
1Scientific Reports | 6:33205 | DOI: 10.1038/srep33205

www.nature.com/scientificreports

STYK1 promotes epithelial-
mesenchymal transition and tumor 
metastasis in human hepatocellular 
carcinoma through MEK/ERK and 
PI3K/AKT signaling
Zhaowen Wang*, Lei Qu*, Biao Deng, Xing Sun, Shaohan Wu, Jianhua Liao, Junwei Fan & 
Zhihai Peng

Serine/threonine/tyrosine kinase 1 (STYK1) is known to be involved in tumor progression. However, 
its molecular role and mechanism in hepatocellular carcinoma (HCC) remains unknown. We evaluated 
the effect of STYK1 expression in HCC tissues and investigated the underlying mechanisms associated 
with progression. HCC tissues expressed greater levels of STYK1 than paired non-tumor tissues. 
Patients with HCC expressing low levels of STYK1 showed both, greater disease-free (p < 0.0001) 
and overall (p = 0.0004) survival than those expressing high levels of STYK1. Decreased expression of 
STYK1 was significantly associated with decreased cell proliferation, reduced migratory capability, and 
reduced invasive capability. Overexpression of STYK1 was significantly associated with increased cell 
proliferation, migratory capability, and invasive capability in vitro, as well as increased volume of tumor, 
weight of tumor, and number of pulmonary metastases in vivo. Furthermore, STYK1’s mechanism of 
promoting cancer cell mobility and epithelial-mesenchymal transition (EMT) was found to be via the 
MEK/ERK and PI3K/AKT pathways, resulting in increased expression of mesenchymal protein markers: 
snail, fibronectin, and vimentin, and decreased E-cadherin expression. Our results suggest that STYK1 
acts as an oncogene by inducing cell invasion and EMT via the MEK/ERK and PI3K/AKT signaling 
pathways and it therefore may be a potential therapeutic target in HCC.

Hepatocellular carcinoma (HCC) is the second most common form of cancer causing death. HCC has been asso-
ciated with an annual incidence of over half a million individuals, globally1,2, which continues to rise in spite of 
preventative measures. As hepatitis B and C-related liver cirrhosis is the most common risk factor, HCC is com-
monly seen in patients of East Asian and African descent2. However, alcoholic cirrhosis and increasingly non-
alcoholic steatohepatitis (NASH) are additional important risk factors that may possibly add to the incidence in 
the Western world as well, in the near future1. Although surgical techniques and adjuvant therapy have improved, 
long-term survival remains low due to metastasis3. Aberrant activation and dysfunction of crucial genes result in 
progression of HCC4–6. Therefore, it is critical to identify specific molecular markers and elucidate the molecular 
mechanisms involved in HCC that could serve as clinical/prognostic factors.

Serine/threonine/tyrosine kinase 1 (also known as NOK), a human putative protein kinase, belongs to the 
receptor protein tyrosine kinase family and comprises a transmembrane domain and an intracellular domain7,8. 
Upregulation of STYK1 expression has been implicated in many types of tumors, including breast cancer9,10, 
non-small cell lung cancer11, ovarian cancer12, and colorectal cancer13. Most previous studies focused on the 
expression of STYK1 in cancer tissues. However, the expression and role of STYK1 in HCC remains unknown. 
In addition, STYK1 is overexpressed in castration-resistant prostate cancer cells and tissues, and enforced 
expression of STYK1 promoted cell proliferation in vitro14. Furthermore, STYK1 promotes cell transformation, 
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tumorigenesis, and metastasis by activating of phosphoinositide 3-kinase (PI3K)/AKT and inactivating GSK-3β​ 
signaling pathway, which are implicated in tumorigenesis and development of HCC7,15.

Accumulating evidence has shown that epithelial-to-mesenchymal transition (EMT), characterized by the 
progression of epithelial phenotype to mesenchymal phenotype, plays a critical role in cancer invasion and metas-
tasis during tumor progression16–18. EMT-associated genes are reported to be associated with HCC recurrence 
and metastasis19–21. In HCC, EMT results in increased venous invasion, metastasis, and a poorer prognosis5,20,21. 
Despite evidence of STYK1 acting as an oncogene and being involved in a variety of cancers, the role of STYK1 in 
regulating HCC metastasis and EMT remains unclear.

In this study, we estimated STYK1 expression and its effects on invasion and metastasis of HCC. We also 
investigated the precise mechanism/pathway by which STYK1 contributes to invasion and EMT events in vitro 
and in vivo. These findings may provide a potential therapeutic target to inhibit HCC progression and metastasis.

