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Hardware-based spiking neural networks (SNNs) inspired by a biological nervous
system are regarded as an innovative computing system with very low power
consumption and massively parallel operation. To train SNNs with supervision, we
propose an efficient on-chip training scheme approximating backpropagation algorithm
suitable for hardware implementation. We show that the accuracy of the proposed
scheme for SNNs is close to that of conventional artificial neural networks (ANNs)
by using the stochastic characteristics of neurons. In a hardware configuration, gated
Schottky diodes (GSDs) are used as synaptic devices, which have a saturated current
with respect to the input voltage. We design the SNN system by using the proposed
on-chip training scheme with the GSDs, which can update their conductance in parallel
to speed up the overall system. The performance of the on-chip training SNN system
is validated through MNIST data set classification based on network size and total time
step. The SNN systems achieve accuracy of 97.83% with 1 hidden layer and 98.44%
with 4 hidden layers in fully connected neural networks. We then evaluate the effect of
non-linearity and asymmetry of conductance response for long-term potentiation (LTP)
and long-term depression (LTD) on the performance of the on-chip training SNN system.
In addition, the impact of device variations on the performance of the on-chip training
SNN system is evaluated.

Keywords: neuromorphic, spiking neural networks, deep neural networks, on-chip training, supervised learning,
hardware-based neural networks, synaptic devices

INTRODUCTION

Recently, artificial neural networks (ANNs) have shown superior performance in several
fields, such as pattern recognition or object detection (Gokmen and Vlasov, 2016; Ambrogio
et al., 2018; Kim C.-H. et al., 2018; Kim J. et al., 2018; Kim et al., 2019). The
structure of ANNs was inspired by models of cortical hierarchies in neuroscience and
neuroengineering (Fukushima, 1988; Riesenhuber and Poggio, 1999; Pfeiffer and Pfeil, 2018).
In particular, convolutional neural networks (CNNs) inspired by the biological vision model
have significantly improved the accuracy of deep neural networks (Krizhevsky et al., 2012).
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However, it is difficult to say that the ANNs with a Von Neumann
architecture perfectly imitate a human’s brain, which is a very
high-speed and massively parallel operating system with ultra-
low power consumption (O’Connor et al., 2013; Shrestha et al.,
2018; Kang et al., 2019). In light of this, hardware-based spiking
neural networks (SNNs) capable of massively parallel operation
by using analog synaptic devices have been regarded as an
innovative type of computing system that can partially replace
ANNs (Hwang et al., 2018).

Spiking neural networks can imitate biological behavior with
various neuron and synapse models (Jo et al., 2010; Yang
et al., 2016). Neurons in SNNs generate spikes to communicate
between adjacent neurons. The input intensity of the neuron is
represented as the number of spikes generated from the neurons
(Oh et al., 2019). The spikes transmit through synapses and
are integrated into the membrane capacitor of neurons in the
next layer. When the membrane potential exceeds the threshold
voltage, the neuron generates a spike to the deeper layer. This
biological behavior of the neuron in SNNs can be matched to the
behavior of the rectified linear unit (ReLU) activation function
in ANNs (Diehl et al., 2015; Rueckauer et al., 2017). Since their
behavior can be matched with each other, weights trained in
ANNs with ReLU can be exactly converted to the weights in
SNNs with very slight accuracy degradation. Using the ANN-
to-SNN conversion method, SNNs have achieved state-of-the-
art accuracy in MNIST, CIFAR-10, and Imagenet classification
(Pfeiffer and Pfeil, 2018). However, the weights in SNNs should
be trained from ANNs in serial operation, and the conversion
is performed once. Therefore, SNNs adopting the ANN-to-
SNN conversion cannot update themselves depending on various
system situations and only perform the inference process for a
given task. For this reason, the performance of SNNs that adopt
conversion is sensitive to unexpected variations of hardware
and cannot save the power consumption required for training a
weight (Kim H. et al., 2018; Yu, 2018). In contrast, SNNs using
on-chip training schemes that can update weights on the chip
can have immunity against device variation or noise (Querlioz
et al., 2013; Kwon et al., 2019). In addition, the on-chip training
SNN systems train a weight by applying an update pulse to a
synaptic device representing a weight, which leads to low power
consumption for training a weight (Hasan et al., 2017).

There are two types of training weight methods for SNNs
on the chip. One imitates the unsupervised training behavior in
the human brain, for example, spike-timing-dependent plasticity
(STDP) algorithms (Bi and Poo, 1998; Milo et al., 2016;
Kheradpisheh et al., 2018). The other type is the supervised
training method, which updates weights by approximating the
backpropagation algorithm to match the behavior of the SNNs
(Lee et al., 2016; Tavanaei and Maida, 2019). SNNs using
unsupervised STDP have been reported to be implemented with
synaptic devices, such as RRAM or Flash devices (Pedretti et al.,
2017; Kim C.-H. et al., 2018; Prezioso et al., 2018). However,
compared to conventional ANNs, the performance of SNNs using
STDP is limited in terms of accuracy. In contrast to STDP,
the performance of SNNs using approximated backpropagation
is close to that of conventional ANNs. However, even in this
case, signals representing an error value should be propagated

backward while calculating and storing the values for updating
weights, which is the main reason why it is difficult to implement
hardware-based SNNs using on-chip training schemes.

