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Abstract

There have been many in silico studies based on a Boolean network model to investigate

network sensitivity against gene or interaction mutations. However, there are no proper

tools to examine the network sensitivity against many different types of mutations, including

user-defined ones. To address this issue, we developed RMut, which is an R package to

analyze the Boolean network-based sensitivity by efficiently employing not only many well-

known node-based and edgetic mutations but also novel user-defined mutations. In addi-

tion, RMut can specify the mutation area and the duration time for more precise analysis.

RMut can be used to analyze large-scale networks because it is implemented in a parallel

algorithm using the OpenCL library. In the first case study, we observed that the real biologi-

cal networks were most sensitive to overexpression/state-flip and edge-addition/-reverse

mutations among node-based and edgetic mutations, respectively. In the second case

study, we showed that edgetic mutations can predict drug-targets better than node-based

mutations. Finally, we examined the network sensitivity to double edge-removal mutations

and found an interesting synergistic effect. Taken together, these findings indicate that

RMut is a flexible R package to efficiently analyze network sensitivity to various types of

mutations. RMut is available at https://github.com/csclab/RMut.

Introduction

Many different types of mutations have been used to investigate dynamic behaviors of biologi-

cal networks; these have focused on essential components identification [1, 2], genetic interac-

tions prediction [3], network intervention [4], and the relationship between dynamic and

structural properties [5–7]. In addition, many computational tools have been developed to

support in silico simulations based on these mutations. For example, CABeRNET, a recent

Cytoscape app, can assess the dynamics of a network via state-flip, knockout, and overexpres-

sion mutations [8]. PANET was developed for parallel analysis of sensitivity-related dynamics

against state-flip and rule-flip mutations in large-scale networks [9]. BooleSim [10], Cell Col-

lective [11], and GINsim [12] can manipulate dynamic simulations by employing knockout

and overexpression mutations. GDSCalc [13] can evaluate the stability of network dynamics
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upon a state-flip mutation. BoolNet [14] can investigate network sensitivity via state-flip,

knockout, and overexpression mutations.

However, each of these tools provides a partial set of previously well-known mutation

types, most of which were designed to examine the effects of nodes on network dynamics. On

the other hand, there are few tools implementing edgetic mutations, even though recent exper-

imental results have shown that edgetic mutations are useful for genotype-to-phenotype rela-

tionship identification and drug discovery [15, 16]. Furthermore, the existing in silico tools are

not flexible because only a few prespecified mutations can be simulated for analysis. To over-

come these limitations, we developed a novel R package called RMut, which can investigate

network sensitivity for many well-known node-based and edgetic mutations, as well as user-

defined mutations using a synchronous Boolean network model. In addition, we can specify

the mutation area and the duration time for more precise analysis. To specify the unknown

regulatory rules, we employed the nested canalyzing function (NCF) model [17] where a Bool-

ean function is constructed by randomly choosing a sequence of pairs of a canalyzing gene and

a canalyzed value. The package provides some additional functions such as attractor identifica-

tion, feedback/feed-forward search, and centrality calculations. To allow analysis of large-scale

networks, we implemented RMut in a parallel computation using the OpenCL library. We

note that the core algorithms of RMut were written in Java; thus, a Java SE Development Kit

(JDK) is required to run it.

In this study, the usefulness of RMut was demonstrated through three case studies. First, we

compared 10 different mutations predefined in RMut over real biological networks, and found

that the networks are most sensitive to overexpression/state-flip and edge-addition/-reverse

mutations among node-based and edgetic mutations, respectively. In the second case study,

we further observed that edgetic mutations can predict drug-targets better than node-based

mutations. Interestingly, edge-attenuation (which has never been considered in previous

tools) showed high performance in drug-targets prediction. Finally, we examined the network

sensitivity to double edge-removal mutations and found a synergistic effect. Altogether, these

findings indicate that RMut is a useful and flexible tool for analyzing network dynamics

against various types of mutations.

Methods and implementations

This section is organized into four subsections. A Boolean network model employed in this

study is first introduced. The next two subsections present predefined mutations that have

been widely used in previous studies, and user-defined mutations based on a Java template

implementation, respectively. Finally, two network sensitivity measures used in this study are

defined.

A Boolean network model

A Boolean network is represented by a directed graph G(V,E), where V = {v1,v2,. . .,vN} is a set

of nodes, and E = {e1,e2,. . .,eM} is a set of ordered pairs of nodes called directed edges. The

state of each node v2V is represented by a Boolean variable having a value of 1 or 0. A directed

link (vs,vt)2E has a positive or negative relationship from vs to vt (vs and vt are called the source

and the target nodes of the link, respectively). For a node vi2V with di incoming links from

nodes u1; u2; . . . ; udi
where uj6¼uk for 8j6¼k, the value of vi at time t + 1 is determined by the

values of u1; u2; . . . ; udi
at time t by a Boolean function fi : f0; 1g

di ! f0; 1g ðu1; u2; . . . ; udi

are called input nodes of vi). Here, we employed a nested canalyzing function (NCF) model

R package for a Boolean sensitivity analysis
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[17] to represent the update rule as follows:

viðt þ 1Þ ¼ fiðu1ðtÞ; u2ðtÞ; . . . ; udi
ðtÞÞ

¼

O1 if u1ðtÞ ¼ I1

O2 if u1ðtÞ 6¼ I1 and u2ðtÞ ¼ I2

O3 if u1ðtÞ 6¼ I1 and u2ðtÞ 6¼ I2 and u3ðtÞ ¼ I3

..

.

