medial prefrontal cortex (light brown), as
described by Ghashghaei and Barbas [24]. The dotted line in A indicates the upper border of cortical layer V, and brown lines

show the terminations of hypothalamic axons.
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Simultaneous labelling of pathways from orbitofrontal cortex and the amygdala to the lateral hypothalamic

area. (A) Densely distributed projection neurons in the posterior orbitofrontal cortex (areas OPAIl, OPro), and in medial area
25 projected to the lateral hypothalamic area (LA in C). (B) Projection neurons in prefrontal areas 32 and 14 and in other pre-
frontal areas directed to LA; (C) The injection site of fast blue (fb) was in LA of the hypothalamus. (D) Projection neurons from

the amygdala directed to the same area (LA) of the hypothalamus. The dotted line in A and B indicates the upper border of
cortical layer V.
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Figure 4

Axons from prefrontal area 32 synapse in the lateral
hypothalamic area. Axon terminals (At) were identified by
BDA label injected in area 32. (A) synapse (arrow) with den-
dritic spine (sp); (B) synapse (arrow) with dendrite (den).
Scale bar = | um.

not ruled out that prefrontal axons merely pass through
autonomic structures, as do many other pathways [18].
The present study provided compelling evidence that pre-

http://www.biomedcentral.com/1471-2202/4/25

frontal axons synapse with autonomic structures in the
hypothalamus, terminating as large boutons, comparable
in size to the highly efficient thalamocortical system [29].
The serial pathways mapped simultaneously provide the
means for orbitofrontal and medial prefrontal cortices to
influence the expression of emotions. Orbitofrontal and
medial prefrontal cortices are in a strategic position to
influence the expression of emotions through their robust
and bidirectional connections with the amygdala (e.g.,
[23-25],[30-36]).

Orbitofrontal and medial prefrontal cortices show some
key differences in their connections, suggesting that they
may have complementary roles in emotions, as summa-
rized in Figure 5. Orbitofrontal areas share with the amy-
gdala a panoramic view of the entire sensory periphery,
through robust connections with cortical areas represent-
ing every sensory modality (for reviews see [37,38]).
Moreover, the same sites in the amygdala that receive
sensory input from the cortex also innervate the orbitof-
rontal cortex [24,39]. This remarkably specific network
provides the orbitofrontal cortex with dual access to the
sensory environment: directly from sensory cortices (Fig.
5, pathway so), and indirectly from the amygdala [37]
(pathways s and s'). The massive indirect pathway
through the amygdala may allow the orbitofrontal cortex
to extract the emotional significance of events [37]. This
interpretation is supported by evidence that neurons in
the orbitofrontal cortex and the amygdala respond to sen-
sory stimuli only when they are significant for behavior,
and cease to respond when the stimuli lose their motiva-
tional value [40-42].

The pathways from orbitofrontal cortex to the amygdala
are equally robust and specific, terminating heavily on
presumed inhibitory neurons in the intercalated masses
[24] (Fig. 5, pathway a), which innervate the central
nucleus of the amygdala [43] (pathway a'). In turn, the
central nucleus innervates and inhibits hypothalamic and
brainstem autonomic structures [21,22] (pathway b). The
specific projection of the orbitofrontal cortex on the inter-
calated masses can essentially quiet the activity of the cen-
tral nucleus of the amygdala, and allow the hypothalamus
and brainstem to be activated in emotional situations
(Fig. 5). This evidence suggests that joint responses of the
orbitofrontal cortex and the amygdala could effectively
signal emotional value of the environment to the auto-
Nomic nervous system.

The medial prefrontal cortex differs from the orbitofrontal
by its comparatively sparse connections with sensory
areas [44], stronger projections to hypothalamic auto-
nomic centers [5], and widespread and diffuse innerva-
tion of several nuclei of the amygdala [24], which project
to the hypothalamus (for review see [45]; Fig. 2). There-
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Summary of pathways linking prefrontal cortex with structures associated with perception and expression of
emotions. Line thickness represents the density of projections. Direct and indirect sensory input to the orbitofrontal cortex: The
orbitofrontal cortex and the amygdala receive projections from every sensory modality through the cortex (pathways so, s),
and are robustly linked with each other, providing the structural basis for direct (so), and indirect (s and s') sensory input to
the orbitofrontal cortex. The orbitofrontal cortex disinhibits hypothalamic autonomic centers: Orbitofrontal axons terminate heavily
in the intercalated masses of the amygdala (IM, pathway a), which project to the central nucleus (a'), which projects to hypoth-
alamic autonomic centers (pathway b). Activation of pathways (a, a') leads to disinhibition of hypothalamic autonomic centers,
which innervate brainstem and spinal autonomic centers (pathways c', 0'). Direct and indirect pathways from medial prefrontal
areas to hypothalamic autonomic centers: The direct pathway courses from medial prefrontal cortex to hypothalamic autonomic
centers (c), forming asymmetric (and presumed excitatory) synapses in the lateral and posterior hypothalamic areas. The indi-
rect pathway courses from medial prefrontal cortices to the parvicellular sector of the basolateral nucleus of the amygdala
(BLpc, pathway d), which projects to hypothalamic autonomic centers (d'), and is presumed to be excitatory. Activation of the
direct or indirect pathways ultimately activates brainstem and spinal autonomic nuclei (pathways c, c', 0'), which innervate
peripheral organs. Red, inhibitory pathways; green, excitatory pathways.

