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Abstract

Animals’ exchanges are considered the most effective route of between-farm infectious dis-

ease transmission. However, despite being often overlooked, the infection spread due to

contaminated equipment, vehicles, or personnel proved to be important for several livestock

epidemics. This study investigated the role of indirect contacts in a potential infection spread

in the dairy farm network of the Province of Parma (Northern Italy). We built between-farm

contact networks using data on cattle exchange (direct contacts), and on-farm visits by vet-

erinarians (indirect contacts). We compared the features of the contact structures by using

measures on static and temporal networks. We assessed the disease spreading potential of

the direct and indirect network structures in the farm system by using data on the infection

state of farms by paratuberculosis. Direct and indirect networks showed non-trivial differ-

ences with respect to connectivity, contact distribution, and super-spreaders identification.

Furthermore, our analyses on paratuberculosis data suggested that the contributions of

direct and indirect contacts on diseases spread are apparent at different spatial scales. Our

results highlighted the potential role of indirect contacts in between-farm disease spread

and underlined the need for a deeper understanding of these contacts to develop better

strategies for prevention of livestock epidemics.

Author Summary

Farm-to-farm contacts due to shared operators and vehicles–such as veterinarians, hoof-

trimmers, milk and rendering trucks–are generally considered important for the spread of

many infectious diseases in livestock systems. These contacts are usually defined as indi-
rect, as opposed to animal movements which are defined as direct contacts. The actual
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significance of indirect contacts is still poorly understood due to study limitations deriving

from their highly diverse and complex nature and to privacy issues in data collection. Thanks

to the availability of high-resolution data in space and time on veterinarian on-farm visits in

a dairy farm network in Northern Italy, we showed through network analysis techniques

that between-farm indirect contacts are more widespread and display significantly different

patterns compared to direct contacts. Using infection data on paratuberculosis, we also

found that indirect contacts can support disease spread at local scale, while direct contacts

(due to long distance animals exchanges) can support disease spread on a larger spatial scale.

Our results corroborate the conclusion that the role of indirect contacts in livestock disease

spread is essential and deserves a deeper understanding.

Introduction

The structure of contact networks between individuals from human and animal populations is

a key determinant of the dynamics of communicable diseases. In response to the Bovine Spon-

giform Encephalopathy crisis, the Council of the European Union implemented in 1997 a sys-

tem of permanent identification of individual bovine animals enabling reliable traceability

from birth to death. A fundamental part of this system consists in an extensive database to

track movements of farmed animals. Information on between-farm animal movements have

been used to reveal the existing contact network structure within livestock systems [1–5], as it

is considered the most effective route of disease transmission [6]. The study of the disease

spread in livestock systems made it possible to fine tune surveillance systems, to address bio-

safety guidelines and control strategies aimed to reduce the risk of disease outbreaks, and to

limit the impact on animal health and economic sustainability of farming systems.

The vast majority of these studies, models and analyses mainly (if not exclusively) focuses

on direct contacts, i.e. infections following the movement of diseased animals between farms.

Alternative and often more cryptic transmission pathways have received much less attention,

even though they can crucially affect the efficacy of disease surveillance and control systems.

For instance, in 2001 foot-and-mouth Disease (FMD) epidemic in the UK, although animal

movements were banned since late February, the on-set of newly infected farms was reported

until the end of the summer [7,8]. Since further studies excluded a strong effect of aerial spread

for the FMD virus strain in question, the only alternative route of transmission for the infec-

tion was represented by the spread through fomites [9]–such as contaminated operators, vehi-

cles, and equipment–potentially capable of carrying pathogens from infected farms to

susceptible ones [10]. In fact, the FMD epidemic stopped only after the implementation of

stronger biosecurity measures in UK farms, which mostly targeted the movement of contami-

nated equipment and personnel [8].

Between-farm disease transmission through fomites, mediated by operators and personnel

external to the farm, is usually defined as indirect transmission [11]. In recognition of its

importance, epidemiological models of disease dynamics in livestock have started to include

different pathways of between-farm transmission in addition to cattle movements (see [12],

and references therein).

Unlike animal movements, the role of indirect transmission of livestock diseases is still

largely unknown. The reason for this knowledge gap is twofold: on the one hand, because of

the subtle, highly diverse and complex nature of indirect contacts, it is intrinsically difficult to

assess the relative importance of alternative transmission pathways for disease risk. On the

other hand, because of privacy reasons, it is much easier to track livestock movements than
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that of farm operators and personnel. Indeed, collecting reliable and extensive quantitative

data on indirect contacts on a temporal and spatial scale relevant for epidemiological modelling

has proved to be very challenging. Information on farm operator movements has been generally

gathered by using voluntary questionnaires on the number and the frequency of farm visits

over a given time span [10,11,13–15]. Despite the usually low questionnaire response rate and

the low number of farms involved in these studies, this approach has been crucial to provide a

preliminary rank of categories of indirect contacts by potential disease risk. However, the infor-

mation gathered has been often insufficient to fully investigate the network structure of indirect

contacts in a given area, and to characterize the contact frequency between farms. This is why

only few studies have applied network analysis techniques on questionnaire-based data (see e.g.