Here, we propose a new supervised on-chip training scheme
that efficiently approximates the backpropagation algorithm
suitable for SNNs. The proposed on-chip training scheme
dramatically reduces the memory usage required for the weight
update by using 1 bit of memory per neuron to determine
whether the neuron generates a spike at the last time step, and
1 bit of memory per neuron to store the derivative of the neuron’s
activation function. By using the stochastic characteristic of
neurons in SNNs, the performance of SNNs using the proposed
training scheme achieves the performance of ANNs. For the
hardware configuration of on-chip training SNN systems, a gated
Schottky diode (GSD), which has a saturated current, is fabricated
as a synaptic device (Bae et al., 2017; Lim et al., 2019b). This
characteristic greatly improves the reliability of the SNN system
by allowing the GSDs to represent accurate weights even if an
unexpected voltage drop occurs in the system (Lim et al., 2019a).
In addition, a parallel conductance update scheme that speeds
up the SNN system is validated for GSDs. We then design and
simulate an on-chip training SNN system based on the results
measured from GSDs and verify the performance of the system
based on its ability to classify MNIST data sets. Lastly, the system
is evaluated for non-ideal characteristics of synaptic devices, such
as non-linearity, asymmetry, and device variation.

MATERIALS AND METHODS

Gated Schottky Diode
A three-terminal gated Schottky diode (GSD) that cuts off the
Schottky forward current was previously fabricated to act as a
synaptic device (Lim et al., 2019b). However, the GSD in the
previous paper was damaged by the sputtering process for the
deposition of metal electrodes. By reducing the sputtering power,
the current level of the GSD is improved. Figure 1A shows a bird’s
eye view of the GSD. The bottom gate (BG) and ohmic contact
(O) are made of n+-poly silicon. A SiO2/Si3N4/SiO2 (ONO) stack
is then deposited, and the Si3N4 layer acts as a charge storage
layer. As an active layer, undoped Si is deposited on the ONO
stack and O electrode. Contact holes are opened on the active
layer after the layer of SiO2 has formed. A Ti/TiN/Al/TiN stack
is deposited on the exposed active layer by sputtering and forms
the Schottky contact (S). Figure 1B shows a circuit diagram of an
n-type GSD when the voltage applied to the BG is positive. If VBG
is positive, the Schottky junction is formed at the S contact, and
NMOS is formed intrinsically within the structure of the GSD.
Measured IO-VBG curves of GSDs for different VO values are
shown in Figure 1C. The effective Schottky barrier height for
electrons decreases as VBG increases, and the operating current
of GSD is the reverse Schottky diode current. Therefore, the
reverse Schottky diode current also increases as VBG increases
and can be used as a weight for SNNs. In addition, since the
magnitude of the reverse Schottky diode current is low, an
SNN system using GSDs operates with low power consumption.
Figure 1D shows the measured IO-VO curves of GSDs with
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FIGURE 1 | (A) Bird’s eye view of a GSD. (B) Circuit diagram of a GSD. When VBG is positive, operating current flows with positive VO, and the current is cut off with
negative VO. (C) Measured IO-VBG curves of GSDs with different VO values. (D) IO-VO curves of GSDs with different VBG values. When VO is positive, saturated
current is shown as VO increases. Since a negative VO depletes electrons in the poly-Si active layer, the IO current is cut off.

different VBG values. Since VO above a certain value (e.g., 1.5 V
at VBG = 1 V) is dropped between O and S in Figure 1B, the
reverse Schottky diode current is saturated with respect to the
input voltage of VO. With the help of the saturation behavior,
the current of a GSD does not change despite voltage drops
along metal wires in a crossbar array, and voltage drops by
electronic switches do not affect the voltage across the device
(Lim et al., 2019a). In addition, negative VO depletes electrons
in the Si active layer when VBG is positive, and Schottky forward
current is blocked.

Figures 2A,B show the conductance response (IO at VO = 3 V,
VBG = 0 V, VS = 0 V) with respect to the time the erase
pulse (VBG = −7 V, VO = 0 V, VS = 0 V) and program pulse
(VBG = 5.5 V, VO = 0 V, VS = 0 V) are applied, respectively. Long-
term potentiation (LTP) and long-term depression (LTD) curves
are shown by applying the erase and program pulses, respectively.
After GSDs are initialized, each pulse with a different pulse width
is applied to the GSDs 10 times. Since the amount of charge

stored in the Si3N4 layer is determined by the total time the
FN tunneling current flows (Kim et al., 2010), the conductance
can be changed continuously with the time of the program or
erase pulses applied to the devices. The normalized conductance
response of the GSD is fitted by the model of conductance with
respect to the total time a pulse is applied to a synaptic device
(Querlioz et al., 2011; Ernoult et al., 2019; Kwon et al., 2019), as
follows:

GLTP (t) = aLTP +
1

βLTP
ln (t + cLTP) , for LTP (1)

GLTD (t) = aLTD −
1

βLTD
ln (t + cLTD) , for LTD (2)

where G is the conductance of the synaptic device, t is the total
time the pulse is applied, a and c are the fitting parameters,
and β is a non-linearity factor. As shown in Figure 2, the
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FIGURE 2 | IO behavior with respect to (A) erase time and (B) program time when VO is 3 V and VBG is 0 V. After the GSD is initialized, erase (–7 V) or program
(5.5 V) pulses are applied to the BG electrode, with 0 V applied to the S and O electrodes. Each pulse with a different pulse width is applied to the GSD 10 times.
(Inset) IO behavior with respect to the erase or program time on a linear scale.