Odi
if u1ðtÞ 6¼ I1 and � � � andudi � 1ðtÞ 6¼ Idi � 1 and udi

ðtÞ ¼ Idi
Odefaulti

otherwise

8
>>>>>>>>>>><

>>>>>>>>>>>:

where Ik and Ok (k = 1,2,� � �,di) are called canalyzing and canalyzed Boolean values,

respectively, and Odefaulti
is generally set to 1 � Odi

. For convenience, we denote fi as

ðI1;O1ÞðI2;O2Þ � � � ðIdi ;Odi
ÞOdefaulti

, which is a sequence of pairs of canalyzing and canalyzed

values, followed by the default value. In addition, vi(t+1) can be expressed in a recursive form

of Boolean logic as follows:

viðt þ 1Þ ¼ fiðu1ðtÞ; u2ðtÞ; . . . ; udi
ðtÞÞ ¼ fi

ðdiÞ

where fi
ðdi � kþ1Þ

¼

ukðtÞ ^ ðf ðdi� kÞÞ if k < di and Ok ¼ 0 and Ok ¼ Ik
ukðtÞ ^ ðf ðdi � kÞÞ if k < di and Ok ¼ 0 and Ok 6¼ Ik
ukðtÞ _ ðf ðdi� kÞÞ if k < di and Ok ¼ 1 and Ok ¼ Ik
ukðtÞ _ ðf ðdi � kÞÞ if k < di and Ok ¼ 1 and Ok 6¼ Ik
ukðtÞ if k ¼ di and Ok ¼ Ik
ukðtÞ if k ¼ di and Ok 6¼ Ik

8
>>>>>>>>>>><

>>>>>>>>>>>:

Herein, k = 1,2,� � �,di, and uðtÞ represents the negation value of u(t) (i.e., uðtÞ ¼ 1 � uðtÞÞ. A

canalyzing rule means a Boolean rule with a property such that a specific value of one of inputs

alone determines the output value. This input and output values are referred to as the canalyz-

ing and the canalyzed value, respectively. A nested canalyzing function is a recursive extension

of canalyzing functions as follows. When the first canalyzing variable is not set to the canalyz-

ing value, the second canalyzing variable and the corresponding canalyzing/canalyzed values

are determined. By repeating this determination over all regulatory genes, the nested canalyz-

ing function is constructed. It was shown that NCFs properly fit the experimental data

obtained from a literature [17]. Furthermore, many logical interaction rules inferred from

gene expression data can be represented by NCFs [18, 19]. As in previous studies [17, 20], we

independently and randomly specified Ik and Ok values with the probabilities as:

Pr Ik ¼ 1ð Þ ¼
1

2
and Pr Ok ¼ 1ð Þ ¼

expð� 2� kyÞ

1þ expð� 2� kyÞ
ð1Þ

where θ is a constant. In this study, θ was set to 7 following the previous studies [17, 20], which

implies that the value of Ok is more likely to be biased to 0 as k decreases. We note that some

previous tools such as BoolNet [14] and CABeRNET [8] also employed the NCF model to gen-

erate random update-rule functions.

R package for a Boolean sensitivity analysis
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A state of a network G is defined as a vector of the states of all nodes, which are synchro-

nously updated by a set of update functions F = {f1,f2,. . .,fN}. A state trajectory starts from an

initial state and eventually converges to either a fixed-point or a limit-cycle attractor. When

another trajectory starting from the same initial state along with mutations converges to a dif-

ferent attractor, the network is regarded as sensitive to the mutations.

Predefined mutations

We conducted a survey of different types of mutations in previous in silico studies (see Table A

in S1 File for details), and found the 10 most frequently used mutations and classified them

into node-based and edgetic mutation groups as follows:

• Node-based mutation group: state-flip, knockout, overexpression, rule-flip, and outcome-

shuffle.

• Edgetic mutation group: edge-removal, edge-addition, edge-attenuation, edge-sign-switch,

and edge-reverse.

In the following subsections, we explain each mutation in detail, and each is illustrated in

Fig 1. Node-based mutations represent changes to most incoming interactions, whereas edge-

tic mutations represent changes to specific incoming interactions.

Node-based mutations

Let vi be a node subject to a mutation. Note that each node-based mutation causes a change

from F = {f1,. . .,fi,. . .,fN} to F0 = {f1,. . .,fi0,. . .,fN}.

• State-flip: This mutation represents a situation in which a protein or gene outputs an oppo-

site state value to expectations [21–24]. More specifically, it can describe a biological process

such that genes may become either activated or inhibited by external stimuli such as muta-

gens [25, 26] and heat stress [27].

Implementation—this mutation is implemented by changing fi to fi0 = 1−fi.

• Knockout: This mutation represents the effect of suppressing the expression of a gene or the

pharmaceutical inhibition of secondary messenger production or kinase/phosphatase activ-

ity [28]. For example, it can be used to simulate the loss of p53 expression in p53 knockout

mice in order to reveal a role for p53 in the protection of mice from spontaneous tumorigen-

esis [29, 30]. The knockout mutation is accomplished through a variety of techniques in vivo
such as homologous recombination [31–34] and site-specific nucleases [35–37].

Implementation—this mutation is implemented by changing fi to fi0 = 0.

• Overexpression: This mutation represents the effect of induced gene expression [1].

Increased expression of a wild-type gene can also be disruptive to a cell, organism, or pheno-

types [38]. The overexpression of HER2, MYC, REL, or AKT2 often drives a variety of

human cancers [39]. In addition, the overexpression due to a gene amplification results in

drug-, insecticide-, and heavy metal-resistance [40].

Implementation—this mutation is implemented by changing fi to fi0 = 1.

• Rule-flip: This mutation corresponds to a change in the relationships between nodes. The

mutation might represent a deleterious change in the function of a protein or gene [41]. It

has similar effects to small-scale mutations in the DNA sequence of a gene [42–46].

Implementation—this mutation is implemented by changing fi to fi0 where every canalyzing

and canalyzed value is flipped (i.e., all Ik and Ok changed to 1−Ik and 1−Ok, respectively).

R package for a Boolean sensitivity analysis
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Fig 1. An illustrative example of the predefined mutations implemented in RMut. (a) An example node subject to mutations. Let v be a node with four

incoming links from a set of nodes u1,u2,u3, and u4, and f be the update rule of v. The arrows and bar-headed lines represent positive and negative interactions,

respectively. (b) Changes of the update function by node-based mutations subject to node v. The update rule f is modified to f0 by each of five node-based

mutations. (c) Changes of the update function by edgetic mutations subject to (u5,v)=2E or (u2,v)2E in the case of the edge-addition and the other edgetic

mutations, respectively.

https://doi.org/10.1371/journal.pone.0213736.g001
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• Outcome-shuffle: This mutation represents the abnormal and chaotic expression of a gene,

and may change the function of a protein [47]. Hence, it also has similar effects to small-

scale mutations in the DNA sequence of a gene [42–46].

Implementation—this mutation is implemented by changing fi to fi0 where the canalyzed val-

ues are permuted (i.e., all canalyzed values are randomly changed to ðO0
1
;O0

2
; . . . ;O0diÞ, which

is a permutation of ðO1;O2; . . . ;Odi
Þ).