[10,16,17]).

Alternatively, indirect routes of transmission in epidemic models have been represented

using risk kernel functions [18,19]. These are functions assigning a probability of between-farm

disease transmission on the basis of the inter-farm distance [19,20]. However, the approach

based on kernel functions is unable to tease apart the relative importance of different networks

of indirect contacts, such as those associated to the movement of different farm operators.

The aim of this work is to present a novel quantitative analysis of the relative importance of

indirect and direct contacts in a network of 1,349 dairy farms in the Province of Parma in the

Emilia Romagna Region (Italy). The analysis is based on a unique, high-resolution temporal

and spatial database of between-farm movements of 50 public officers of the regional veterinary

service and 203 private veterinary practitioners (which represent the potentially infectious indi-

rect contacts). The former visit a large number of farms usually only few times a year; the latter

serve a small subset of farms each, and they visit them several times per year. We thus expected

that the structures of their contact networks are substantially different and might result in differ-

ent risks of disease transmission through fomites. We used network analysis to characterize the

structure of the networks of indirect contacts and contrast them with the structure of the net-

work of direct contacts (i.e. the one associated to animal movement/trade). Then, we assessed

the contribution of both direct and indirect contacts networks in explaining the observed spatial

distribution of dairy farms infected byMycobacterium avium subsp. paratuberculosis (MAP).

MAP is responsible for Johne’s disease, a chronic gastrointestinal inflammation affecting rumi-

nants and it is endemic in the study area [21]. It is well documented that animal movements

represent the primary route of MAP transmission between farms [22,23]. However, the role of

fomites such as footwear [24] and shared farm and veterinary equipment [25] as secondary

transmission routes has been highlighted. Finally, we used advanced techniques in network

analysis to characterize the temporal network defined by direct and indirect contacts in order to

understand the between-farm transmission for fast spreading diseases where the time scale of

epidemics is similar to those of the evolution of the network, such as FMD [26].

Materials and Methods

Dairy farms and cattle movement data

Our study system is represented by a network of 1,349 dairy farms operating in the Province of

Parma (Emilia-Romagna region, Italy) in 2013 (Fig 1). For each farm, we extracted from the

Italian National Bovine Database (BDN) a unique identification code and the related spatial

coordinates. As we were interested in analysing the structure of the cattle movement network

on a wider geographical scale and time window as well, we extracted from BDN also informa-

tion on cattle movement from the 4564 dairy farms operating in the whole Emilia-Romagna

region (which includes also the province of Parma) between 2010–2013. Each individual cattle

movement record contained: a unique identification code for the animal, identifier codes of
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the farms of origin and destination, codes for farm production sector (dairy or mixed), and the

movement date.

As the Province of Parma is a strongly oriented dairy area, beef farms were not consid-

ered in the present study. In fact, they represented less than 25% of the total cattle farms

area (473 over 1,822), and the two systems are almost completely separated. The only unidi-

rectional contact points consist in the shipment of surplus individuals from dairy, mostly

male calves, to beef farms. Beef farms are less involved in veterinarians networks too. First,

they do not receive frequent inspections because they are not included in surveillance plans

for most diseases (i.e. bovine tuberculosis [27]). Second, beef animals receive less care by

practitioners, in part because individuals’ life span is shorter (2 vs. 5 years for dairies [27]),

but also because the lower economic value of individuals does not justify intensive health

assistance as for dairy cattle.

The network of cattle movements was assembled by creating a directed edge between any

two farms (representing network nodes) that exchanged animals during the observed period

and setting a non-zero value in the corresponding adjacency matrix [28]. Among the many

ways in which edges could be weighted in a time-aggregated cattle movement network [29],

we considered (i) the unweighted case, in which a link value is equal to 1 if at least one contact

exists in a given period, and 0 otherwise; and (ii) the case in which links are weighted propor-

tionally to the number of animals exchanged through each contact within a given period.

Veterinarians movement data

Data on visits of veterinary officers (VO) were provided by the Local Health Unit of Parma

Province (LHU). These visits were scheduled by the LHU for various purposes, including

Fig 1. Parma Province dairy system. The Province of Parma (green) and Emilia-Romagna region (red).

Blue dots correspond to the dairy farms active in 2013.

doi:10.1371/journal.pcbi.1005301.g001
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animal health inspection and disease surveillance. We created a database including all visits on

dairy farms during the year 2013. For each visit we recorded the farm unique identifier, the

identifier of the VO visiting the farm (in an anonymous form), and the visit date.