fore, the medial prefrontal cortex has dual access to the
emotional motor system: through a direct pathway to
hypothalamic and brainstem autonomic centers [5,6,46]
(pathway c), and indirectly through the amygdala [24]
(pathways d, d1 and d') and the extended amygdala [47].
The direct pathway from medial area 32 avoids inhibitory
interneurons, and forms asymmetric, and presumed exci-
tatory synapses, targeting preferentially spines in the
hypothalamus, which are enriched on dendrites of excita-
tory neurons [48]. A significant component of the second
part of the indirect pathway courses from the basolateral
nucleus to hypothalamic autonomic centers (pathway d').

This pathway, which also appears to have excitatory bias,
has a role in the process of learning the significance of
motivationally relevant cues [49]. If proved to be excita-
tory in functional studies, then the medial prefrontal cor-
tex may amplify the output of the basolateral nucleus to
the hypothalamus (pathway d'), while also exerting a
direct excitatory influence on the hypothalamus through
the direct pathway to the hypothalamus (Fig. 5, pathway
¢). This evidence is consistent with the designation of
medial prefrontal cortex as the emotional motor system
[50,51].
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Appreciation of emotions is a complex and conscious
process that must involve the cortex [52], as the amygdala
is activated even when humans are unaware of having
'seen’ masked pictures of fearful faces [53]. Instead, the
amygdala may be wired for vigilance and fast reaction
when danger lurks, through thalamic pathways that
bypass the cortex [54]. Repetitive activation of the remark-
ably specific and bidirectional pathways linking the amy-
gdala with the orbitofrontal cortex [24] may be necessary
for conscious appreciation of the emotional significance
of events. Orbitofrontal and medial prefrontal cortices are
connected with each other, as well as with lateral prefron-
tal cortices, which are implicated in cognitive functions
[55]. Acting in concert, the prefrontal cortex likely can
evaluate emotional events and influence rapidly the low-
est levels of the autonomic nervous system for emotional
expression.

Conclusions

We demonstrated that serial pathways link relatively
directly prefrontal cortices with efferent autonomic struc-
tures. Thus, medial prefrontal and orbitofrontal cortices,
which are associated with appreciation of emotions,
project to hypothalamic autonomic centers, which inner-
vate brainstem and spinal autonomic structures. The
latter, in turn, innervate peripheral organs whose activity
is markedly increased in emotional arousal. The pathways
are robust, and at least the medial pathway from area 32
forms excitatory connections in the hypothalamus, which
are comparable in size to the highly efficient thalamocor-
tical pathways. Disruption of the prefrontal-autonomic
circuits will likely have widespread repercussions in
behavior. The hypothalamic sites innervated by prefrontal
pathways project onto neurochemically specific structures
in the brainstem [56], which broadcast widely to the
cortex (e.g., [57]; for review see [58]). In the prefrontal
cortex normal function is critically dependent on a deli-
cate balance of transmission by dopaminergic and adren-
ergic fibers [59]. Damage to orbital and medial prefrontal
areas disconnects the prefrontal cortex from the amy-
gdala, from central autonomic structures, and from lateral
prefrontal areas associated with executive functions. Such
disconnection may help explain why patients with orbit-
ofrontal lesions have inappropriate affect, lack emotional
responsiveness, and make poor decisions (for review see
[2]). At the opposite extreme, psychiatric conditions char-
acterized by chronic anxiety, such as obsessive-compul-
sive disorder, activate excessively the orbitofrontal cortex
[60], and by extension may influence the function and
integrity of autonomic structures and peripheral systems,
such as the heart.