Edgetic mutations

In this study, we define five edgetic mutations. Let vi be a target node of a link subject to an

edgetic mutation, and fi ¼ ðI1;O1Þ � � � ðIdi ;Odi
ÞOdefaulti

is the update rule of vi. We first explain

the edge-addition mutation, and let (uk,vi)=2E be a new edge, which will be added by a

mutation.

• Edge-addition: This mutation represents the gain of a new molecular interaction between

two proteins or genes [48]. In fact, it is known that some disease potentially can be led

through the new incorrect interactions [49, 50]. For instance, the Glu6Val mutation of β-

hemoglobin causes sickle cell anemia [51]. Specifically, this mutation introduces a hydro-

phobic residue to the surface of the protein that can bind to a hydrophobic patch on another

hemoglobin molecule under low oxygen conditions, leading to polymerization and the char-

acteristic sickling of the erythrocyte [52].

Implementation—this mutation is implemented by changing E to E0 = E[(uk,vi) and fi to

f 0i ¼ ðIk;OkÞðI1;O1Þ � � � ðIdi ;Odi
ÞOdefaulti

. This is accomplished by inserting (Ik,Ok), which repre-

sents the interaction from uk to vi, into the first position of fi. Note that Ik and Ok values are

specified by Eq (1).

For the rest of the edgetic mutations, let (uj,vi)2E be an edge subject to a mutation.

• Edge-removal: This mutation represents the loss of a specific molecular interaction between

two proteins or genes [48]. For example, the cancer associated C305F missense mutation in

the acidic zinc finger domain of Mdm2 results in the loss of Mdm2 binding to L5 and L11.

This edgetic perturbation causes the loss of the ribosomal stress response and an increase in

c-Myc induced tumorigenesis [53].

Implementation—this mutation is implemented by changing E to E0 = E\(uj,vi) and fi to

f 0i ¼ ðI1;O1Þ � � � ðIj� 1;Oj� 1ÞðIjþ1;Ojþ1Þ � � � ðIdi ;Odi
ÞOdefaulti

by removing (Ij,Oj) from fi.

• Edge-attenuation: This mutation corresponds to the weakening of a specific molecular inter-

action between two proteins or genes [54–56]. As mentioned in a previous study, low-affin-

ity drugs inhibit their targets and can change a strong link into a weak link instead of

eliminating the link completely [55].

Implementation—this mutation is implemented by changing fi to f 0i ¼ ðI1;O1Þ � � � ðIj� 1;

Oj� 1ÞðIdi ;Odi
ÞðIjþ1;Ojþ1Þ � � � ðIj;OjÞOdefaulti

by swapping (Ij,Oj) with ðIdi ;Odi
Þ in fi. Note that the

position order in the sequence of the pairs of canalyzing and canalyzed values represents the

order of precedence in updating the state value of vi.

• Edge-sign-switch: This mutation represents the switch of the type of molecular interaction

between two proteins or genes [57]. An activating interaction is switched to an inhibiting

one, and vice versa. This mutation represents the partial change in the function of the source

gene/protein as other types of edgetic mutations, but no experimental study about this muta-

tion has been reported.

R package for a Boolean sensitivity analysis
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Implementation—this mutation is implemented by changing fi to f 0i ¼ ðI1;O1Þ � � � ð1�

Ij;OjÞ � � � ðIdi ;Odi
ÞOdefaulti

.

• Edge-reverse: This mutation represents a switch in both the type and outcome of a molecular

interaction or relationship between two proteins or genes [58]. In other words, both the acti-

vation/inhibition relationship and the output value of an interaction are switched. As in the

edge-sign-switch mutation, there is no experimental study about this mutation yet.

Implementation—this mutation is implemented by changing fi to f 0i ¼ ðI1;O1Þ � � � ðIj; 1 �
OjÞ � � � ðIdi ;Odi

ÞOdefaulti
.

These previous mutations were predefined in RMut and therefore can be easily embedded

by setting a parameter value. We note that there was no previous tool implementing all of

these mutations, and Table 1 shows a comparison of RMut and other tools with respect to

available types of mutations.

User-defined mutations

Although most well-known mutations are included in RMut, it is also interesting to simulate

new kinds of mutations because some future experimental studies can discover a new muta-

tion type. For example, the edgetic mutations have emerged as a promising strategy for inter-

pretation of genotype-to-phenotype relationships in recent years [50]. To this end, we created

a Java template in which a user can flexibly implement novel mutations (Fig 2A). Specifically,

RMut provides two functions for node-based and edgetic mutations, respectively. Therefore,

many different types of node-based, edgetic mutations, or both can be embedded in RMut. Fig

2B shows an example of an implementation wherein the rule-flip mutation is redefined (see

Figures A-I in S1 File for other mutations).

Although it is possible to implement user-defined mutations in some previous tools like

BoolNet [14], we note that RMut provides a more systematic way to employ them for the

dynamics analysis by using the Java template function. Fig 3 shows an example code for

dynamics analysis using a user-defined mutation. As shown in the figure, a user can simply

simulate a user-defined mutation, which was saved to a java file, by specifying the file path

when calling the sensitivity calculation function ‘calSensitivity()’.

Sensitivity analysis based on a Boolean network model

As described before, we employed a Boolean network model to investigate the network sensi-

tivity. Given a Boolean network, a network state trajectory starting from an initial state

Table 1. Comparisons of RMut and other in silico tools based on available mutation types.

Mutation type RMut BoolNet CABeRNET PANET Cell-Collective BooleSim GINsim GDSCalc

State-flip ✓ ✓ ✓ ✓ ✓

Rule-flip ✓ ✓

Knockout &

Overexpression

✓ ✓ ✓ ✓ ✓ ✓

Outcome-shuffle ✓ ✓

Edge-attenuation ✓

Edge-removal ✓

Edge-addition ✓

Edge-sign-switch ✓

Edge-reverse ✓ ✓

https://doi.org/10.1371/journal.pone.0213736.t001
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converges to an attractor. When another trajectory starting from the same initial state along

with a mutation converges to a different attractor, the network is called sensitive to the muta-

tion. To quantify the network sensitivity, we define a mutation group consisting of a subset of

nodes, a subset of edges, or both, which describes the area subject to the mutation. This notion

allows RMut to use multiple mutations or a single mutation for analysis. We further define the

duration time of a mutation, denoted by τ. It means that a mutation is assumed to occur only

for a time period t2[1,τ]. We note that no previous tools incorporated either mutation area or

duration time. Given a Boolean network G(V,E), a network state at time t can be denoted by an

ordered list of state values of all nodes, v(t) = [v1(t),v2(t),. . .,vN(t)]2{0,1}N. Every network state

Fig 2. User-defined mutations in RMut. (a) A Java template for implementation of a user-defined mutation. (b) An example of reimplementing the

rule-flip mutation using the template.

https://doi.org/10.1371/journal.pone.0213736.g002

Fig 3. An example of network sensitivity analysis using RMut.

https://doi.org/10.1371/journal.pone.0213736.g003
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transits to another network state through a set of Boolean update functions F = {f1,f2,. . .,fN}.