Data on veterinary practitioners (VP) were obtained from three datasets. The first was the

list of drug prescriptions in 2013, that is, documents that compulsorily need to be (i) signed by

a registered practitioner, and (ii) delivered and kept by both the LHU and the farm. For this

reason, each drug prescription corresponds to at least one on-farm visit by a veterinarian. This

dataset contained the unique identifier of the farm where the drug was prescribed, the identi-

fier code of the VP prescribing the drug (in an anonymous form), and the prescription date.

The second dataset was constituted by the records of diagnostic samples submitted to the Isti-

tuto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), the local

veterinary diagnostic laboratory. These samples are collected on farm by practitioners and

delivered to the IZSLER for biological testing. This dataset contained the unique identifier of

the farm where the sample was collected, the identifier of the VP collecting the sample (in an

anonymous form), and the date of collection. The third dataset included the list of on-farm

inspections on order of the LHU, but subcontracted to VPs. For each dataset, the record con-

tained the VP identifier, the farm unique identifier, and the visit date.

To build the VO and the VP contact networks, we assigned a directed edge connecting a

given farm to those later visited by the same veterinarian within a given time interval. This

time interval represents the time span in which the veterinarian or her/his equipment can

remain contaminated by the pathogenic agent. We defined it as contamination period, h, and

it depends on the pathogen ability to survive in the environment and on the type of contami-

nated material.

The order by which VO and VP operators visited the farms within a given day was not

reported in the dataset. Thus, to define the contact chain generated by multiple farm visits

occurring in any given day, we generated 50 networks with potential itineraries by randomly

selecting, for each veterinarian, the first farm visited in that day, so to derive the itinerary that

minimized travel distance (see S1 Text for details on method and software).

The analyses of network structure and disease risk were conducted by setting h = 0 days

under the conservative assumption that only within day visits can result in infection transmis-

sion. We assessed the effect on network properties of higher values for h in a specific analysis

reported in S1 Text. As for the cattle movement network, we also developed a weighted version

of the veterinarian networks, where the weighting coefficients represent the number of con-

tacts within the year 2013.

Structural properties of networks

To evaluate the potential risk of disease spread in the three different networks (CM, VO, and

VP), as per other studies on farm networks [2,3,30], we first derived three important metrics

for each network, namely: (i) the link density [31], which is defined as the fraction of observed

links over the possible number of links; (ii) the giant strongly connected component (GSCC)

[2], which is defined as the biggest portion of the network in which each node is reachable

from any other node; and, in the weighted version of the networks, (iii) the contact frequency,

which is defined as the mean frequency of the observed links within the observation period.

The node degree k, a central measure in network theory, is defined as the number of links

for each node [28]. As our networks were characterised by directed links, we derived two node

degrees for each farm in each contact network: the i-th farm in-degree, defined as the total

number of farms from which farm i receives cattle or farms visited by VO and VP before visit-

ing farms i (kI); and i-th farm out-degree, defined as the number of farms to which farm i
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sends cattle or farms visited by VO and VP after visiting farm i (kO). Consequently, for each

contact network, we computed the degree distributions P(kI) and P(kO), respectively. In the

case of VO and VP networks, we computed degrees and degree distributions assuming h = 0

days (analyses based on different assumptions on h are shown in S1 Text). In addition, in the

case of weighted networks, we computed the node strengths, which are defined as the sum of

all incoming (in-strength, SI) and outgoing (out-strength, SO) links’ weights [28]. As for the

degrees, for each weighted contact network, we computed the strength distributions P(SI) and

P(SO) (see S1 Text for details).

Define farm exposure to infection

A fundamental assumption in the spatial analysis of epidemiological data for communicable

diseases is that the contact network is an important driver of the observed disease dynamics

and, accordingly, may be able to partially explain the spatial distribution of reported cases of

the infectious disease under study. Here, we wanted to assess the relationship between direct

and indirect contact networks andMycobacterium avium subsp. paratuberculosis (MAP) posi-

tive farms at regional scale (i.e. Emilia-Romagna, for cattle movements only) and local scale

(i.e. Parma province, for veterinarians and cattle movements) by using data on the infection

status of 2,648 dairy farms in Emilia-Romagna region (whereof 966 in Parma province) as

identified in Ricchi et al. [21]. The infection state of farms, positive or negative, was evaluated

by ascertaining the presence of MAP in bulk tank milk by real-time PCR targeting insertion

sequence IS900, twice per farm [21]. To avoid detection bias, farms for which bulk tank milk

had not been tested for MAP were excluded from the analysis.