Results
STYK1 levels are elevated in HCC tissue compared to paired non-tumor tissue.  Immunohistochemical  
staining revealed the presence of STYK1 at significant levels in HCC tissues and relatively insignificant levels in 
paired, non-tumor tissues (Fig. 1A). Then we detected the expression of STYK1 in human normal liver cell line 
LO2 and 5 HCC cell lines (7402, 7721, Hep3B, 97H, and LM3), and results demonstrated a higher expression of 
STYK1 in HCC cell lines, compared with LO2 (Fig. 1B). These results suggested that STYK1 might play an impor-
tant role in HCC progression and development.

STYK1 level functions as an independent predictor of survival in patients with HCC.  To further 
explore the potential role of STYK1 in HCC progress, we evaluated STYK1 expression and the clinicopathological 
characteristics are summarized in Table 1. The patients were divided to two groups (low STYK1 and high STYK1) 
according to median of STYK1 expression in cancer tissues samples. STYK1 overexpression was significantly cor-
related with tumor size, vascular invasion, and a higher tumor-nodule-metastasis (TNM) stage. Patients with HCC 
tumors expressing low STYK1 levels had significantly higher overall survival (OS) than those expressing high STYK1 

Figure 1.  STYK1 expression in HCC. (A) Representative immunohistochemical staining for STYK1 in 
HCC and paired, non-tumor hepatic tissues revealed greater amounts of STYK1 in HCC tissue (original 
magnification, 200×​). (B) Western blot assays performed on HCC cell lines as indicated. (C) Kaplan-Meier 
analysis revealed a statistically significant correlation between tumors that express high levels of STYK1 and 
reduced overall survival. (D) Kaplan-Meier analysis reveals a statistically significant correlation between tumors 
that express high levels of STYK1 and reduced DFS.
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levels (p =​ 0.0004) (Fig. 1C). Similarly, patients with HCC tumors expressing low STYK1 levels showed significantly 
longer disease-free survival (DFS) than those expressing high STYK1 levels (p <​ 0.0001) (Fig. 1D). Moreover, tumor 
size, tumor number, vascular invasion, and advanced TNM stage were found associated with lower OS and short-
ened time-to-recurrence (TTR) in univariate analysis (Table 2). Multivariate Cox regression analysis further revealed 
that STYK1 was an independent risk factor for lower OS and shortened TTR in patients with HCC (Table 3).

STYK1 silencing inhibits HCC cell growth, migration, and invasion.  To explore the role of STYK1 
in the progression of HCC, short hairpin RNA (shRNA) were used to silence endogenous expression of 2 HCC 
cell lines: LM3 and 97H, which show high malignant and metastatic capacity. Western blot was used to confirm 
decreased expression of STYK1 in LM3 and 97H cell lines following transfection with negative vector (SCR) and 
different knockdown vectors. Sh3, targeting STYK1, exhibited significantly decreased expression of STYK1 as com-
pared to SCR, sh1, and sh2; therefore it was selected for subsequent studies (Supplementary Fig. 1). MTT assay 
revealed that the proliferation rate of LM3 and 97H cells transfected with STYK1-knockdown was lower than that of 
negative vector cells (Fig. 2A). A colony-formation assay was further performed to assess cell proliferation. Similarly, 
LM3 and 97H cells with STYK1 silencing exhibited significantly smaller and lower number of colonies (Fig. 2B). In 
addition, migratory and invasive capacities were assessed using a transwell assay. As shown in Fig. 2C, inhibition of 
STYK1 expression resulted in decreased cell migration and invasion in both, LM3 and 97H cells. In summary, our 
results indicate that down-regulation of STYK1 decreased the proliferation and metastatic ability of HCC in vitro.

Variables

STYK1 expression level

p-valueLow N = 59 High N = 59

Gender

  Female 12 11 0.816

  Male 47 48

Age, y

  ≤​51 30 32 0.712

  >​51 29 27

HBsAg

  Negative 8 5 0.558*

  Positive 51 54

Liver cirrhosis

  No 8 8 1.000

  Yes 51 51

Tumor size

  ≤​5cm 52 33 <0.001

  >​5cm 7 26

Tumor number

  Single 55 48 0.095*

  Multiple 4 11

Tumor envelope

  No 30 31 0.854

  Yes 29 28

TNM stage

  I 43 32 0.035

  II/III 16 27

Preoperative AFP(ng/mL)

  ≤​20 29 20 0.093

  >​20 30 39

Vascular invasion

  No 43 32 0.035

  Yes 16 27

ALT(units/L)