We firstly define an attractor more rigorously as follows:

Let v(0),v(1),� � �, be a network state trajectory starting at v(0). The attractor is defined as an

ordered list of network states hG,F,v(0)i = [v(τ),v(τ+1),. . .,v(τ+p−1)] where τ is the smallest

time step such that v(t) = v(t+p) for 8t�τ with v(i)6¼v(j) for 8i6¼j2{τ,τ+1,. . .,τ+p−1} (herein, p
is called a length of the attractor).

Generate a set of random initial states S. For each initial state v(0)2S, we obtain two attrac-

tors hG,F,v(0)i and hG0,F0,v(0)i in the wild-type and the mutant networks, respectively. For

convenience, let hG,F,v(0)i = [v(τ),v(τ+1),. . .,v(τ+p−1)] and hG0,F0,v(0)i = [v0(τ0),v0(τ0+1),. . .,v0

(τ0+p0−1)]. Finally, we define the network sensitivity as follows:

l ¼

P
vð0Þ2SdðhG; F; vð0Þi; hG

0; F0; vð0ÞiÞ
jSj

; ð2Þ

where d(�) denotes a distance function between the wild-type and the mutant attractors. Spe-

cifically, we considered two different distance functions based on identicalness and similarity

of attractors, respectively, in this study. Let H(v(t),v0(t0)) the Hamming distance between a pair

of Boolean vectors, v(t) and v0(t0), computed as
PN

i¼1
jviðtÞ � v0iðt

0Þj, i.e., the number of differ-

ent bits. Then the identicalness-based distance is defined as follows:

dðhG; F; vð0Þi; hG0; F0; vð0ÞiÞ

¼
1; p ¼ p0and 9m 2 f0; . . . ; p � 1g s:t:

Xp� 1

l¼0

Hðvðtþ l þmÞ; v0ðt0 þ lÞÞ ¼ 0

0; otherwise

:

8
><

>:

In addition, the similarity-based distance function is defined considering various possible time

lags between two attractors as follows:

d hG; F; vð0Þi; hG0; F0; vð0Þið Þ ¼ min
m2f0;...;d� 1g

1

c � N

Xc� 1

l¼0

Hðvðtþ l þmÞ; v0ðt0 þ lÞÞ;

where c and d are the least common multiple and the greatest common divisor, respectively, of

p and p0. Note that m in both two distance definitions represents a possible time lag between

two attractors. As a result, the identicalness-based distance represents whether the wild-type

and the mutant attractors are identical to each other or not whereas the similarity-based dis-

tance represents the minimum ratio of a bitwise difference between the states sequence in the

wild-type and the mutant attractors over the least common period (c) of the two attractors.

With respect to the update function implementation, a user can choose a user-defined NCF

or a randomly-generated NCF for each gene, when calling the sensitivity calculation function

‘calSensitivity()’. In the case of the user-defined NCF, a parameter of the file path containing

the NCF rules should be specified (see Figure J in S1 File for example). In the case of the ran-

dom NCF, the sensitivity can be averaged out over a given number of trials which is specified

by a parameter ‘numRuleSets’ as shown in Fig 3.

Parallel computation

To allow analysis of large-scale networks, the sensitivity is calculated in parallel using the

OpenCL library as in our previous tool–PANET [9]. Specifically, we assign each initial state

included in a set of random initial states S in Eq (2) to processing elements of a central
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processing unit or graphics processing unit where the wild-type and the mutant attractors are

computed in parallel.

Availability

RMut is OS-independent and available at https://github.com/csclab/RMut. It requires R 3.5.0

or higher, Java 8 platform (Java SE 8u202 or higher) or Java 11 platform (Java SE 11.0.2 or

higher), and OpenCL library (optional). See S2 File for detailed specification of all functions

and S3 File for user-manual.

All data generated or analyzed during this study are included in this published project and

its supplementary information files.

Case studies

To demonstrate the usefulness of RMut, we conducted three case studies using the following

real biological networks.

• HSN: This is the large-scale human signaling network (HSN) with 1192 nodes and 3102

links after removing neutral links [59]. Based on the network, some general principles were

provided for understanding protein evolution in the context of signaling networks.

• CCSN: This is the canonical cell signaling network (CCSN) with 771 nodes and 1633 links

[60]. The network was obtained from http://stke.sciencemag.org/, and all the neutral interac-

tions were excluded.

• AMRN: This is the Arabidopsis morphogenesis regulatory network (AMRN) with 10 nodes

and 22 links [61]. This regulatory network is known to robustly control the process of flower

development.

Effects of different types of mutations on network sensitivity

In this case study, we examined the network sensitivity of 10 predefined mutations of RMut.

We calculated the average sensitivity value over all nodes or edges in HSN, CCSN, and AMRN

assuming that a single mutation occurs at a node (in the case of node-based mutations) or an

edge (in the case of edgetic mutations) (Fig 4). The mutation duration time τ was varied from

1 to 10 for the small-scale network, AMRN, and from 2 to 20 by 2 for the large-scale networks,

CCSN and HSN.