Since MAP has a long incubation period [32] and, consequently, a slow infection dynamics,

static network measures as those underlying our analysis can be appropriately used to repre-

sent the between-farm disease transmission, as shown by [26]. To assess the relationship

between MAP presence and direct/indirect contact structures, we used a network-based

model approach similar to that developed in [16]. Specifically, we defined the mean exposure

to infection of MAP positive farms (EI) as:

EI ¼
Pn

j¼1

P
i6¼jEijdj

Pn
j¼1

dj
; ð1Þ

where δj = 1 [δj = 0] if farm j is MAP positive [negative]; and Eij represents exposure of farm j
to farm i, defined as Eij = Aij (where A represents the adjacency matrix of the weighted net-

work) if farm i is MAP positive; Eij = 0 otherwise. Consequently, ∑i 6¼ jEij represents the total

exposure for farm j. Analogously, we defined the mean exposure to infection of MAP negative

farms (ES) as:

ES ¼
Pn

j¼1

P
i6¼jEijyj

Pn
j¼1

yj
; ð2Þ

where θj = 1 [θj = 0] if farm j is MAP negative [positive]. Garcia Alvarez et al. [16] proposed

that, if the infection was transmitted from the observed contact networks, we would expect

that MAP positive farms were more exposed than MAP negative ones (i.e., EI> ES). In addi-

tion, we would expect that MAP positive farms were more exposed in the observed contact

network than in a random one, while MAP negative farms were expected to be less or similarly

exposed compared to a random network. To test these hypotheses, we generated random net-

works with the same number of nodes as in the observed contact networks, but randomly allo-

cating the edges between the nodes. In order to investigate the impact of the network linking
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pattern (instead of the in-degree distribution) on the spread of the disease, the distribution of

farm contacts was maintained through a rewiring process in the random networks, as sug-

gested by Kiss et al. [33]. The node state with respect to MAP infection was maintained fixed

in all random networks using the observed bulk tank milk data.

Since MAP can persist in farms for years, we also tested whether our results were robust

with respect to the specific year used to derive the contact networks. In particular, for the cattle

movement network, for which data were available for multiple years, we tested whether con-

tact networks built by using data from years 2010–2012 could explain the infectious state by

MAP detected in 2013. In addition, since in the absence of biosecurity measures MAP can per-

sist in the environment, we tested whether our results at local and regional scale were robust

with respect to different assumptions on the contamination period (specifically, h = 0 and

h = 7 days).

Moreover, to determine the possible effect of spatial clustering as a driver of the differences

in MAP positivity among farms, we used the q-nearest neighbours test. The q-nearest neigh-

bours is a non-parametric test able to identify a potential spatial clustering in the distribution

of cases, by computing the number of cases observed within the q neighbour farms of each

positive case [39]. We set the number of neighbours q from 1 to 10 [16,34].

Define infection potential and super-spreaders

A major focus of our work was to identify which farms could act as super-spreaders in the

studied networks. A super-spreader is defined as a highly connected individual farm able to

potentially spread the infection to a very large number of farms in the system [35]. In the con-

text of diseases spreading through a contact network, centrality measures are often used to

identify the super-spreaders [36]. The most simple but still effective centrality measure is the

degree centrality [28]. However, despite the simplicity and the usefulness of the degree central-

ity, it is well known that assuming a static network derived by all the contacts that occurred in

a given period, 2013 in our case, and ignoring the temporal sequence of connections, can lead

to largely overestimate the transmission risk for fast spreading diseases, such as FMD and

influenza, where the time-scale of the epidemics is similar to that of the evolution of the net-

work [4,26,37,38]. To overcome this limit, Dubé and colleagues [3] introduced a risk-based

measure that accounts for the temporal sequence of contacts in animal trade networks, called

the infection chains (IC). In particular, for a given farm, the ingoing IC (IIC) and the outgoing

IC (OIC) measure the maximum number of farms connected with it through a sequence of

animal movements [3,30]. Konschake et al. [39] extended the infection chain concept by

assuming that only contacts occurring within a finite infectious period (γ) may act as potential

transmission events. Accordingly, we computed time-dependent ICs referred to a specified

date of emergence of the infection in the farm system (d), specifically IIC(d) and OIC(d). From

an epidemiological view point, the OIC(d) in the i-th farm, OICi(d), provides an upper bound

to the size of an epidemic emerging from the i-th farm in day d. Analogously, the IIC(d) in the

i-th farm, IICi(d), provides an upper bound for the probability for the i-th farm of getting

infected on day d following an epidemic event occurred in any other farm in the network. This

was computed as IICi(d)/(N−1), with N corresponding to the total number of farms in the sys-

tem. Following these considerations, we defined the infection potential ρi(d) of the i-th farm in

a given day d as:

ri dð Þ ¼
IICiðdÞ
N � 1

OICi dð Þ: ð3Þ
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From expression (3), we built two more general epidemiological indicators: the mean infec-
tion potential of i-th farm on a given time-period ofm days as:

ri ¼

Pm
d¼1

riðdÞ
m

ð4Þ

and the average infection potential of the system in day d as:

r dð Þ ¼
PN

i¼1
riðdÞ
N

: ð5Þ

In order to avoid boundary effects due to the limited period of data availability (1 year), we

computed ρi(d) for a period of 245 days starting from the beginning of March to the end of

October 2013.

We computed the infection potential for individual CM, VO and VP networks, for the veter-

inarians total network (VT = VO + VP networks), and for the network of all transmission

routes combined (TN = CM + VT). For VO, VP, VT, and TN networks, the calculation was

repeated for each of the 50 simulations. We defined as super-spreaders the farms in the highest

5th percentile of ρi value distribution. We assumed a farm infectious period length γ of 14 days.