List of abbreviations
A, arcuate sulcus; Amy, amygdala; At, axon terminal; BDA,
biotinylated dextran amine; BL, basolateral nucleus of the

http://www.biomedcentral.com/1471-2202/4/25

amygdala (mc, magnocellular division; pc, parvicellular
division); BM, basomedial nucleus of the amygdala (also
known as accessory basal); Ce, central nucleus of the amy-
gdala; Cel, central nucleus of the amygdala, lateral divi-
sion; Cem, central nucleus of the amygdala, medial
division; Cg, cingulate sulcus; cl, claustrum; Co, cortical
nucleus of the amygdala; cp, cerebral peduncle; DA, dor-
sal hypothalamic area; den, dendrite; EM, electron micro-
scopy; fb, fast blue; FF, fields of Forel; fr, fluororuby; fx,
fornix; GP, globus pallidus; ic, internal capsule; IM, inter-
calated masses; IML, intermediolateral column of the spi-
nal cord; L, lateral nucleus of the amygdala; LA, lateral
hypothalamic area; Me, medial nucleus of the amygdala;
mt, mammillothalamic tract; nBM, nucleus basalis of
Meynert; nPB, parabrachial nucleus; nRph, nucleus raphe;
nT, nucleus tractus solitarii; ot, optic tract; PA, posterior
hypothalamic area; PAG, periaqueductal grey; Pef, perifor-
nical nucleus of the hypothalamus; PLBL, paralamellar
basolateral nucleus of the amygdala; Put, putamen; RF,
reticular formation; SN, substantia nigra; sp, spine; STh,
subthalamic nucleus; T6, spinal thoracic level 6; TM,
tuberomammilllary nucleus of the hypothalamus; VCo,
ventral cortical nucleus of the amygdala; Vm, ventrome-
dial nucleus of the hypothalamus.

Methods

Surgery

Experiments were conducted on 5 rhesus monkeys
(Macaca mulatta) according to the NIH guide for the Care
and Use of Laboratory Animals (NIH pub. 86-23, revised
1996). Experimental protocols were approved by the
IACUC at Boston Univ. Sch. of Medicine, Harvard Medical
School and New England Primate Research Center. Sur-
gery was performed under general gas anesthesia (isoflu-
rane) and sterile conditions for injection of neural tracers,
as described previously [39]. We determined the stereo-
taxic coordinates of cortical area 32 and the lateral
hypothalamic area, an autonomic center, from magnetic
resonance images (MRI), using as reference hollow ear
bars filled with betadine salve, which is visible in MRI.

In one animal we injected fluororuby (dextran tetrameth-
ylrhodamine, MW 3000, Molecular Probes, cat. # D3308,
Eugene, OR) in prefrontal area 12, and fast blue (Sigma,
cat. # F5756, St. Louis, MO) in the intermediolateral col-
umn at the upper thoracic region (T5-T6) to label in the
hypothalamus axonal terminations emanating from area
12 and projection neurons in the hypothalamus directed
to the spinal cord (Table 1, case AV). In two other animals
we injected the retrograde tracer fast blue, or the bidirec-
tional tracer BDA (biotinylated dextran amine, Molecular
Probes, cat. # D-7135, Eugene, OR) in the lateral
hypothalamic area to label neurons in the prefrontal cor-
tex and the amygdala projecting to the hypothalamus, and
BDA labeled axons in the brainstem and spinal auto-
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nomic centers, and prefrontal cortex (Table 1, cases AW,
AX). In two other animals we injected BDA in medial pre-
frontal area 32 to investigate if axons emanating from the
injection site form synapses with neurons in hypotha-
lamic autonomic centers, including the lateral
hypothalamic area and the posterior hypothalamic area
(Table 1, cases AY, BG).

Tissue processing and histological procedures

Tissue sectioning into matched series

After a survival period of 18 days, animals were anesthe-
tized and perfused through the heart with saline followed
by 4 1 of 4% paraformaldehyde in 0.1 M phosphate buffer,
pH 7.4. For electron microscopy 0.2% glutaraldehyde was
added to the perfusate. The brain was removed from the
skull, photographed and cryoprotected in graded sucrose
solutions (10-25% in 0.1 M phosphate buffer), frozen in
-75°C isopentane, and cut in the coronal plane at 50 pm
in ten series. In a case with BDA injection in the hypotha-
lamus (Fig. 2), the brainstem and upper thoracic spinal
cord were cut in five series. In cases with fluorescent dye
injections, one series was mounted and used to map
labeled neurons and terminals. After plotting, sections
were stained with thionin and returned to the microscope
to place architectonic borders.

Immunocytochemical procedures

In BDA experiments, one series of sections was treated in
a Vector ABC Elite solution (PK-6100) overnight and 2-5
min in a 3,3'-diaminobenzidene tetrachloride (DAB-Plus,
Zymed Laboratories).