  ≤​75 53 56 0.490*

  >​75 6 3

Tumor differentiation

  I–II 44 41 0.538

  III–IV 15 18

Table 1.  Correlation between STYK1 Expression and Clinicopathological Characteristics in 118 HCC 
Patients. Abbreviations: ALT, alanine aminotransferase; TNM, tumor-node-metastasis; HBsAg, hepatitis B 
surface antigen. *Fisher’s exact tests, and m2 tests for all the other analysis.
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Overexpression of STYK1 promotes HCC cell growth in vitro and in vivo.  To further investigate 
the effects of STYK1 on HCC cells, we overexpressed STYK1 in 7721 and 7402 HCC cells by lentiviral trans-
duction. Western blot was used to confirm the increased levels of STYK1 in cells transfected with STYK1 vector 
(Supplementary Fig. 2). Ectopic STYK1 expression significantly promoted proliferation activity in both, 7721 
and 7402 cells (Fig. 3A). In addition, compared with control vector, the colony-formation assay showed that 
the size and number of colonies formed by 7721 and 7402 cells were significantly increased by stable STYK1 
expression (Fig. 3B). Furthermore, to assess the effects of STYK1 on HCC growth in vivo, 7402 cells with control 
vector or STYK1 were injected subcutaneously into nude mice. The tumors size was significantly larger in the 
STYK1-expression group compared with the control group (Fig. 3C). The growth curve and weight of dissected 
tumor further confirmed the progress of tumor cell growth caused by STYK1 overexpression (Fig. 3D). IHC also 
indicated more Ki67 antigen-positive cells in tumors derived from 7402 cells with STYK1 compared with tumors 
derived from vector (Fig. 3E). These data indicate that STYK1 played the role of an oncogene in HCC progression.

Overexpression of STYK1 promotes cell migration and invasion in vitro and in vivo.  The inva-
sive and migratory capacities of HCC cells with STYK1 vector were assessed using a transwell assay. As expected, 
ectopically expressed STYK1 in 7721 and 7402 cells greatly increased migration and invasion abilities, compared 
with those shown by control vector cells (Fig. 4A,B). We then investigated if STYK1 enhanced cancer cell metas-
tasis in vivo. As shown in Fig. 4C, ectopic expression of STYK1 resulted in increased metastatic foci and larger 
nodules in the lung. The results indicate that overexpression of STYK1 in 7402 cells led to significant promotion 
of cell invasion and lung metastasis in vitro and in vivo.

STYK1 induces epithelial-mesenchymal transition in HCC cells.  Previous studies showed that cell 
migration and invasion are associated with altered levels of EMT biomarkers17. To determine the underlying 
mechanisms of STYK1 in EMT, western blot analysis was performed to detect the expression of epithelial and 
mesenchymal protein markers. Our results showed that STYK1 up-regulated the expression of mesenchymal 

Variable

Overall Survival Time to Recurrence

Hazard ratio (95% CI) p Value Hazard ratio (95% CI) p Value

Sex (male vs. female) 0.791(0.428–1.460) NS 0.850(0.454–1.427) NS

Age, y ( >​52 vs. ≤​52) 1.061(0.645–1.745) NS 1.177(0.734–1.887) NS

AFP (ng/ml; >​20 vs. ≤​20) 1.235(0.741–2.060) NS 1.152(0.713–1.863) NS

Liver cirrhosis ( yes vs. no) 1.627(0.701–3.777) NS 1.388(0.663–2.902) NS

ALT (units/L; >​75 vs ≤​75) 1.530(0.697–3.362) NS 1.138(0.492–2.630) NS

Tumor size (cm; >​5 vs. ≤​5) 1.732(1.028–2.917) 0.039 2.115(1.295–3.454) 0.003

Tumor number (multiple vs. single) 2.040 (1.034–4.026) 0.040 1.936 (1.010–3.708) 0.046

Vascular invasion (yes vs. no) 2.351 (1.423–3.883) 0.001 2.286 (1.416–3.691) 0.001

TNM stage (II/III vs. I) 2.351 (1.423–3.883) 0.001 2.273 (1.422–3.189) 0.001

Tumor differentiation (III/IV vs. I/II) 1.459 (0.855–2.490) 0.166 1.467 (0.887–2.427) NS

Tumor encapsulation (none vs. complete) 1.170 (0.711–1.926) 0.536 1.268 (0.790–2.034) NS

STYK1(high vs. low) 2.479 (1.476–4.161) 0.001 2.582 (1.573–2.238) <​0.001

Table 2.  Univariate Analyses of Factors Associated with Overall Survival and Time to Recurrence. NOTE: 
Univariate analysis, Cox proportional hazards regression model. Abbreviation: 95% CI, 95% confidence 
interval; AFP, alpha-fetoprotein; NS, not significant(Cox proportional hazards regression model); TNM,  
tumor-node-metastasis.