According to Konschake et al. [39], this is the threshold value above which the ICmeasure is

stable to variations in γ and, additionally, this infectious period is compatible with rapidly

spreading diseases, such as FMD [40]. However, we performed a sensitivity analysis on the ICs
for different values of γ (from 3 to 28 days) to assess whether a variation of γ has strong conse-

quences on farm ranking in terms of γ and, thus, on the identification of super-spreaders. In

order to assess the correlation between ρi calculated for CM and VT networks, we used the

Kendall’s τ, a non-parametric test.

Results

Cattle movement network

There were 16,647 cattle moved in the province of Parma in 2013, for a total of 1,433 between-

farm directed links in the yearly aggregated CM network. Link-density was 0.0008 (see

Table 1). The giant strongly connected component (GSCC) included 18 farms, corresponding

to the 1.14% of the network, while the distribution of the yearly exchanged animal-per-contact

was very heterogeneous, with an average of 11.62 animals.

The mean farm degree was 1.06, and both kI and kO ranged from 0 to 15. The degree distri-

butions P(kI) and P(kO) are showed in Fig 2 (red line, a and b panels, respectively). The median

Table 1. Networks structure measures. Network measures (link density, GSCC, and contacts frequency) for cattle movement (CM) network, veterinary

officers (VO) network (median, 5th and 95th percentile over 50 simulations), and veterinary practitioners (VP) network (median, 5th and 95th percentile over 50

simulations).

Network CM VO VP

Link density Median 0.0008 0.0049 0.0029

5th percentile - 0.00476 0.00285

95th percentile - 0.00501 0.00292

GSCC (% on the network) Median 1.33 68.12 54.00

5th percentile - 34.54 53.30

95th percentile - 71.35 54.97

Average contacts frequency Median 11.62 1.18 1.19

5th percentile - 1.15 1.18

95th percentile - 1.22 1.20

doi:10.1371/journal.pcbi.1005301.t001
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of both kI and kO was equal to zero, and this was a consequence of the large number of farms

with no incoming (688) or outgoing (719) cattle movements within the system during 2013.

The total number of moved cattle between dairy farms within the Emilia-Romagna region

ranged from 50,186 to 57,276 over the period 2010–2013. These movements originated from

4,624 to 5,094 between-farm contacts.

Veterinary networks

The veterinary officer (VO) dataset included data on 6,524 on-farm visits performed by 50 offi-

cers. By setting the contamination period h equal to 0 (corresponding to assuming possible

indirect transmission only for consecutive visits on the same day), the median [5th-95th percen-

tile among the 50 simulations] link density was 0.0049 [0.0047–0.0050]; the median [5th-95th

percentile] giant strongly connected component (GSCC) included about 67% [35%-70%] of

the network, corresponding to 918 [480–948] farms. The median [5th-95th percentile] yearly

contact frequency was 1.19 [1.15–1.22].

The overall veterinary practitioner (VP) dataset included a total of 14,053 visits performed

by 203 practitioners. This was the result of joining three data sources: the drug prescription list

(11,611 prescriptions by 181 VP), the animal tissue-drop records (1,085 records by 108 VP),

and the government subcontracted visits (1,426 visits performed by 12 VP). As for the VO net-

work, we simulated the same day visit order 50 times. The median [5th-95th percentile] link

density was 0.0029 [0.0029–0.0029]; the median [5th-95th percentile] GSCC included about

54% [53%-55%] of the networks, corresponding to 732 [721–740] farms; and the median [5th-

95th percentile] yearly contact frequency was 1.19 [1.18–1.20]. VO and VP networks showed

more widespread degree distributions with respect to the CM network (Fig 2). At h = 0, the

mean degrees were 6.55 and 3.90 for VO and VP, respectively, and 1.06 for CM. On the other

hand, the strength distributions of all three networks showed to be more similarly distributed

(see Figure S1.3.1 and Table S1.2.2 in S1 Text).

Fig 2. Farm degree distributions. Farm degree distributions (in a log-log scale) of: cattle movement (CM) network (observed, red line);

veterinary officer network (VO, 50 simulations, green shade); veterinary practitioner network (VP, 50 simulations, blue shade). Panels a) and

b) correspond to kI (in-degree) and kO (out-degree), respectively.

doi:10.1371/journal.pcbi.1005301.g002
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Farm exposure to infection