To simultaneously see if some of the fast blue labeled neu-
rons in the amygdala projecting to the hypothalamus
were inhibitory, we conducted standard immunocyto-
chemical procedures in separate series for the calcium
binding proteins calbindin and parvalbumin. These
markers label distinct classes of inhibitory neurons in the
amygdala (e.g., [19,20]). The tissue was washed with 0.1
M PBS (pH 7.4) and preblocked with 10% goat serum
(with 0.2% Triton-X) for 1 hour, and incubated for 2-3
days in primary antibody for parvalbumin (1:2,000;
mouse monoclonal, Chemicon), or calbindin (1:2,000;
mouse monoclonal, Accurate Chemical and Scientific
Corp.) for 2-3 days. The tissue was then placed overnight
in goat-anti-mouse IgG conjugated with the fluorescent
probe Cyanoindocarbocyanine (Cy3, Chemicon, 1:800),
or Alexa 488 (Molecular Probes, 1:200) with 0.1% Triton-
X and 1% normal goat serum), and rinsed in PBS.

Tissue processing for electron microscopy

BDA treated sections were processed for electron micros-
copy. To determine the relationship of BDA labeled bou-
tons from prefrontal area 32 to inhibitory interneurons in
the hypothalamus, BDA treated sections were processed

http://www.biomedcentral.com/1471-2202/4/25

for pre-embedding immunocytochemistry for GABA
(1:1,000; mouse monoclonal, Sigma, St. Louis, MO)
according to the method of Pickel et al. [61]. Tissue sec-
tions were mounted, viewed under the light microscope
and imaged with a CCD camera while wet. Small blocks
of sections with BDA label, or BDA and GABA label in the
same section in hypothalamic areas were cut under a dis-
secting microscope, postfixed in 0.5% osmium tetroxide
in phosphate buffer (pH 7.4), washed in PBS and dehy-
drated in ascending series of alcohol, cleared in propylene
oxide and embedded in Araldite at 60°C. Ultrathin sec-
tions (70 nm) were cut with a diamond knife (Diatome,
Fort Washington, PA) using an ultramicrotome (Ultracut,
Leica Wein, Austria) and collected on single slot grids. Sec-
tions were then stained with saturated uranyl acetate and
lead citrate for transmission electron microscopy to view
and photograph labeled synapses.

Data Analysis

Light and fluorescence microscopy

We viewed tissue under bright-field or fluorescence illu-
mination. We mapped and recorded electronically the
injection site as well as projection neurons and axonal ter-
minations. Mapping of retrogradely labeled neurons or
axon terminals was conducted using a microscope-com-
puter interface and digital plotter using software devel-
oped in our laboratory, as described previously (e.g.,
[44]), or a commercial system (Neurolucida, MicroBright-
Field, Colchester, VT). On the side ipsilateral to the injec-
tion site we mapped: projection neurons in the prefrontal
cortex and the amygdala that were retrogradely labeled
after hypothalamic injections of the tracers fast blue or
BDA; and axon terminals and boutons in the brainstem,
spinal cord, and prefrontal cortex, labeled after injection
of the bidirectional tracer BDA in the hypothalamus.
Maps were obtained from one series of sections, using
every section through the hypothalamus, the amygdala,
the brainstem, and the thoracic spinal cord, and every
other section through the prefrontal cortex. The nomen-
clature for the prefrontal cortex is according to the map of
Barbas and Pandya [62], as modified from the map of
Walker [63]. The terminology for the hypothalamus in
macaque monkeys varies significantly in the literature, as
summarized in a previous study [5]. As in our previous
study, the terminology here relies on a combination of
classic and modern studies in the human and monkey
[26,64-67], including maps delineated on the basis of
neurochemical features [68,69].

Electron microscopy

Synapses formed between hypothalamic neurons and
labeled boutons from axons emanating from prefrontal
area 32 were viewed on a JEOL CX-100 microscope at
X10,000 and photographed. Photographic negatives were
scanned and imported in an image analysis software sys-
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tem (MetaMorph, Universal Imaging). The cross-sectional
area of synaptic boutons and the synaptic length were
measured and data were imported into Excel for statistical
analyses. We used classic criteria for identifying synapses
and profiles [48]: aggregation of synaptic vesicles in the
presynaptic bouton; rigid apposition of the presynaptic
and postsynaptic membranes and associated widening of
the extracellular space; and the presence of pre- and post-
synaptic membrane specializations. Asymmetric synapses
(type I) were classified by thickened postsynaptic densi-
ties and rounded vesicles; and symmetric (type II) syn-
apses by thin postsynaptic densities and pleomorphic
vesicles. In heavily labeled boutons the type of the vesicles
could not be identified, so we used the postsynaptic den-
sity to classify synapses. Dendritic shafts contain mito-
chondria, microtubules and/or rough endoplasmic
reticulum, while dendritic spines lack these organelles.
Estimates of unlabeled synapses were made from photo-
graphs containing at least one labeled bouton (total area
sampled, 1,607.5 pm?2).
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