Variable

Overall Survival Time to Recurrence

Hazard ratio (95% CI) P Value Hazard ratio (95% CI) P Value

Tumor size (cm; 
≤​5 vs. >​5) 1.184 (0.680–2.061) NS 1.445 (0.858–2.435) 0.166

Tumor number 
(single vs. 
multiple)

1.267 (0.618–2.599) NS

Vascular 
invasion (no vs. 
yes)

1.903 (1.121–3.233) 0.017 1.894 (1.161–3.087) 0.010

STYK1 (high vs. 
low) 1.987 (1.126–3.507) 0.018 2.059 (1.214–3.493) 0.007

Table 3.  Multivariate Analyses of Factors Associated with Overall Survival and Time to Recurrence. NOTE: 
Multivariate analysis, Cox proportional hazards regression model. Abbreviation: 95% CI, 95% confidence 
interval; AFP, alpha-fetoprotein; NS, not significant (Cox proportional hazards regression model); BCLC, 
Barcelona Clinic Liver Cancer staging system.
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marker proteins: vimentin, fibronectin, twist, and snail while it down-regulated epithelial marker, E-cadherin 
(Fig. 5A). Conversely, STYK1-depleted LM3 and 97H cells exhibited increased E-cadherin expression, but 
decreased vimentin, fibronectin, and snail expression (Fig. 5B). MEK/ERK and PI3K/AKT signaling pathway are 
known to play critical roles in tumor invasion and metastasis. We estimated the alteration of ERK and AKT. As 
shown in Fig. 5A, overexpression of STYK1 promoted phosphorylation of ERK and AKT, while silencing STYK1 
reversed this phenotype (Fig. 5B). To determine whether STYK1 promoted the invasiveness of HCC via EMT, 
immunofluorescent staining was performed. As shown in Fig. 5C, STYK1 induced vimentin staining in both, 
7721 and 7402 HCC cells. To confirm these findings in vivo, immunohistochemical analysis was used to deter-
mine the expression of epithelial and mesenchymal protein. Consistently, we found that STYK1 overexpression 
displayed a decrease in the E-cadherin level but an increase in vimentin level (Fig. 5D), which represents the EMT 
phenotype in the mice bearing the 7402 xenografts. To further confirm the data, the expression of E-cadherin 
and vimentin were detected by IHC in the same HCC tissues samples. The result showed that E-cadherin was 
decreased, but vimentin was increased in HCC tissues (Fig. 5E), which consisted with the in vitro results. Overall, 
these results suggest that STYK1 promoted tumor invasion and metastasis by inducing EMT.

STYK1 mediated epithelial mesenchymal transition in HCC cells occurs via the MEK/ERK and 
PI3K/AKT signaling pathways.  MEK/ERK and PI3K/AKT signaling pathways play important roles in 
migration, invasion, and metastasis of cancer by regulating EMT; therefore, we investigated if STYK1 was capa-
ble of promoting migration, invasion, and EMT via the MEK/ERK and PI3K/AKT pathway in HCC cells. To 
evaluate whether the effects of STYK1 on cell migration and invasion were dependent on the ERK pathway, 
7724 and 7402 cells with stably overexpressed STYK1, were treated with U0126 (ERK inhibitor) or MK2206 
(a novel, allosteric AKT inhibitor) for 30 min. Inhibition of ERK or AKT exhibited significantly lower capaci-
ties of migration and invasion (Fig. 6A,B). In addition, inhibition of ERK1/2 by U0126 or of AKT by MK2206 
reversed the effects on vimentin, fibronectin, twist, and snail up-regulation and E-cadherin down-regulation 
induced by STYK1 (Fig. 6C). To assess whether regulation of the PI3K/AKT and MEK/ERK signaling by STYK1 
could be recapitulated in vivo, the tissue lysates of tumors from 4 mice were used to determine the expression 

Figure 2.  Reduction of STYK1 expression in HCC cells via shSTYK1 inhibits cell proliferation, migration, 
and invasion. (A) LM3 and 97H cells with shSTYK1 exhibited significantly lower rates of cell proliferation.  
(B) Representative images of colony formation by LM3 and 97H cells with shRNA-scramble or shRNA-STYK1, 
demonstrating decreased colony formation in cells treated with shRNA-STYK1. (C) Representative images of 
transwell assays performed with LM3 and 97H cells with shRNA-scramble or shRNA-STYK1, demonstrating 
reduced migratory and invasive capacity (original magnification, 100×​).
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of AKT, p-AKT, ERK, p-ERK, E-cadherin, vimentin, and twist by western blotting. Our data suggested overex-
pression of STYK1 increased the expression of p-AKT, p-ERK, vimentin and twist and decreased the expression 
of E-cadherin (Fig. 6D). In addition, treatment of nude mice with U0126 (inhibitors of MEK1/2) or MK2206 
(inhibitors of AKT) significantly reduced the metastatic nodules induced by STYK1in lung (Fig. 6E,F). These 
results indicate that STYK1 may induce cell migration, invasion, and EMT through MEK/ERK and PI3K/AKT 
signaling pathways.