As expected from previous literature on between-farm transmission ofMycobacterium avium
subsp. paratuberculosis (MAP), we found evidence of association between cattle movements

and the distribution of MAP positive farms within the Emilia-Romagna region (see Fig 3). Spe-

cifically, we found that the mean exposure of MAP positive farms (Fig 3 upper segment: blue

dot, EI) derived by using the CM network at regional scale is: a) higher than that of MAP nega-

tive farms (Fig 3 upper segment: red dot, ES); b) higher than that in a randomly generated net-

work (Fig 3 upper segment: blue vertical bars, p = 0.005). Conversely, within Parma province,

we did not find a significantly higher mean exposure of MAP positive farms derived by using

the CM network (Fig 3 middle segment: blue dot) compared to random networks (Fig 3 mid-

dle segment: blue vertical bars, p = 0.456). On the other hand, within Parma province, we

found that the mean exposure of MAP positive farms in the veterinary network (Fig 3 bottom

segment: blue dot) was significantly higher than in random networks (Fig 3 bottom segment:

blue vertical bars, p< 0.001). In addition, we found that our results were robust with respect

to the year considered for building the contact networks and the assumptions on the length of

the contamination period (see S1 Text).

The spatial analysis showed that no clear spatial clustering could be detected among MAP-

positive farms. Specifically, the q-nearest neighbours test was not statistically significant for

neighbour farms from q = 1 to q = 10 (see Table 2). This result suggests that between-farm

transmission of MAP was not associated to spatial proximity (see Fig 4).

Fig 3. Farm exposure to MAP infection. Mean exposure to MAP-positive (blue dots, EI) and MAP-negative (red dots, ES)

farms normalized between zero and one in: upper) cattle movements network (CM) of Emilia-Romagna region (i.e. regional

scale); middle) cattle movement network of Parma Province (i.e. local scale); and bottom) the veterinary network (VT) of

Parma Province. Vertical bars represent the mean exposure to MAP in random networks with the same distribution of farm

contacts as in the observed networks.

doi:10.1371/journal.pcbi.1005301.g003
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Table 2. q-nearest neighbours test. Results of the q-nearest neighbours test on the infection state of farms

by Mycobacterium avium subsp. paratuberculosis (MAP) within the dairy farms of the Province of Parma. Col-

umns show the number q-nearest neighbours selected for the analysis (i.e. total number of cases within the

number of q neighbours of each farm within the system) and corresponding p-value (p).

#q Total q-nn p

1 84 0.328

2 166 0.311

3 255 0.164

4 332 0.245

5 426 0.101

6 497 0.216

7 579 0.208

8 664 0.168

9 755 0.101

10 844 0.064

doi:10.1371/journal.pcbi.1005301.t002

Fig 4. MAP spatial distribution. Spatial distribution of the infection state of farms by Mycobacterium avium subsp.

paratuberculosis (MAP) in the Province of Parma. Black dots correspond to infected farms; dark-grey circles to non-

infected farms; and small light-grey dots to no-data farms.

doi:10.1371/journal.pcbi.1005301.g004
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Infection potential and super-spreaders detection

Infection potential ρi of VT network was poorly correlated with that of CM network (Kendall’s

τ = 0.08, p< 0.01). The number of shared super-spreaders for the CM and VT networks

(defined as the 5% of farms with the highest ρi value) ranged between 4 and 7 over 50 simula-

tions of within day veterinary itineraries. By using the median value of ρi for each farm as a ref-

erence measure, the number of shared super-spreaders between direct and indirect contacts

was 4 (see Fig 5). To test whether the number of observed shared super-spreaders was signifi-

cantly higher than in the random case, we computed a permutation test by assigning the

observed ρi values in each network to random farms. Upon 20,000 runs (1,000 for each of the

50 simulations), the test turned out to be not statistically significant (p = 0.20).

Fig 5. Super-spreaders sharing. Farm infection potential ρi (squared values) computed for cattle movement (CM)

network (x-axis) vs. veterinarians total (VT) network (y-axis, median of 50 simulations). Black diamonds correspond to

the super-spreader farms; grey dots to the non super-spreaders (vertical bars show the variability over 50 simulations).

Dashed lines show the 95th percentile for both measures.

doi:10.1371/journal.pcbi.1005301.g005
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Fig 6 shows the time trend of the average infection potential of the whole farm system, ρ(d),

during the 245-day period. The average infection potential ρ(d) was: 0.04 × 10−3 (sd = 0.44 × 10−3)

for the CM network, 0.14 × 10−3 (sd = 0.37 × 10−3) for the VO network, and 0.16 × 10−3 (sd =

0.69 × 10−3) for the VP network. Combining networks together, the average ρ(d) was 0.84 × 10−3

(sd = 2.17 × 10−3) for the veterinarians total network (VT), while ρ(d) was 3.13 × 10−3 (sd = 39.23

× 10−3) for all the direct and indirect contact networks combined. Sensitivity analyses showed sta-

ble rankings for IIC,OIC and ρwith varying infectious period γ (see S1 Text).