GSDs have a near-linear LTP curve (βLTP of ∼1.60) and a non-
linear LTD curve (βLTD of ∼8.03). The normalized conductance
responses as a parameter of the non-linearity factor are described
in Supplementary Figure S1.

On-Chip Training Algorithm
The behavior of an integrate-and-fire (I&F) neuron in an SNN
can approximate the conventional ReLU activation function in
ANNs (Tavanaei and Maida, 2019). A ReLU activation function,
f
(
y
)
, is defined as follows:

f
(
y
)
= max

(
0, y

)
, (3)

df
dy
=

{
1, y > 0
0, y ≤ 0

(4)

where y is the input signal of the activation function.
When the input signal of ReLU exceeds 0, the activated
value is propagated to the next layer, and the derivative
of ReLU is set to 1. This behavior of ReLU is similar
to the behavior of I&F neurons, which also generate and
propagate a spike when the membrane potential exceeds
the threshold voltage. In this regard, I&F neurons are used
in the forward-propagation phase (FP), the phase for the
inference process. In addition, we approximate the derivative
of the activation function of I&F neurons in the form of a
derivative of ReLU.

In SNNs, a weight is represented by the conductance
difference between two synaptic devices representing positive
and negative values. In the case of a network having L layers,
a weight connecting neuron i in layer l to neuron j in layer
l + 1 is represented by W l

ij = Gl
+, ij − Gl

−, ij, where l ∈
{1, . . . , L− 1} (Burr et al., 2015). The input of the first layer
is converted to a Poisson-distributed spike train, and the input
intensity is encoded as a spike rate. The input spikes are fed
into the GSD arrays, which represent the weight matrix. An I&F

neuron integrates charge resulting from the weighted sum into its
membrane capacitor:

V l
j (tFP) = V l

j (tFP − 1)+

N l−1∑
i

Sl−1
i (tFP)
Cmem

(Gl−1
+, ij − Gl−1

−, ij),

(5)
where Vl

j(tFP) is the membrane potential of I&F neuron j in
layer l at time step tFP, Nl−1 is the total number of neurons
in layer l-1, Sl−1

i(tFP) is a spike in the form of a voltage
pulse generated from neuron i in layer l-1 at time tFP, and
Cmem is the membrane capacitance of an I&F neuron. The
voltage pulses propagate along the O lines in the GSD array,
and the currents along the O lines are added to the S lines in
the array. The current output from the GSD array charges or
discharges the membrane capacitor of an I&F neuron. The I&F
neuron generates a spike when its membrane potential exceeds
the firing threshold voltage of the I&F neuron (V th). V th is
then subtracted from the membrane potential of the neuron:

if V l
j (tFP) > Vth :


V l
j (tFP) = V l

j (tFP)− Vth

Slj (tFP) = 1
glj = 1

(6)

else : Slj (tFP) = 0, (7)

where g is an approximated derivative of the neuron’s activation
function. When FP starts for a given input signal, the
approximated derivative g of each neuron’s activation function
is initialized to 0. Then, if the neuron generates a spike during
FP, g is set to 1. If the neuron does not generate a spike
during FP, g remains 0. Although the behavior of an I&F neuron
cannot be differentiable, neural networks have been reported
to show comparable performance when storing a derivative
with only 1 bit (Narayanan et al., 2017; Tavanaei and Maida,
2019). In the last layer (l = L), spikes generated from the
neurons and target spikes that supervise the correct answer are
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accumulated to obtain the “delta” value in the last layer (δL):

δLj = k
T∑

tFP=1

(
Targetj (tFP)− SLj (tFP)

)
, (8)

where T is the total time step for the FP, and k is a
constant that converts the number of spikes into the voltage
amplitude. For the correct label, a target spike train has a
value of 1, and its firing frequency is set to the maximum.
In other words, a target spike is generated every time step
with the value of 1 for the correct label, and no target spike
is generated for the wrong label. The constant k is set to
the value with the maximum δLj of 1 V. The whole process
performed in the FP is simply described with a 1-layer network
in Figure 3.