Discussion
A growing body of evidence has identified genes specifically upregulated or downregulated in HCC tissues that 
can be considered as early diagnostic markers, prognostic markers, and therapeutic targets22–25. STYK1 is one 
such a gene that is highly up-regulated in various types of tumors9–12,14; however, little is known about its expres-
sion in HCC, with even less clarity on its underlying mechanisms. In our present study we found that STYK1 
expression was significantly upregulated in HCC tissues. Further correlation analyses suggested that STYK1 over-
expression correlated with tumor size, vascular invasion, and higher TNM stage. A multivariable Cox’s regression 
analysis indicated that STYK1 was a significant risk factor of OS and DFS. In addition, depletion of endogenous 
STYK1 expression in LM3 and 97H cells suppressed cell growth, migration, and invasion, whereas overexpression 
of STYK1 in 7721 and 7402 cells had the opposite effect. Moreover, we found that STYK1 induced EMT via the 
MEK/ERK and PI3K/AKT pathway, which may be responsible for its invasion-promoting activity.

Uncontrolled growth and metastasis, which are important features of malignant tumors, are the main cause 
of cancer-related death. STYK1 has been reported to promote BaF3 cell proliferation and invasion in vitro and  
in vivo7. Meanwhile, knockdown of STYK1 decreased proliferation of prostate cancer cell viability in vitro14.

Here, we demonstrated that STYK1 knockdown inhibited cell proliferation and invasion, while overexpres-
sion of STYK1 promoted this effect both in vitro and in vivo, suggesting the oncogenic role of STYK1 in HCC, 

Figure 3.  Overexpression of STYK1 promotes HCC cell proliferation and tumor growth both in vitro and 
in vivo. (A) MTT assay revealed increased cell proliferation of BEL-7402 and SMMC-7721 cells with STYK1  
compared to control. (B) Representative images of colony formation of BEL-7402 and SMMC-7721 cells with  
control vector or STYK1, demonstrating increased colony formation in cells with the STYK1. (C) Representative  
images of tumor at sacrifice, obtained from mice implanted with BEL-7402 HCC cells with either empty vector 
or STYK1. (D) Tumor volume and tumor weight curves, demonstrating that tumors derived from BEL-7402 
cells with STYK1 vector have significantly greater volumes and weights after 4 weeks than those derived from 
HCC cells with control vector. (E) Reprehensive IHC staining for Ki67 expression in xenograft tumor tissues 
from the control vector or STYK1 vector. **P  <​  0.01.
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consistent with its role in other cancers7,13. Accumulated data show that EMT results in increasing cell migration 
and invasion in several cancers26,27. We found that STYK1 overexpression induced EMT by elevating expression 
of the mesenchymal markers, vimentin, fibronectin, and snail and by reducing expression of the epithelial marker, 
E-cadherin. In contrast, increased expression of E-cadherin accompanied by decreased expression of vimentin, 
fibronectin, and snail were observed in LM3 and 97H with depleted STYK1.

Previous reports show that activation of MEK/ERK and PI3K/AKT contributes to cell growth28,29, promotes 
invasion, and EMT30,31. We showed that phosphorylated levels of ERK and AKT were enhanced by STYK1 over-
expression and inhibited by STYK1 silencing, which is consistent with previous reports7. Furthermore, we inves-
tigated if MEK/ERK and PI3K/AKT signaling are responsible for STYK1-mediated acceleration of tumor cell 
migration, invasion, and EMT. Blocking MEK/ERK and PI3K/AKT pathway using special inhibitors significantly 
attenuated STYK1-enhanced migration and invasion of HCC cells. More importantly, U0126 or MEK2206 treat-
ment inhibited the activation of vimentin, fibronectin, and snail as well as inactivation of E-cadherin by STYK1. 
Inhibition of MEK/ERK and PI3K/AKT pathway with inhibitors significantly reduced the metastatic nodules 
induced by STYK1 in the lung. Therefore, our data support that activation of MEK/ERK and PI3K/AKT signaling 
pathways were required for STYK1-stimulated cell migration, invasion, and EMT of HCC cells. STYK1 was pre-
viously shown to cause GSK-3β​ (Ser9) phosphorylation via activating AKT phosphorylation at the Thr308 residue 
in cervical cancer Hela cell15. Several studies have shown aberrant activation of AKT and GSK-3β​ involved in 
HCC tumorigenesis, EMT and Metastasis32,33. The role of STYK1/AKT/GSK3 axis in HCC progress might extend 
the key functional pathways to abnormal proliferation invasion, and EMT of HCC cells. Transforming growth 
factor β​ (TGFβ​), a potent inducer of the EMT, have been involved in medicating actin filament reorganization 
and invasiveness through activating many key genes and signaling pathways, the relation among TGFβ​, STYK1 
and EMT needed to be further investigated.