Discussion

On static and temporal networks

Prevention measures such as targeted surveillance and farm isolation, which are largely used

to control livestock epidemics, have been shown to be more effective when directed to those

Fig 6. Transmission routes infection potential. Daily system infection potential ρ(d) for cattle movement (CM) network (red line), the

veterinarians total (VT) network (green shade results for 50 simulations, median case dark green line), and all networks combined (TN, blue

shade results for 50 simulations, median case dark blue line).

doi:10.1371/journal.pcbi.1005301.g006
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higher risk farms [1,4], also called super-spreaders. Understanding the structure of the contact

network is therefore crucial to derive effective surveillance strategies. Identification of super-

spreaders, however, should be performed by accounting for all transmission pathways and not

only the direct ones.

In fact, despite it is well known that indirect contacts are less efficient in transmitting infec-

tious diseases compared to direct ones [6,40], our results showed that they can substantially

affect the ability of farms to potentially spread a disease within the network system. In particu-

lar, our analysis showed that direct and indirect transmission routes shared only a handful of

super-spreader farms, indicating that direct and indirect transmission risks were independent

from each other. A major consequence of this observation is the need to account for both

routes in the definition of contingency plans for the control of potential epidemics where indi-

rect contacts represent an effective route of disease transmission. By considering only one of

these transmission routes, we would miss a substantial part of the spreading pattern. This con-

clusion is strongly supported also by the analysis of infectious risk in the direct and indirect

contacts networks. The infection potential was substantially lower for cattle movement (CM)

compared to the veterinarians total (VT) network. This reflects the fact that farms may receive

or move cattle only few times in a year and a large fraction of the farms in our database did not

trade any animal during the study period. On the contrary, each veterinary practitioner visits a

small set of farms on a regular basis, while veterinary officers have frequent visits to farms but

visit the same farm only once a year on average. Farm infection potentials derived by using the

network of indirect contacts is not correlated with that derived by using the network of direct

contacts, thus reinforcing the finding that the transmission pathways of the two contact net-

works are remarkably different. The most striking result of our study, however, is that the

infection potential derived by combining the networks of direct and indirect contacts is consid-

erably larger than the one computed by using only cattle movements or the veterinary network

(Fig 6). This suggests a synergistic effect between the networks of direct and indirect contacts:

despite being sparse, direct contacts act as a bridge joining different clusters of potentially

infectious contacts due to veterinarians. Despite movements of infected animals usually play a

primary role in the spread of livestock epidemics (since they represent the most efficient trans-

mission route between farms), our results highlighted the importance of considering indirect

contacts to adequately model between-farm spread of infections. We showed that the combi-

nation of different pieces of information included in the infection potential metric is essential

to understand the role of farms within the study system. In essence, the infection potential is

the expression of the two fundamental components of the contact system, the contact structure

and the temporal sequence of the potential infectious contacts [3,30,39]. In fact, as pointed out

in many studies [4,37,38,41–43], traditional network metrics based on a static representation

of the contacts between nodes can hide significant temporal patterns in epidemic network

structures of fast spreading diseases, such as FMD. Conversely, the temporal sequence of con-

tacts is crucial in defining the real risk of epidemic spread in a network. For this reason, we

applied the concept of infection chains proposed by Dubé et al. [3] and extended by Konschake

et al. [39], providing the estimate of the potential maximum size of epidemics in a network sys-

tem. Here, as a measure of farm infection potential, we proposed the weighted product of in-

times out-infection chains. This new metric aims to extend the concept of basic reproduction

number for between-farm transmission provided by Woolhouse et al. [1], defined as the prod-

uct of in-times out-degrees. Since the duration of the farm infectious period (γ) varies across

different diseases, the stability of our results is indicative of the validity of the analysis with

regard to a wide range of diseases. However, Konschake and colleagues [39] showed that in

German swine livestock, risk ranking of farms according to IC was not stable with respect to

Direct and Indirect Infectious Contacts in Dairy Farm Networks
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variations in γ, in particular for γ shorter than 14 days. The different outcome of our study

could be due to the structural differences between dairy and swine livestock industries.

We also analysed a weighted version of CM, VO and VP networks (where the links were

weighted proportionally to the number of animals exchanged, in CM, and to the number of

on-farm visits, in VO and VP). Similarly to the results in the unweighted networks, the mea-

sures of strength showed to be only partially correlated with the infection potential. However,

in contrast with the unweighted cases (where VO and VP networks showed larger degree dis-

tributions than CM network), farms’ strength distributions in the weighted networks showed

similar patterns for direct contacts (CM) and for indirect contacts networks (VO and VP).

This might be important for low-prevalence or poorly contagious diseases, in which the num-

ber of shipped animals or the recurrence of personnel-mediated contacts might strongly influ-

ence the probability of infection spread between farms.