In the backward-propagation phase (BP), the delta values
reversely propagate to the previous layer through the synaptic
devices and are integrated to obtain the delta sum (Burr et al.,
2015; Hasan et al., 2017; Narayanan et al., 2017; Ambrogio et al.,
2018):

δli =

N l+1∑
j

λBPδ
l+1
j

CBP
(Gl
+, ij − Gl

−, ij)g
l
i, (9)

where g is the derivative of the neuron’s activation function
determined in the FP. λ is a constant representing the ratio
of voltage pulse width to voltage amplitude, and CBP is the
capacitance to store δ. The δ is obtained in the form of voltage
amplitude and is converted to a voltage pulse (λδ) with a

width proportional to the voltage amplitude using the pulse-
width modulation circuit (Hasan et al., 2017; Lim et al., 2019a).
Although the current direction of GSDs in the BP should be
kept the same as in the FP to maintain their conductance value,
the delta sum can be performed along the O line of GSD
arrays while maintaining the current flow direction (Lim et al.,
2018). Then, δliis obtained when the corresponding derivative (gli)
determined in the FP is 1.

In the update phase (UP), the conductance of synaptic devices
is updated depending on δ. In the conventional backpropagation
algorithm, the weight (W l

ij) update is calculated as 1W l
ij ∝

xliδ
l+1
j , where xli is the activated value. When this update rule

is applied to the SNNs, xli is matched to the number of spikes
generated from the neuron during the FP. However, significant
power consumption and memory usage are required for counting
and storing the number of spikes for every neuron, which can
become a bottleneck for the entire SNN system (Yu, 2018). In this
work, we use a 1-bit spike value (0 or 1) per neuron depending on
whether the neuron generated a spike at the last time step:

1tl+, ij = 1tl−, ij =
∣∣∣Sli (T)× λUPδ

l+1
j

∣∣∣ , (10)

where λ is a constant representing the ratio of voltage pulse
width to voltage amplitude and 1t is the width of the voltage
pulse applied to the corresponding synaptic device. In the UP,
since the amount of conductance update is modulated by λ, λ

represents the learning rate of conventional ANNs. Whether it
is a program pulse or an erase pulse is determined by the sign
of the delta value. When the weight increases, the conductance

FIGURE 3 | Conceptual diagram with a 1-layer network for the forward phase (FP) of the proposed on-chip training scheme. The spikes from previous layers
propagate along the O line of the G+ and G- array, and the current sum of the array is integrated into the membrane capacitor of the I&F. When the neuron H1 and
H2 generate a spike, the derivative (g1 and g2) of the neurons is set to a value of 1.

Frontiers in Neuroscience | www.frontiersin.org 5 July 2020 | Volume 14 | Article 423

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00423 July 3, 2020 Time: 19:56 # 6

Kwon et al. On-Chip Training in SNNs

of the synaptic device representing the positive weight increases
by the erase pulse and the conductance of the synaptic device
representing the negative weight decreases by the program pulse.
On the contrary, when the weight decreases, the program pulse
is applied to the device representing the positive weight and the
erase pulse is applied to the device representing the negative
weight. The whole training process of the proposed scheme is
represented in Algorithm 1.

Updating Method
After all delta values ( δ) except in the first input layer have been
obtained, the conductance of the GSDs is updated by δ and S(T).
To update the conductance of GSDs in parallel, we apply DC bias
to the BG and O lines of the array and a program or erase pulse

Algorithm 1 | On-chip training scheme in SNNs with synaptic devices.

1: Input: Poisson-distributed input spike train (S1), Total time step (T ), threshold
voltage of I&F neuron (Vth), ratio of the voltage pulse width to the voltage
amplitude (λ), capacitance (C)

2: Initialize: Membrane voltage (V ), derivative of the neuron’s activation
function (g)

3: for tFP = 1 to T do // Forward-propagation phase

4: for l = 2 to L do

5: V l
← V l

+ Sl−1 (Gl−1
+ −Gl−1

− )/Cmem

6: if V l > Vth then // If membrane voltage exceeds V th, the neuron
generates a spike

7: V l
← V l

− Vth

8: Sl
← 1

9: gl
← 1 (if l 6= L) // The corresponding derivative of the neuron’s

activation function is set to 1

10: else

11: Sl
← 0

12: end if

13: end for

14: δL
← δL

+ k
(
TargetSpike− SL)

15: end for

16: for l = L-1 to 2 do // Backward-propagation phase

17: δl
← λBPδl+1 gl (Gl

+ −Gl
−)/CBP

18: // δl is obtained in the form of voltage amplitude and converted to a
voltage pulse with a width proportional to the amplitude (λδl )