In conclusion, we demonstrated that STYK1 is highly expressed in tumor tissues and is significantly correlated 
with poor outcome of HCC. In addition, STYK1 promoted proliferation, invasion, and metastasis in vitro and in vivo. 
We also emphasized that MEK/ERK and PI3K/AKT are required for STYK1-mediated HCC cell invasion and EMT.

Figure 4.  Overexpression of STYK1 increases HCC cell migratory and invasive capacity in vitro and 
number of pulmonary metastases in vivo. (A) BEL-7402 HCC cells with STYK1 have significantly increased 
migratory and invasive capacity compared to cells with control vector. (B) SMMC-7721 HCC cells with 
STYK1 have significantly increased migratory and invasive capacity compared to cells with control vector. 
(C) Representative histopathologic images of the lungs demonstrating metastatic nodules are shown in the 
left panel. Mice implanted with BEL-7402 cells with STYK1 had a significantly larger number of pulmonary 
metastases than mice implanted with HCC cells with the control vector, as is summarized in the right panel. 
**P  <​  0.01.
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Figure 5.  STYK1 activates the MEK/ERK and PI3K/AKT pathways to induce EMT. (A) Relative expression 
levels of STYK1, ERK, phosphorylated ERK, AKT, phosphorylated AKT, E-cadherin, vimentin, fibronectin, 
and Snail in BEL-7402 and SMMC-7721 HCC cells with control vector or STYK1, respectively. (B) Relative 
expression levels of STYK1, ERK, phosphorylated ERK, AKT, phosphorylated AKT, E-cadherin, vimentin, 
fibronectin, and Snail in LM3 and 97H HCC cells with shRNA-scramble or shRNA-STYK1, respectively.  
(C) Immunofluorescence images with staining for the mesenchymal marker vimentin of BEL-7402 and SMMC-
7721 cells with either control vector or STYK1 demonstrated increased expression of vimentin in those cells 
with STYK1. (D) Immunohistochemical staining of the paraffin tissue sections from mice bearing BEL-7402 
xenograft tumors demonstrated increased levels of STYK1 accompany with the upregulation of EMT marker 
vimentin and downregulation of E-cadherin in vivo. (E) Representative images showing E-cadherin and 
vimentin expression in in HCC and paired, non-tumor hepatic tissues. **P <​ 0.01.
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Figure 6.  Inhibition of ERK1/2 or AKT reverses the pro-malignant effects of STYK1 overexpression.  
(A) BEL-7402 cells overexpressing STYK1 were treated with the ERK inhibitor U0126 (10 μ​M) or the AKT inhibitor 
MEK2206 (25 μ​M) for 30 minutes, and then the transwell assay was performed 24 h later. Cells that received either 
U0126 or MEK2206 demonstrated significantly reduced migratory and invasive capacity. (B) SMMC-7721 cells 
overexpressing STYK1 were treated with the ERK inhibitor U0126 (10 μ​M) or the AKT inhibitor MEK2206 (25 μ​M)  
for 30 minutes, and then the transwell assay was performed 24 h later. Cells that received either U0126 or MEK2206 
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Materials and Methods
Tissue samples.  Paraffin-embedded tumor specimens including HCC tissues and paired non-tumor tis-
sues were obtained from 118 patients with HCC, who underwent surgical resection without prior adjuvant ther-
apy between March 2006 and October 2008 at the Shanghai General Hospital of Shanghai Jiao Tong University. 
Diagnosis of HCC, tumor differentiation, and presence of lymph node metastases were determined by hema-
toxylin and eosin (H&E) staining according to the World Health Organization (WHO) classification guidelines 
(2004). Written consent was obtained from all enrolled patients. This study was approved by the Medical Ethics 
Committee at Shanghai General Hospital of Shanghai Jiao Tong University. All procedures were carried out in 
accordance with the Declaration of Helsinki.