Previous questionnaire-based works applied network analysis techniques on small networks

of cattle exchanges and on-farm visits by veterinarians [10,16]. Similarly to their findings, our

results showed that indirect contacts produced a more connected network compared to cattle

movements. This finding was supported by the traditional static measures we applied to the

investigated networks. The link density and the giant strongly connected component (GSCC)

were more than one order of magnitude higher in VO and VP networks than in CM network,

both in- and out-degree distributions showed longer tails, and the number of isolated farms

was substantially greater in CM network, implying a higher number of farms reachable during

an epidemics via indirect contacts than via direct contacts. For CM network, the observed

value of GSCC was also lower than that observed elsewhere, such as in Scottish [29] and

French herds [44]. This result is probably due to the spatial scale considered, since within-

province animal exchanges only represent a fraction of the animals introduced in the dairy

farms in Parma Province. On the other hand, contact frequency in CM network was slightly

higher than in VO and VP networks, underlining a higher recurrence of these contacts. How-

ever, the VP network considered in our analysis might represent an underestimate of the real

contact frequency, as the dataset used in the analysis only accounted for traceable visits in pub-

lic datasets. In fact, the average number of monthly visits derived from our datasets was on the

lower range than those observed in similar farm systems ([11,14,45]; see S1 Text for more

details).

On farm exposure to infection

Our analysis suggested that the network of veterinarian contacts is associated to the distribu-

tion of MAP positive farms in the Province of Parma, while the network of cattle movements

is associated to the distribution of MAP positive farms when the farm system of the whole

Emilia-Romagna region is considered. These outcomes can be interpreted as the effect of the

different spatial scales on the observed processes. The provincial level represents a spatial scale

that could properly fit the process of disease spread due to veterinary practitioners, because of

their limited range of activity, and to veterinary officers who operate into sub-provincial public

health districts. Conversely, the CM network at provincial level, which only looks at within-

province animal exchanges, cannot take into account for the role in disease transmission of

animals introduced from outside the province, which represent a significant fraction of the

exchanges. Consequently, the relationship between infection status and animal exchanges

becomes apparent only at a wider spatial scale, such as at the regional level, where more nodes

(i.e. farms) and links (i.e. animal exchanged) are intercepted by the network.

We also showed that spatial clustering failed to explain the observed pattern of MAP infec-

tion (Table 2). Then, our analysis suggests that, at the investigated spatial scale, between-farm
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transmission was not significantly affected by spatial proximity among farms. The latter result

is in agreement with the findings obtained by Ahlstrom et al. [46] on MAP distribution in

Canada at intra-provincial scale by using single nucleotide polymorphisms identified through

whole genome sequencing. From this finding, they suggested that human driven activities

(such as cattle movements) are major drivers of MAP transmission at the herd level in contrast

to spatially-localized transmission mechanisms (e.g. wildlife), which are crucial in the trans-

mission of other pathogens, such asMycobacterium bovis [46]. In a similar way, we suggest

that, in addition to direct contacts, also indirect contacts can contribute to between-farm MAP

spread at local level.

Similarly to our results, by analysing bulk tank milk samples, Garcia-Alvarez et al. [16]

showed that the veterinary network could explain the difference in the infectious status of

dairy farms for some strains of Staphylococcus aureus. However, unlike Garcia-Alvarez and

colleagues [16], we did not know the temporal pattern of MAP infection across farms. There-

fore, to account for MAP introductions occurred before the time period considered in the

study, we also tested the significance of the relationship between network structures and infec-

tious status by using contact data from years before 2013 and maintaining the infectious status

of 2013. We found that the results were robust compared to the tested year, suggesting a high

tendency of farms to maintain contacts with the same elements over time [41].

Our results suggested that between-farm transmission of MAP through fomites might be

not negligible at local level. Consistent with our observation, Marcé et al. [32] mentioned the

transfer of faeces, manure, slurry, and soiled forage as a viable route of pathogen introduction

into farms. The transmission of MAP via contaminated environment has been already pointed

out in several empirical works (specifically, via footwear [24], via shared equipment [25], and

via settled-dust [48]) and theoretical models of within-farm transmission [49,50].

In this work, we defined the positive/negative infection status of farms for paratuberculosis
using data obtained by Ricchi et al. [21] through real-time PCR on bulk tank milk samples.

Real-time PCR techniques on bulk tank milk display only intermediate sensitivity in detecting

MAP in cattle herds [47], in particular because they do not detect not-excreting infected ani-

mals. It follows that the obtained prevalence represents an underestimate of the between-farm

true prevalence in the area. However, for the purpose of our analysis, the major focus was the

contamination status of farms; in that sense, the real-time PCR assessment of the presence of

MAP in the herd environment is functional to estimate the ability of the farms to spread the

infection, especially in the case of fomite contaminations and in the short run.

Conclusions

Our results highlight the urgency of further defining the indirect contacts between farms estab-

lished by operators like veterinarians, milk, feed, and slaughterhouse trucks, and artificial

insemination technicians, in addition to estimates of non-recordable movements such as

neighbours and service providers, that even if less infectious, would be more frequent farm vis-

itors [51]. The availability of personnel visits data would improve the surveillance and control

of epidemics through modelling approaches. In particular, this could make it possible to effec-

tively tackle diseases among which we recognize some of the most devastating threats to the

modern livestock industry, above all, foot-and-mouth disease and avian influenza.
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