We note that the sensitivity was averaged over ten sets of random NCF rules. It took about

8.35 days, 3.55 days, and 1.26 minutes to conduct a total of 1000 simulations (10 mutations × 10

mutation times × 10 sets of NCF rules) for HSN, CCSN, and AMRN networks, respectively, on

a system with an NVIDIA GeForce GTX 680 GPU with 1536 processor at 1 GHz, four-core

Intel Core i7-3770 CPU 3.40 GHz, and 8 GB of memory. As shown in Fig 4A–4C, the sensitiv-

ity values based on the attractor-identicalness distance increased as the mutation time

increased. The sensitivity values based on the attractor-similarity distance also increased

against the mutation time on the small-scale network (Fig 4F) but it decreased after some

mutation time (τ = 8) for the large-scale networks (Fig 4D and 4E). It turns out that the sensi-

tivity value of some mutations was considerably variable against the mutation time. In addi-

tion, we found that the overexpression mutations showed the largest average sensitivity values

in all real networks. On the other hand, the knockout mutation showed smaller sensitivity val-

ues than the overexpression mutation because the output values of a Boolean variable are likely

to be biased to 0 (see Eq (1)). The state-flip mutation showed the second largest sensitivity
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values, while the rule-flip showed a moderate level of sensitivity. These node-based mutations

have been employed in a variety of studies, but without comparing them with other types of

mutations. For instance, knockout and overexpression mutations [1, 28], or rule-flip and state-

flip mutations [2, 22] were used to predict essential components in signaling networks.

Another study used the knockout mutation to predict mutant phenotypes of fission yeast [62].

Shmulevich, Dougherty [21] developed a method for intervening dynamical network behav-

iors using the state-flip mutation. Moreover, the relationships between dynamic behaviors and

Fig 4. Average sensitivities based on the predefined mutations. (a)-(c) Results of HSN, CCSN, and AMRN networks, respectively, using the identicalness-

based sensitivity. (d)-(f) Results of HSN, CCSN, and AMRN networks, respectively, using the similarity-based sensitivity. In each subfigure, Y-axis values

represent the average sensitivity values.

https://doi.org/10.1371/journal.pone.0213736.g004
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structural properties were examined based on knockout and rule-flip mutations [5–7]. These

previous studies can be extended by employing additional mutations, considering that some

recent studies [63–66] have found pleiotropic phenomenon such that different types of muta-

tions can occur in a same gene. Finally, the outcome-shuffle mutation having shown the small-

est sensitivity value among the node-based mutations was rarely investigated [14, 47].

Edgetic mutations have been recently considered in experimental studies to better reveal

genotype-to-phenotype relationships and drug discovery [15, 16]. Some in silico studies have

also been conducted [57, 58, 67]. For example, Li, Long [57] investigated the dynamic proper-

ties and stability of the yeast cell-cycle network by applying edge-removal, edge-addition, and

edge-sign-switch mutations. In this study, we examined a total of five edgetic mutations

including all of the previous ones. As shown in Fig 4, we observed that the edge-addition muta-

tions showed much larger sensitivity values than the edge-removal mutations in all real net-

works. This is interesting because these two mutations seem to be similar to each other in

terms of the number of changed interactions. It is known that the edge-addition mutation can

lead to disease by incorporating new incorrect interactions [68–70], or can also prevent unex-

pected network damage by recovering the loss of other interactions [67]. This implies that the

edge-addition mutation can be an efficient tool to control the network dynamics, although it is

costly and difficult to implement in experimental studies [71]. In addition, edge-reverse muta-

tions showed larger sensitivity values than the edge-sign-switch mutations, which is expected

based on the definitions. Previous studies have focused on the former [4, 14, 47, 58, 72] rather

than the latter [57]. Specifically, edge-reverse mutations were implemented by flipping an out-

put value of an input variable in a Boolean update rule [4, 58]. Finally, the edge-attenuation

mutation, which was not considered in any previous in silico studies, showed the smallest sen-

sitivity values in all real networks.

Comparisons of node-based and edgetic sensitivities in drug-targets

prediction

To show the usefulness of RMut, we applied it to the drug-target identification problem. A

drug-target is a protein, peptide or nucleic acid whose activity can be modulated by a drug to

produce a specific effect, which might be a desirable therapeutic effect or an unwanted adverse

effect. We hypothesized that a network is susceptible to mutations subject to drug-target

genes. To validate this hypothesis, we first profiled a total of 333 drug targets included in HSN

using the DrugBank database [73]. We defined the mutation-susceptibility of a node to repre-

sent how susceptible a network is to a mutation subject to that node as follows. For a node v
and an edge e, let λ(v) and λ(e) be the network sensitivity value when the mutation group con-

sists only of v and e, respectively. In the case of node-based mutations, the mutation-suscepti-

bility of node v corresponds to λ(v), whereas in the case of edgetic mutations, it is specified by

maxe2Aλ(e), where A is the set of edges that are incident to v. The mutation duration time τ
was set to 20 and 8 for identicalness- and similarity-based sensitivities, respectively, because

they led to the highest sensitivity to mutations (Fig 4A and 4D). We compared the average

mutation-susceptibility values between groups of drug-targets and non-drug targets in HSN

(Fig 5A, 5B, 5D and 5E). As shown in the figure, the average mutation-susceptibility values of

the drug-target group are significantly higher than those of the non-drug target group (P-

values< 0.0001 using t-test) in three or all node-based mutations (Fig 5A and 5D) for identi-

calness-/similarity-based sensitivity measures, respectively, and in four edgetic mutations for

both identicalness-/similarity-based sensitivity measures (Fig 5B and 5E). This implies that

edgetic mutations are more stable than node-based mutations in identifying drug targets. For

a more precise analysis, we further examined the area under the curve (AUC) when the
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mutation-susceptibility value was used to prioritize candidate drug-target genes in HSN (Fig

5C and 5F). As shown in the figure, four edgetic mutations, edge-removal, edge-attenuation,

edge-sign-switch, and edge-reverse are placed in the top 5 AUC values for both identicalness-/

similarity-based sensitivity measures. All of these results illustrate the importance of dynamics

analysis based on edgetic mutations, which have not been a primary focus in previous studies

compared to node-based mutations.