19: end for

20: for l = 1 to L-1 do//Update phase

21: 1t←
∣∣Sl (T) λUPδl+1

∣∣ // Applying a program or erase pulse to the
corresponding synaptic device

22: if δl+1> 0 then // Case of increasing a weight

23: Gl
+ ← Gl

+, LTP(t+1t) // Increasing conductance of Gl
+ by

applying an erase pulse

24: Gl
− ← Gl

−, LTD(t+1t) // Decreasing conductance of Gl
−by

applying a program pulse

25: end if

26: if δl+1< 0 then // Case of decreasing a weight

27: Gl
+ ← Gl

+, LTD(t+1t) // Decreasing conductance of Gl
+ by

applying a program pulse

28: Gl
− ← Gl

−, LTP(t+1t) // Increasing conductance of Gl
− by

applying an erase pulse

29: end if

30: end for

to the S lines of the array. Figure 4 shows the 2-by-2 layout of
GSD arrays and the bias conditions of program and erase in the
UP. The red dotted square represents the condition along the BG
and O lines for S(T) of 1, and the green dotted square stands for
the condition along the S line if δ is not equal to 0. The width of
the program and erase pulses is proportional to δ, which can be
implemented by the pulse-width modulation circuit (Lim et al.,
2019a). In this case, only cell 1 in Figure 4 should be updated by a
program or erase pulse, and the others should be inhibited in this
condition. When a program pulse with an amplitude of−3.5 V is
applied to the S line, the voltage of 2 V is applied to the BG line
of cell 1. The voltage difference between the BG and S in cell 1
is then 5.5 V, which is the condition for programming a GSD. On
the contrary, the voltage difference between BG and S of the other
cells does not exceed 5.5 V, so the other cells are inhibited in this
program scheme. In case of applying an erase pulse to the S line,
the erase pulse has the same width as the program pulse width,
but it has an amplitude of 5 V. The conductance change of each
cell condition is shown in Figure 5. The width of the program
pulse is 10 ms, and the width of the erase pulse is 100 ms. In both
the cases of program and of erase, only the conductance of cell 1
is updated, and the others are inhibited successfully. By using this
scheme, the GSDs in the array can be updated in parallel, which
can improve the update speed of the entire SNN system. Note that
the on-chip training SNN system updates weights as frequently
as the training iterations, so a parallel conductance update of the
device array is required to boost the training speed of the system.

RESULTS

Evaluation of On-Chip Training Scheme
We design and simulate fully connected (FC) neural networks
for MNIST classification to verify the proposed on-chip training
scheme for SNNs. The batch size of training is 1 to reduce
memory usage and the area footprint required for the memory.
The accuracy of SNNs is evaluated with the membrane voltage
of the neuron at the last layer. The parameters in the training
scheme for MNIST classification are described in Table 1.
Figure 6A shows the MNIST test set accuracy of SNNs using the
proposed on-chip training scheme according to the total time
step (T). Here we assume that synaptic devices have a linear
conductance response and no variation, and the baseline accuracy
in Figure 6A is evaluated in ANNs that have the same network
size. If T is 20, the maximum number of input, hidden, and
output spikes are 20. The increased T precisely represents the
activation value of each neuron and δ, resulting in improved
accuracy for SNNs. When T is equal or more than 20, the SNNs
show saturated accuracy but achieve accuracy near the baseline
accuracy of ANNs. Figures 6B,C show whether the proposed
on-chip training scheme can be applied to wider and deeper
networks. The on-chip training SNNs achieve higher accuracy
as the layer width increases, but the accuracy decreases as the
depth of the network increases with the same T. In this case,
since increased T represents more accurate neuron activation
values and δ, the accuracy in deeper networks is expected to
be improved. As a result of increasing T to 50, the accuracy of
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SNNs with 4 hidden layers increases, as shown in Figure 6C.
Nevertheless, the training curve for the network with 4 hidden
layers oscillates over epochs due to the large λUP. Since λUP
is multiplied by δ, a large λUP increases the amount of weight
update and causes the oscillating training curve. Thus, we scale
λUP to train deeper networks. After reducing λUP to 0.2λUP at
epoch 11 in Figure 6D, a stable training curve is obtained, and
the accuracy increases to 98.25%.

Table 2 compares this work with conventional on-chip
training schemes using analog synaptic devices for MNIST
classification. The proposed on-chip training scheme achieves an
accuracy near that of conventional ANNs even when the batch
size of training is 1 with a single hidden layer. In addition, we
increase the batch size to 100 to improve the proposed scheme
for SNNs with 4 hidden layers. Although increasing batch size
for training directly increases memory usage, it improves the
accuracy of deep networks. As a result, the network achieves an
accuracy of 98.44% (0.1% lower than the accuracy of an ANN
using the Adam optimizer), and shows excellent performance
compared to other on-chip training schemes.

When ANNs are converted to SNNs, I&F neurons generate
spikes at each time step with a probability proportional to the
activated value in the ANN. Then, the weights connected to the
neuron that generates a large number of spikes are updated with
a high probability in one training iteration. This weight update
scheme using a 1-bit spike event of a neuron is less accurate than

that using the total number of spikes of a neuron. However, the
average of total weight updates using a 1-bit spike approximates
the average of total weight updates using the number of spikes
of the neuron. To compare the weight update schemes, we trace
the sum of total weight updates in each layer with respect to the
training iterations. Case 1 is the sum of total weight updates using
1-bit spike events (this work), and Case 2 is the sum using the
total number of spike events. In Case 1, S(T) of the equation
(10) is 0 or 1, determined by the spike event at the last time
step. In Case 2, S(T) in the equation (10) is converted to the
number of spikes in the FP divided by T. For example, if the
neuron generates spikes 14 times in the FP with a T of 20, the
S(T) in the equation (10) is converted to 0.7 for Case 2. The actual
weight update is performed with the 1-bit spike of a neuron, but
the amount of the weight update is calculated by both ways at
each iteration to compare them. Figure 7 shows the difference
between the sum of total weight updates for Case 1 and Case 2.
As shown in Figure 7, the sums of total weight updates in both
cases are not exactly the same, but the values in Case 1 fluctuate
around the values in Case 2. In addition, we trace the sum of
weight updates of the random position in each layer: a synapse
connecting the 358th neuron as the input layer and the 124th
neuron as the hidden layer, and a synapse connecting the 97th
neuron as the hidden layer and the 5th neuron as the output layer.
As shown in Figure 8, the sum of weight updates in case 1 follows
the curve for case 2, although the curves are not exactly the same.