Cell culture.  The human HCC cell lines (SMMC-7721 [7721], BEL-7402 [7402], Hep3B, MHCC-97H [97H], 
and MHCC-LM3 [LM3]) and normal non-malignant liver cells (LO2) were purchased from the Shanghai Cell Bank 
of the Chinese Academy of Sciences (Shanghai, China) and cultured as our previously described34. The MHCC-
97H (97H) and HCC-LM3 (LM3) cell lines were acquired from the Liver Cancer Institute at Zhongshan Hospital 
(Shanghai, China) and routinely maintained in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) 
supplemented with 10% fetal bovine serum (FBS), 100 units/mL penicillin, and 100 mg/mL streptomycin.  
All cells were incubated at 37 °C in a humidified atmosphere containing 5% CO2.

Establishment of knock-down and over-expression cell lines.  The coding sequence (CDS) frag-
ments of STYK1 genes were obtained by polymerase chain reaction (PCR) using the following primers: forward,  
5′​-AAATCTAGAATGGGCATGACACGGATG-3′​, 5′​-AAAGCGGCCGCTCAAAGCATGCTATAGTTGTA 
GAAG-3′​. The PCR products were then sub-cloned into pCDH-CMV-MCS-EF1-Puro vector (System Biosciences,  
Mountain View, CA, USA) following the manufacturer protocol. For STYK1 knockdown, short hairpin  
RNA (shRNA) sequences targeting STYK1 (Sh1: 5′​-CCGGGAAGCAGTATGAAGTGATTATCTCGAGATAATC 
ACTTCATACTGCTTCTTTTTTG-3′​; Sh2: 5-CCGGGCCCATCTTTCGAGCCAATATCTCGAGATATTG 
GCTCGAAAGATGGGCTTTTTG-3′ ​;  Sh3: 5′ ​-CCGGCAAGTATATCACATCGGAAAGCTCGAG 
CTTTCCGATGTGATATACTTGTTTTTG-3′​) were cloned into pLKO.1-puro vectors (Sigma, St. Louis, MO, USA). 
The sequences were confirmed by DNA sequencing (Sangon, Shanghai, China).

Lentivirus was packaged in HEK293T cells using X-tremeGENE (Roche, Basel, Switzerland) and the viral 
DNA was transduced into HCC cell lines. Cells were selected with medium containing 2 μ​g/ml Puromycin 
(Sigma) after 72 h of infection.

Immunohistochemistry and evaluation of staining results.  Immunohistochemistry was performed 
as previously described34. Briefly, 4-μ​m thick tissue sections were used and stained with primary, rabbit polyclonal 
antibodies against STYK1 (Abcam, Cambridge, MA, USA) at 1:100 dilution and incubated at 4 °C. The stained 
sections were assessed by 2 independent observers (X.C.Z and W.Z.W.), who were blinded to the clinicopatholog-
ical information of the patients. STYK1 staining was scored based on the staining intensity and percentage of cell 
staining, as previously described34.

Colony-formation assay.  For colony-formation assays, cells were plated on 6-well plates at a concentration 
of 800 cells/well and the medium was replaced every 3 days. Cells were fixed and stained with 1% crystal violet 
after incubating for 2 weeks.

Cell proliferation, migration and invasion assays.  Cell proliferation assay was performed as previously 
described34. Briefly, cells (3 ×​ 103/well) in 100 μ​l medium were seeded in 96-well plates (Corning, NY, USA). 
MTT was added to the wells at different time points and cells were incubated at 37 °C for 4 h. Absorbance was 
measured at 570 nm using a Coulter Counter (Beckman Coulter, Fullerton, CA, USA). Invasion chamber assay 
with Matrigel (invasion) or without (migration) was performed in triplicate, as previously described34. In brief, 
for migration assay, approximately 3 ×​ 104 cells in serum-free medium were plated into the upper chamber of an 
8-μ​m pore size insert without Matrigel (migration) or with Matrigel (invasion) in the 24-well plate (Corning) 
and cultured for another 24 h. Cells were fixed in 4% paraformaldehyde and stained with 0.5% crystal violet. The 
non-migrated/non-invaded cells on the surface of the upper membrane were removed with a cotton swab. The 
membranes were photographed at 100×​ magnification under a microscope and the number of migratory/inva-
sive cells was calculated in five randomly selected fields.