Synergy effects of double mutant interactions

In genetic interactions, synergy occurs when the contribution of two mutations to the pheno-

type of a double mutant exceeds the expectations from the additive effects of the individual

mutations [74]. Most previous studies have focused on synergy effects based on node-based

mutations such as knockout and overexpression mutations [3, 75–78], because they tried to

determine the functional roles of a gene or a protein. On the other hand, no previous experi-

mental study focused on the synergistic effects of edgetic mutations. Considering that many

experimental results showed the usefulness of edgetic mutations in genotype-to-phenotype

relationships and drug discovery [15, 16], in silico studies focusing on this issue would be

Fig 5. Results of drug-targets prediction based on network sensitivity analysis using RMut. (a)-(b) Comparison of average mutation-susceptibility values

between groups of drug-targets and non-drug-targets over node-based and edgetic mutations, respectively, using the identicalness-based sensitivity. (c) AUC

values in drug-target prediction using the identicalness-based sensitivity. (d)-(e) Comparison of average mutation-susceptibility values between groups of drug-

targets and non-drug-targets over node-based and edgetic mutations, respectively, using the similarity-based sensitivity. (f) AUC values in drug-target

prediction using the similarity-based sensitivity. In all sub-figures, the error bars represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0213736.g005
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interesting. Therefore, we conducted a case study to examine the synergy effects based on the

edge-removal mutation using RMut. To quantify the synergy effect, we defined the deviation

in network sensitivity value by a double edge-removal mutation from the expected one as a

single edge-removal mutation as follows:

εðei; ejÞ ¼ lðeiandejÞ � cðlðeiÞ; lðejÞÞ;

where λ(ei and ej) and λ(e) represent the network sensitivity values (see Eq (2) in Section 2.4)

when the mutations group is {ei,ej} (i.e., a double mutation) and {e} (i.e., a single mutation),

respectively. In addition, ψ(x,y) represents the expected network sensitivity to a single muta-

tion, and the following three functions were considered for this purpose.

cMAXðx; yÞ ¼ maxðx; yÞ ðmaxÞ

cROOTðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ðsquare rootÞ

cADDðx; yÞ ¼ minðxþ y; 1Þ ðadditiveÞ

Note that ψMAX�ψROOT�ψADD holds. We examined the synergistic effects between all pairs

of edges in AMRN and CCSN (Table 2), and we classified (ei,ej) into “Synergy” or “No syn-

ergy” groups if ε(ei,ej) is greater than a threshold β or not, respectively. The thresholds β were

set to 0.1 and 0.01 in the cases of identicalness-based sensitivity (Table 2A) and similarity-

based sensitivity (Table 2B), respectively. The mutation duration times were set to 10 for both

identicalness-/similarity-based sensitivity measures in the case of AMRN network. For CCSN

network, the mutation duration times were set to 20 and 8 for identicalness-based sensitivity

Table 2. Synergistic effects of double edge-removal mutations in two real biological networks, AMRN and CCSN.

(a) Sensitivity based on attractor-identicalness

AMRN Synergy No synergy

ψ(x,y) Number of edge pairs % Number of edge pairs %

ψMAX 16 6.93 215 93.07

ψROOT 6 2.60 225 97.40

ψADD 5 2.16 226 97.84

CCSN Synergy No synergy

ψ(x,y) Number of edge pairs % Number of edge pairs %

ψMAX 57782 4.34 1274746 95.66

ψROOT 10426 0.78 1322102 99.22

ψADD 2759 0.21 1329769 99.79

(b) Sensitivity based on attractor-similarity

AMRN Synergy No synergy

ψ(x,y) Number of edge pairs % Number of edge pairs %

ψMAX 52 22.51 179 77.49

CROOT 30 12.99 201 87.01

ψADD 7 3.03 224 96.97

s

CCSN Synergy No synergy

ψ(x,y) Number of edge pairs % Number of edge pairs %

ψMAX 3255 0.2443 1329273 99.7557

ψROOT 3253 0.2441 1329275 99.7559

ψADD 3249 0.2438 1329279 99.7562

https://doi.org/10.1371/journal.pone.0213736.t002
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and similarity-based sensitivity, respectively. These mutation times induced the highest sensi-

tivity to single edge-removal mutations (Fig 4B, 4C, 4E and 4F). As shown in the table, the

numbers of synergistic gene pairs were largest and smallest in the case of ψMAX and ψADD,

respectively, due to the definitions. In addition, the percentages of the synergistic groups in

CCSN were lower than those in AMRN regardless of the type of ψ. This implies that a pair of

edges in a large network is less likely to show a synergistic effect than that in a small network.

This is because the downstream areas affected by the mutations are not likely to be overlapped

in a large network.

In the case of ψADD, we further examined the number of edge pairs in the synergy group

when both λ(ei) and λ(ej) were nonzero. This condition reflects the situation in which it is

most difficult to induce a synergistic effect. Interestingly, we observed a large number of such

gene pairs. Specifically, the numbers were 5 out of 5 in AMRN and 242 out of 2759 in CCSN

for the identicalness-based sensitivity, and 7 out of 7 in AMRN and 1474 out of 3249 in CCSN

for the similarity-based sensitivity.

These edge-pairs tend to maximize the network sensitivity in a synergistic context and

could be potential candidates for future experimental studies.

Scalability by parallel computation in RMut

As we mentioned, we implemented RMut in a parallel computation using the OpenCL library.

To show the scalability of it, we compared the running times of three versions such as serial,

parallel on multi-core CPU, and parallel on GPU modes. We calculated the average sensitivity

of the HSN and assumed the knockout mutation. All were tested on a system with an NVIDIA

GeForce GTX 680 GPU with 1536 processor at 1 GHz, four-core Intel Core i7-3770 CPU 3.40

GHz, and 8 GB of memory. By varying the number of initial states, we controlled the problem

size and Fig 6 shows the result. In the figure, “parallel CPU” and “parallel GPU” represent the

results of parallel versions on multi-core CPU and GPU, respectively. As the number of initial-

states increases, the speedup by parallelism increases. When the number of initial states was set

to 100, the parallel versions were even slower than the serial version. On the other hand, the

former versions were about four times faster than the latter. This result explains that the paral-

lel implementation of RMut is properly scalable to the problem size.

Discussion

Although it is ideal to specify all the update rule based on real regulatory relations, most of

them are not available, particularly in the case of large-scale biological networks. In this regard,

we employed NCFs to randomly specify the update rule in this study. It is known that NCFs

can represent various types of regulatory interactions [18, 19, 79–81]. For example, 133 out of

139 rules compiled from a dataset about a transcriptional regulatory network [18] and 39 out

of 42 rules inferred from a dataset about signaling pathways [19] were NCFs. Despite these

supports, we note that the accurate representation of the regulatory interaction can be limited

in our tool. Another issue to be discussed about our Boolean network model is the synchro-

nous update scheme. In fact, it is very likely that the genes in the real signaling networks are

regulated in an asynchronous manner. However, it is required to properly specify some

unknown parameters to implement the asynchronous scheme such as the number of genes to

be updated in a single step and a strategy to choose an update sequence. To avoid this problem,

we employed the synchronous update scheme which can be another limitation of our tool.