Frontiers in Neuroscience | www.frontiersin.org 7 July 2020 | Volume 14 | Article 423

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00423 July 3, 2020 Time: 19:56 # 8

Kwon et al. On-Chip Training in SNNs

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

50

100

150

200

Cell1, Initial Cell1, ERS
Cell2, Initial Cell2, Inhibited
Cell3, Initial Cell3, Inhibited
Cell4, Initial Cell4, Inhibited

I O
 (p

A
)

VO (V)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

50

100

150

200

250

300

Cell1, Initial Cell1, PGM
Cell2, Initial Cell2, Inhibited
Cell3, Initial Cell3, Inhibited
Cell4, Initial Cell4, Inhibited

I O
 (p

A
)

VO (V)

A

B

FIGURE 5 | IO-VO curves of the GSDs in the array (A) programming for 10 ms
and (B) erasing for 100 ms depending on each condition in Figure 4. Only the
current of cell 1 is changed, while others are inhibited successfully.

This indicates that the proposed on-chip training scheme for
SNNs can achieve performance similar to that of ANNs by using
the stochastic characteristics of SNNs. In other words, a spike
from a neuron is generated at every time step with a probability
proportional to the value of the neuron’s activation function, so
the 1-bit spike event approximates the behavior of the neuron’s
activation function during training.

Non-ideal Device Characteristics
The accuracy of on-chip training SNNs versus the non-linearity
of conductance response is shown in Figure 9A. Although
the delta value (δ) can be applied to the synaptic devices
in the form of the program or erase pulse, the conductance
response is non-linear with respect to the updating pulse. As
a result, the expected weight updates cannot be reflected in
the conductance updates, which causes accuracy degradation
of SNNs. Nevertheless, an accuracy of higher than 93% is
obtained when the non-linearity factor (β) is 8 for both LTP and
LTD, which is an extremely non-linear conductance response of

TABLE 1 | The parameters when the GSDs are used as synaptic
devices in the SNNs.

Parameters Description Value

aLTP, aLTD cLTP, cLTD Parameters of the fitted
curve for the normalized
conductance response of
GSDs

2.270, 1.422 0.0278,
18.25

βLTP,βLTD Non-linearity factor of GSDs 1.60, 8.03

S Spike in the form of voltage
pulse

Pulse amplitude: 3 V
Pulse duration: 10 µs

Cmem Membrane capacitance of
I&F neuron

4T−8T fF (l = 1) 40−80
fF (l > 1)

V th Threshold voltage of I&F
neuron

0.1 V

λ Ratio of voltage pulse width
to voltage amplitude

BP 50 µs/V

UP 50 µs/V (l = L)
500 µs/V (l 6= L)

CBP Capacitance for BP 40 fF

synaptic devices. Since the conductance of synaptic devices is
updated continuously with the program or erase time, the on-
chip training SNN system can achieve high accuracy even with
highly non-linear devices. The accuracy of SNNs depending on
the non-linearity for LTD is shown in Figure 9A to investigate
the effect of asymmetry between the LTP and LTD curves
on the accuracy. The non-linearity factor of the LTP curve
has fixed values of 1 and 3. The accuracy of SNNs decreases
as the non-linearity factor for LTD increases, represented as
the red and black lines in Figure 9A. However, the degree
of accuracy reduction resulting from the asymmetry is less
than when β values for both LTP and LTD increase. In the
case of a GSD as a synaptic device, the on-chip training SNN
achieves an accuracy of 96.5%. The near-linear conductance
change in the LTP curve can mitigate the effect of non-linear
conductance change in LTD.

Inherent device variation is inevitable in neurons and synaptic
devices. We categorize the device variation into three types:
pulse-to-pulse variation (Chen et al., 2015), device-to-device
variation (Gong et al., 2018; Sun and Yu, 2019), and stuck-at-
off variation (Li et al., 2018). The performance of the proposed
on-chip training scheme is evaluated with the degree of each
variation and is compared with the performance of the off-
chip training scheme (Kwon et al., 2019). When the off-chip
training scheme is adopted to SNNs, the weights trained in ANNs
using ReLU are exactly converted to the weights in SNNs by
modulating the width of pulses applied to the synaptic devices.
The synaptic device used in the SNNs is the GSD device, which
has β values of ∼1.60 and ∼8.03 for LTP and LTD. In the
off-chip training scheme, the trained weights are transferred
to conductance along the LTP curve. When the ANN-to-SNN
conversion is adopted, the accuracy of off-chip training SNNs
with a T of 20 is 98.04% for MNIST data classification as a
baseline. All accuracy datapoints in Figures 9B–D were evaluated
five times and then averaged. The error bars show 1 standard
deviation over five simulations.
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TABLE 2 | Comparison of the proposed with conventional on-chip training schemes for hardware-based neural networks using analog synaptic devices.