Immunofluorescence.  For immunofluorescence microscopy, the cells were seeded on cover slips and incu-
bated with primary antibody against vimentin (1:100, CST, Danvers, MA, USA) followed by incubation with 
Alexa488-conjugated secondary antibodies (Sigma, St. Louis, MO, USA). Fluorescent staining for vimentin was 
visualized by confocal laser-scanning microscopy (Fluoview FV1000, Olympus, Japan), using DAPI (Sigma,  
St. Louis, MO, USA) to counterstain DNA.

demonstrated significantly reduced migratory and invasive capacity. (C) Western blots of BEL-7402 and SMMC-
7721 cells overexpressing STYK1 and treated with either ERK inhibitor U0126 or AKT inhibitor MEK2206, or 
untreated. The results demonstrated a reduction in levels of EMT protein markers and an increase in E-cadherin in 
cells treated with either the ERK inhibitor or the AKT inhibitor. (D) The expression of ERK, phosphorylated ERK, 
AKT, phosphorylated AKT, E-cadherin, vimentin, and twist was determined in xenograft tumor tissues from the 
control vector or STYK1 vector. (E,F) Representative images of H&E stained mice lung sections from nude mice 
with 7402 cells harboring STYK1 overexpression treated with U0126 or MK2206. **P <​ 0.01.
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Western blot analysis.  Total protein from cells and tissues were lysed in RIPA buffer (CST, Danvers, MA, 
USA) supplemented with complete protease inhibitor cocktail (Roche, Basel, Switzerland) before use. Equal 
amount of protein lysates were subjected to 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 
transferred to polyvinylidene difluoride membranes (Millipore, Billerica, MA, USA). The membrane was blocked 
in 5% nonfat milk in phosphate-buffered saline supplemented with Tween 20 at room temperature for 1 h and 
incubated with primary antibody and subsequently with appropriate horseradish peroxidase-conjugated, second-
ary antibody (1:5000; Pierce, Rockford, IL, USA). Protein bands were visualized by enhanced chemiluminescence 
detection system (Pierce, Rockford, IL, USA). The primary antibodies against p-AKT (Ser473), AKT, p-ERK (Thr 
202/Tyr 204), ERK, E-cadherin, Snail, and GAPDH were obtained from Cell Signaling Technology (Danvers, MA, 
USA). Fibronectin and Vimentin were obtained from Abcam (Cambrdige, MA, USA). TWIST1 Antibody was 
obtained from Proteintech (Chicago, IL, USA).

In vivo tumorigenesis and metastasis assays.  Nude nu/nu mice (4–6 weeks old) were purchased from 
the Shanghai Slaccas Animal Center (Shanghai, China). All mice were housed in specific pathogen-free con-
ditions following the guidelines of the Institutional Animal Care and Use Committee of Shanghai Jiao Tong 
University School of Medicine. To assess the effect of STYK1 on tumorigenicity in vivo, 7402 cells (1 ×​ 107 cells) 
with vector or STYK1 were subcutaneously injected into the left flank of the mice (8 mice/group). Xenograft 
growth was monitored every week using a caliper. Tumor volume was calculated by the following formula: tumor 
volume =​ length/2 ×​ (width/2)2. Immunohistochemical staining for STYK1, Vimentin, and E-cadherin was per-
formed on sections from the tumor.

To produce experimental metastases, 7402 cells (1 ×​ 106) with vector or STYK1 were harvested in serum-free 
DMEM medium and injected into the tail vein of nude mice (10 mice/group). For U0126 and MK-2206 treat-
ment, 7402 cells (1 ×​ 106) stably overexpression STYK1 were randomly injected into the tail vein of nude mice 
and divided into control and treatment groups. The control group received vehicle (1% DMSO in Saline solution) 
alone. A dose of 5 mg of the U0126 per kg body weight per day was injected intraperitoneally into mice on days 
14 through 21. A dose of 120 mg of the MK-2206 per kg body weight (P.O) per day was administered to mice on 
days 14 through 21. The mice were sacrificed after 6 weeks and the lungs were surgically excised and stained with 
H&E. Lung metastatic lesions were evaluated under a dissecting microscope (×​200 magnification).

Statistical analysis.  All data are presented as mean value ±​ standard deviation (SD) from at least 3 inde-
pendent experiments. Statistical analysis was performed using Student’s t-test (two-sided) or analysis of variance. 
Chi-square (x2) or Fisher’s exact test was used to evaluate the associations between the expression of STYK1 and 
clinicopathological parameters. Cumulative overall and DFS were assessed using Kaplan-Meier’s method and 
the log-rank test. Statistical analysis was performed using SPSS 16.0 software (SPSS, Inc., Chicago, IL, USA) and 
p <​ 0.05 was considered to be statistically significant.
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