Next, we discuss the applications of edgetic mutations and the related biological experi-

ments. Despite the experimental cost and the difficulty of implementing the edgetic mutations

[82, 83], many recent experimental studies have reported that the edgetic mutations are useful
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to identify novel genotype-to-phenotype relations [15, 49, 50, 69, 84, 85]. In particular, they

mostly employed the edge-removal and the edge-addition mutations. For example, a previous

study has shown how much proportion of human diseases may potentially arise from protein–

protein interactions-disruptive mutations by using protein structural information [85].

Another study explained that certain PHOX2B variants are associated with neuroblastoma

pathogenesis because of their inability to bind to key interacting proteins such as HPCAL1

[84]. It was also shown that the gain of interaction (edge-addition) mutation can lead to a dis-

ease by incorporating new incorrect interactions [68–70]. In addition, interaction-targeted

drugs called edgetic drugs have been emerged as a novel strategy in the drug discovery [16,

86–89] because they can be more specific than node-targeted ones. Some previous studies

focused on small drug-like molecules mediating protein-protein interactions [86–89], and

identified a few small molecules through experiments [90–94]. In [90, 91], the authors revealed

that Mdm2/Mdm-X interaction is a promising target for therapeutic reactivation of the

tumor-suppressor gene p53 in cancer treatments and found small molecule inhibitors to dis-

rupt Mdm2/Mdm-X interaction and activate p53 function. Another study [92] identified ICG-

001 which is a small molecule that inhibits the interaction between β-catenin and CBP, and

reduces the growth of colon carcinoma cells. On the other hand, there were few experimental

studies based on other edgetic mutation types. For example, a previous study found that low-

Fig 6. Scalability by parallel computation in RMut. We compared the running times for calculating average

sensitivity of the HSN in three modes: serial computation, parallel computation on multi-core CPU (denoted as

“parallel CPU”), and parallel computation on GPU (denoted as “parallel GPU”). The knockout mutation is considered

and the number of initial states varied from 100 to 2000.

https://doi.org/10.1371/journal.pone.0213736.g006
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affinity drugs inhibit their targets and can change the intensity of an interaction instead of

eliminating the link completely [55]. We note that this experiment can be simulated by using

the edge-attenuation mutation in our tool. Taken together, a variety of edgetic mutations can

be prominent in future drug discovery.

Finally, we here summarize the benefits of RMut package over the previous existing tools.

The most benefit is that a user can analyze the network dynamics over many different types of

mutations as well as novel user-defined ones. In addition, it is possible to more precisely ana-

lyze the dynamics by changing various environmental parameters such as the mutation area

(i.e., multiple mutations) and the duration time. Moreover, the large-scale networks can be

investigated due to the parallel implementation using an OpenCL platform. Our package also

features not only the dynamics analysis but also the structure analysis such as calculating

node-/edge-based centralities and identifying feedback/feed-forward loops in a single package.

Based on these advantages, RMut package can be used in various applications. For example,

we can identify some essential components [1, 2] by examining the sensitivity values of the

interested components. In addition, it can be used to predict genetic interactions [3] by com-

paring the sensitivity value of a double gene mutation from the value predicted from single

mutations, and reveal the network intervention [4] by applying the state-flip mutation subject

to a single gene. It is also possible to investigate an emergent property by examining the rela-

tionship between dynamic and structural properties [5–7]. Another application is the drug dis-

covery [15, 16] by computing the sensitivity values of the genes or interactions to identify

drug-target candidates. In this way, we believe our tool can give various benefits to many

researchers.

Conclusions

We developed RMut, which is an efficient R package to investigate the network sensitivity for

both predefined node-based and edgetic mutations. Moreover, new user-defined mutations

can be easily embedded using a Java template. RMut also provides more precise analysis by

specifying the mutation area and the duration time. We implemented RMut in a parallel algo-

rithm using the OpenCL library to analyze large-scale networks. In this study, we demon-

strated the usefulness of RMut through three case studies. First, we compared 10 different

mutations predefined in RMut over real biological networks and found that the networks were

most sensitive to overexpression/state-flip and edge-addition/-reverse mutations among node-

based and edgetic mutations, respectively. In the second case study, we observed that edgetic

mutations can predict drug-targets better than node-based mutations. Interestingly, edge-

attenuation, which has not been considered in previous tools, showed high performance in

drug-target prediction. Finally, we compared double and single edge-removal mutations based

on network sensitivity values, and found an interesting synergy effect even for a pair of suscep-

tible edges. Taken together, these findings indicate that RMut can be a useful tool to efficiently

analyze network sensitivity against various types of mutations. In future, RMut could be

extended to employ arbitrary update-rules or asynchronous update-scheme in the Boolean

network model, and provide more visualization features for the analysis.
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24. Álvarez-Buylla ER, Chaos Á, Aldana M, Benı́tez M, Cortes-Poza Y, Espinosa-Soto C, et al. Floral Mor-

phogenesis: Stochastic Explorations of a Gene Network Epigenetic Landscape. PLoS ONE. 2008; 3

(11):e3626. https://doi.org/10.1371/journal.pone.0003626 PMID: 18978941

25. Tillich UM, Lehmann S, Schulze K, Dühring U, Frohme M. The Optimal Mutagen Dosage to Induce

Point-Mutations in Synechocystis sp. PCC6803 and Its Application to Promote Temperature Tolerance.

PLoS ONE. 2012; 7(11):e49467. https://doi.org/10.1371/journal.pone.0049467 PMID: 23185339

26. Parry JM. The use of yeast cultures for the detection of environmental mutagens using a fluctuation

test. Mutation Research/Environmental Mutagenesis and Related Subjects. 1977; 46(3):165–75.

https://doi.org/10.1016/0165-1161(77)90023-1.

27. Suzuki N, Bassil E, Hamilton JS, Inupakutika MA, Zandalinas SI, Tripathy D, et al. ABA Is Required for

Plant Acclimation to a Combination of Salt and Heat Stress. PLoS ONE. 2016; 11(1):e0147625. https://

doi.org/10.1371/journal.pone.0147625 PMID: 26824246

28. Li S, Assmann SM, Albert R. Predicting Essential Components of Signal Transduction Networks: A

Dynamic Model of Guard Cell Abscisic Acid Signaling. PLoS Biol. 2006; 4(10):e312. https://doi.org/10.