Architecture Training method Batch size Network size Accuracy

FC (Zhang et al., 2018) Sign BP – 784-300-10 94.50%

FC (Chang et al., 2018) BP-based 10–50 784-300-10 97.93%

FC (Fu et al., 2019) BP-based – 400-100-10 95.55%

FC (Ambrogio et al., 2018) Adam 1 528-250-125-10 97.94%

FC (Lim et al., 2018) Manhattan learning rule 1 784-200-10 95.36%

FC (ANN*) Adam 100 784-256-256-256-256-10 98.54%

FC (This work) BP-based 1 784-256-10 97.83%

FC (This work) BP-based 100 784-256-256-256-256-10 98.44%

The accuracy of all reported data was evaluated through the classification of the MNIST test set and obtained through hardware-based simulation. The proposed on-chip
training scheme shows excellent accuracy compared to other on-chip training schemes. *Software-based neural network simulated in the Pytorch framework.

Figure 9B shows a comparison between the accuracy of SNNs
using the on-chip and off-chip training scheme by taking pulse-
to-pulse variation into account. When an update pulse is applied
to a synaptic device, a Gaussian distribution function is used to
indicate fluctuations in weight updates. The variation is applied
to the on-chip training SNN system whenever an update pulse
is applied. On the other hand, the variation affects the off-chip
training system only once when transferring the trained weights
to the conductance of synaptic devices in SNNs. As shown in

Figure 9B, the accuracy significantly decreases when a large
conductance variation is applied to the synapses in the off-
chip training SNN system. However, even if σ/µ increases to 2,
the accuracy of the on-chip training SNN system is maintained
(accuracy loss of 0.2% at σ/µ = 2).

We also evaluate the effects of device-to-device variation
on the SNNs. Synaptic devices in the array can have various
characteristics for one non-linearity factor. We assume that the
non-linearity factor of synaptic devices in the array follows a
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FIGURE 7 | Comparison between the updating method that uses only a 1-bit spike event at the last time step per neuron (Case 1) and the total number of
generated spikes in the neuron divided by the total time step (Case 2). The difference in the sum of total weight updates for Case 1 and Case 2 with respect to the
training iterations in (A) the first layer and (B) the second layer.

FIGURE 8 | Sum of weight updates in a synapse connecting two adjacent neurons in the 784-256-10 network. (A) Sum of weight updates in the synapse between
the 358th neuron as the input layer and the 124th neuron as the hidden layer. (B) Sum of weight updates in the synapse connecting the 97th neuron as the hidden
layer and the 5th neuron as the output layer.

Gaussian distribution, and the accuracy of SNNs is evaluated with
respect to the degree of variation. As a result of applying the
device-to-device variation, the synaptic device array has various
conductance responses with different non-linearity factors.
However, the on-chip training SNN systems also maintain their
accuracy, but the accuracy of off-chip training SNN systems
decreases as the degree of device-to-device variation increases, as
shown in Figure 9C.

Lastly, we investigate the effect of the stuck-at-off ratio on
the accuracy of SNNs. The stuck-at-off ratio is defined as the
ratio of the number of stuck-at-off devices to the total number
of devices in the array. Note that the number of devices with a
conductance of 0 increases as the stuck-at-off ratio increases, and
the stuck devices cannot be updated. As shown in Figure 9D, the
accuracy of on-chip training SNNs decreases as the stuck-at-off
ratio increases. A device pair represents a weight in SNNs, and
both devices in the pair are updated when the corresponding
weight is updated. Therefore, the weight updates are always
performed using both near-linear LTP and LTD curves, which

can mitigate the abrupt conductance change in the highly non-
linear LTD curve of the GSDs. However, if one device in the pair
is stuck-at-off with respect to all training iterations, the abrupt
changes of stuck devices cannot be mitigated and degrade the
performance of SNNs, even if the on-chip training scheme is
adopted. When the SNNs adopt the off-chip training scheme, the
accuracy of SNNs also degrades as the ratio increases, and the
degree of accuracy loss is more severe than in the case of adopting
the on-chip training scheme.

DISCUSSION

In this work, we proposed an on-chip training scheme suitable
for hardware-based SNNs using analog synaptic devices. This
scheme requires 2 bits of memory per neuron to update a
weight: 1 bit for storing the spike event of the neuron at the
last time step and the other for storing the derivative of the
neuron’s activation function. Since the input of the first layer is
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FIGURE 9 | Accuracy of the on-chip training SNN systems versus (A) the non-linearity factor (β) of conductance response, (B) pulse-to-pulse variation, (C)
device-to-device variation, and (D) stuck-at-off ratio. Although extremely non-linear and asymmetric devices are used as synaptic devices, high accuracy is
obtained. Degradation due to pulse-to-pulse variation and device-to-device variation is negligible, but degradation due to the stuck-at-off ratio is significant.

converted to a Poisson-distributed spike train, the probability of
generating a spike at each time step is determined by the activated
value of the neuron. The stochastic 1-bit spike event of an I&F
neuron helps the system achieve high accuracy while using the
minimum memory. In addition, we evaluated the performance
of the proposed training scheme in classifying N-MNIST data
that cannot be represented as Poisson-distributed spike trains.
As shown in Supplementary Table S1, the on-chip training SNN
system achieved 97.64% accuracy with real spike data from event-
based sensors (N-MNIST data) and still has the advantages of low
power consumption and hardware efficiency.