1371/journal.pbio.0040312 PMID: 16968132

R package for a Boolean sensitivity analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0213736 March 19, 2019 19 / 23

https://doi.org/10.1186/s12859-016-0914-z
http://www.ncbi.nlm.nih.gov/pubmed/26846964
https://doi.org/10.1371/journal.pone.0103010
http://www.ncbi.nlm.nih.gov/pubmed/25058310
https://doi.org/10.1093/bioinformatics/btt568
http://www.ncbi.nlm.nih.gov/pubmed/24078712
https://doi.org/10.1371/journal.pone.0133660
http://www.ncbi.nlm.nih.gov/pubmed/26263006
https://doi.org/10.1093/bioinformatics/btq124
https://doi.org/10.1093/bioinformatics/btq124
http://www.ncbi.nlm.nih.gov/pubmed/20378558
https://doi.org/10.1016/j.cell.2015.04.013
http://www.ncbi.nlm.nih.gov/pubmed/25910212
https://doi.org/10.1371/journal.pcbi.1004024
http://www.ncbi.nlm.nih.gov/pubmed/25568936
https://doi.org/10.1002/cplx.10022
https://doi.org/10.1002/cplx.10022
https://doi.org/10.1371/journal.pcbi.1000912
https://doi.org/10.1371/journal.pcbi.1000912
http://www.ncbi.nlm.nih.gov/pubmed/20824124
https://doi.org/10.1073/pnas.0407783101
http://www.ncbi.nlm.nih.gov/pubmed/15572453
http://www.ncbi.nlm.nih.gov/pubmed/12376376
https://doi.org/10.1186/1471-2105-8-384
http://www.ncbi.nlm.nih.gov/pubmed/17935633
https://doi.org/10.1371/journal.pone.0001672
http://www.ncbi.nlm.nih.gov/pubmed/18301750
https://doi.org/10.1371/journal.pone.0003626
http://www.ncbi.nlm.nih.gov/pubmed/18978941
https://doi.org/10.1371/journal.pone.0049467
http://www.ncbi.nlm.nih.gov/pubmed/23185339
https://doi.org/10.1016/0165-1161(77)90023-1
https://doi.org/10.1371/journal.pone.0147625
https://doi.org/10.1371/journal.pone.0147625
http://www.ncbi.nlm.nih.gov/pubmed/26824246
https://doi.org/10.1371/journal.pbio.0040312
https://doi.org/10.1371/journal.pbio.0040312
http://www.ncbi.nlm.nih.gov/pubmed/16968132
https://doi.org/10.1371/journal.pone.0213736


29. Dudgeon C, Chan C, Kang W, Sun Y, Emerson R, Robins H, et al. The evolution of thymic lymphomas

in p53 knockout mice. Genes & Development. 2014; 28(23):2613–20.

30. Donehower LA, Harvey M, Vogel H, McArthur MJ, Montgomery CA, Park SH, et al. Effects of genetic

background on tumorigenesis in p53-deficient mice. Molecular Carcinogenesis. 1995; 14(1):16–22.

https://doi.org/10.1002/mc.2940140105 PMID: 7546219

31. Strepp R, Scholz S, Kruse S, Speth V, Reski R. Plant nuclear gene knockout reveals a role in plastid

division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proceedings of

the National Academy of Sciences. 1998; 95(8):4368.

32. Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, et al. Efficient Gene Knockout in Goats Using

CRISPR/Cas9 System. PLoS ONE. 2014; 9(9):e106718. https://doi.org/10.1371/journal.pone.0106718

PMID: 25188313

33. Dimitrov L, Pedersen D, Ching KH, Yi H, Collarini EJ, Izquierdo S, et al. Germline Gene Editing in Chick-

ens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells. PLoS ONE.

2016; 11(4):e0154303. https://doi.org/10.1371/journal.pone.0154303 PMID: 27099923

34. Tong C, Li P, Wu NL, Yan Y, Ying Q-L. Production of p53 gene knockout rats by homologous recombi-

nation in embryonic stem cells. Nature. 2010; 467:211. https://doi.org/10.1038/nature09368 https://

www.nature.com/articles/nature09368#supplementary-information. PMID: 20703227

35. Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR-Cas9 gene drive

system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Bio-

technology. 2015; 34:78. https://doi.org/10.1038/nbt.3439 https://www.nature.com/articles/nbt.

3439#supplementary-information. PMID: 26641531

36. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, et al. Efficient TALEN-mediated

gene knockout in livestock. Proceedings of the National Academy of Sciences. 2012.

37. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger

nucleases. Nature Reviews Genetics. 2010; 11:636. https://doi.org/10.1038/nrg2842 PMID: 20717154

38. Prelich G. Gene Overexpression: Uses, Mechanisms, and Interpretation. Genetics. 2012; 190(3):841.

https://doi.org/10.1534/genetics.111.136911 PMID: 22419077

39. Shastry BS. Overexpression of genes in health and sickness. A bird’s eye view. Comparative Biochem-

istry and Physiology Part B: Biochemistry and Molecular Biology. 1995; 112(1):1–13. https://doi.org/10.

1016/0305-0491(95)00055-D.

40. Stark GR, Wahl GM. Gene Amplification. Annual Review of Biochemistry. 1984; 53(1):447–91. https://

doi.org/10.1146/annurev.bi.53.070184.002311 PMID: 6383198

41. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids

Research. 2003; 31(13):3812–4. https://doi.org/10.1093/nar/gkg509 PMID: 12824425

42. Dorshorst B, Henegar C, Liao X, Sällman Almén M, Rubin C-J, Ito S, et al. Dominant Red Coat Color in

Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit

Alpha (COPA) Gene. PLoS ONE. 2015; 10(6):e0128969. https://doi.org/10.1371/journal.pone.0128969

PMID: 26042826

43. Kamburov A, Lawrence MS, Polak P, Leshchiner I, Lage K, Golub TR, et al. Comprehensive assess-

ment of cancer missense mutation clustering in protein structures. Proceedings of the National Acad-

emy of Sciences. 2015; 112(40):E5486.

44. Styrkarsdottir U, Thorleifsson G, Sulem P, Gudbjartsson DF, Sigurdsson A, Jonasdottir A, et al. Non-

sense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature.

2013; 497:517. https://doi.org/10.1038/nature12124 https://www.nature.com/articles/

nature12124#supplementary-information. PMID: 23644456

45. Downs LM, Wallin-Håkansson B, Boursnell M, Marklund S, Hedhammar Å, Truvé K, et al. A Frameshift
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