As a synaptic device, we fabricated a gated Schottky diode
(GSD), which has saturated current with respect to the input
voltage. Even if a noisy input voltage is applied to the GSD, the
weight represented by the GSD is stable because almost constant
saturation current is maintained. When the on-chip training
SNN system uses GSDs as synaptic devices, the array of GSDs
can be updated and inhibited in parallel operation, which greatly
boosts the training speed of the SNN system. In addition, the
energy consumption per spike in a GSD is about 30 fJ (∼1 nA

current at 3 V amplitude and 10 µs pulse width), so the on-
chip training SNN system is estimated to operate at very low
power consumption.

The on-chip training SNN system was verified with fully
connected neural networks for MNIST data classification. The
accuracy of SNNs (784-256-10) using the on-chip training
scheme achieved 97.83% withT of 20, compared to an accuracy of
98.04% when ANN-to-SNN conversion was used with the same
network. Since we did not use regularization methods such as
dropout (Srivastava et al., 2014) or L2 regularization, training
curves with a large λUP in deep networks can show variance,
and the accuracy of deep networks can decrease. In this case,
increasing T is a way to recover accuracy, because the activated
and delta values of the neuron are more precisely represented by
increased T. However, increasing T can be a burden on the overall
system because the forward-propagation process is repeated T
times in on-chip training SNNs. Increasing the batch size of the
training process is also a way to enhance the accuracy of deep
networks by averaging stochastic spike events of neurons within
a single batch training. We confirmed that the accuracy of deep
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networks with increased batch size (98.44%) is very close to
that of conventional ANNs (98.54%). In addition, the accuracy
of deep networks can be improved by controlling the λUP,
which is used as the learning rate of conventional ANNs.
Since the proposed on-chip training scheme uses a 1-bit spike
event at the last time step, the weight updates are calculated
less precisely compared to the conventional backpropagation
algorithm. Therefore, setting a small λUP allows deep networks
to achieve high accuracy.

We investigated the effect of the non-ideal characteristics
of synaptic devices on the performance of on-chip training
SNNs. Digital SNN systems seem to alleviate the influence
of the non-ideal characteristics of synaptic devices (Pani
et al., 2017; Yang et al., 2018; Yang et al., 2020), but analog
SNN systems can be affected by such synaptic characteristics.
Therefore, their influence needs to be considered when
evaluating the performance of analog SNN systems. In this
work, the non-linearity and asymmetry of devices affected the
performance of SNNs, but high accuracy was still achieved
even in the extreme case. Since the width of pulses to
be applied to synaptic devices is obtained in proportion
to the delta value, degradation due to non-linear weight
update is mitigated in this training scheme. Compared with
conventional on-chip training algorithms that use the number
of pulses to be applied to update the weights, this scheme
has the advantage of continuously and accurately updating
the conductance of synaptic devices. As a result, this training
system allows the conductance of analog synaptic devices
with continuous characteristics to be reflected in the training
process, thereby improving the accuracy of SNNs with non-linear
synaptic devices.

Furthermore, the effects of three types of device variations
on the performance of SNNs were evaluated with respect
to the degree of the variation when the GSDs are used as
synaptic devices: pulse-to-pulse variation, device-to-device
variation, and the stuck-at-off device ratio. Since on-chip
training SNNs can mitigate the impact of variation on the
system performance, the accuracies of on-chip training SNN
systems with GSDs are slightly affected by the pulse-to-
pulse variation and device-to-device variation. In contrast,
if one of the pairs of devices is stuck-at-off, non-linear
weight updates by the LTD curve of one GSD device have
a significant impact on the training process and degrade
the performance of on-chip training SNNs. However, since
GSDs are fabricated with reliable CMOS processes, the
stuck-at-off ratio in the GSD array is expected to be
negligibly small.

The main challenge of the proposed on-chip training scheme
for SNNs is realizing the performance of convolutional neural
networks (CNNs) or recurrent neural networks (RNNs). To
achieve this, weight sharing in the CNN structure should be
implemented in SNN systems with low power consumption
(Bartunov et al., 2018). Although the max-pooling layer and
softmax layer in CNNs can be implemented in SNNs (Rueckauer
et al., 2017), the batch normalization layer, which significantly
improves the performance of CNNs, should be implemented in
hardware-based SNNs while updating parameters during training
iterations. In addition, the long short-term memory (LSTM) layer
in RNNs should be implemented in the form of SNNs without
much memory usage. If the conditions mentioned above are met,
the proposed on-chip training scheme is expected to achieve
state-of-the-art performance for hardware-based SNNs with low
power consumption and high-speed parallel operation.
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