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Abstract: The neuropeptide oxytocin is produced in the paraventricular hypothalamic nucleus and
the supraoptic nucleus of the hypothalamus. In addition to its extensively studied influence on
social behavior and reproductive function, central oxytocin signaling potently reduces food intake
in both humans and animal models and has potential therapeutic use for obesity treatment. In this
review, we highlight rodent model research that illuminates various neural, behavioral, and signaling
mechanisms through which oxytocin’s anorexigenic effects occur. The research supports a framework
through which oxytocin reduces food intake via amplification of within-meal physiological satiation
signals rather than by altering between-meal interoceptive hunger and satiety states. We also
emphasize the distributed neural sites of action for oxytocin’s effects on food intake and review
evidence supporting the notion that central oxytocin is communicated throughout the brain, at least
in part, through humoral-like volume transmission. Finally, we highlight mechanisms through which
oxytocin interacts with various energy balance-associated neuropeptide and endocrine systems
(e.g., agouti-related peptide, melanin-concentrating hormone, leptin), as well as the behavioral
mechanisms through which oxytocin inhibits food intake, including effects on nutrient-specific
ingestion, meal size control, food reward-motivated responses, and competing motivations.
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1. Introduction

Oxytocin is a nine-amino-acid neuropeptide produced in the paraventricular hypotha-
lamic nucleus (PVH) and supraoptic nucleus of the hypothalamus (SON) that acts on
the G-protein coupled oxytocin receptors to impact several behaviors, including social
behavior, reproduction, and lactation [1–3]. It is now well established that central oxytocin
also modulates food intake. For example, pharmacological injection of oxytocin into the
brain reduces food intake whereas administration of an oxytocin receptor antagonist has
the opposite effect in rodents [4–13]. Additionally, oxytocin receptor null mice demonstrate
increased food intake during the nocturnal cycle [14], and virally-mediated knockdown
of PVH oxytocin mRNA expression increases both low-fat and high fat diet intake [15].
Oxytocin is regulated by single-minded homologue 1 (SIM 1), a transcription factor in-
volved in the development of the PVH [16]. While mice with a homozygous null allele
of SIM 1 die perinatally, heterozygous mice develop early-onset obesity with increased
hyperinsulinemia and hyperleptinemia [17]. However, chronic pharmacological treatment
of oxytocin results in the reversal of hyperphagia and obesity in SIM 1 haploinsufficient
mice [18], thus further supporting oxytocin’s role in regulating energy balance.

Collective evidence suggests that oxytocinergic regulation of eating behavior is impor-
tant for satiation and meal size control rather than modulating interoceptive hunger and
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satiety state. For example, peripheral oxytocin administration does not affect perceived
levels of hunger or satiety in a food deprivation discrimination procedure in rats, despite
reducing food intake in both food-restricted and non-restricted states [19]. Further, oxy-
tocin’s pharmacological effects involve reduction in meal size (see Sections 2.1 and 5.2 for
additional discussions), oxytocin neurons are activated coinciding with meal cessation, and
oxytocin gene expression is elevated upon re-feeding [18,20]. Due to its potent effects on
reducing meal size and body weight in both rodent and human studies [4,21–23], oxytocin
is currently under clinical investigation as a therapeutic for obesity treatment [24–31].

Several questions remain unanswered regarding the mechanisms and sites of action
through which oxytocin modulates energy balance. In this review we focus on the cur-
rent state of the literature pertaining to central oxytocinergic signaling and effects on
eating. We discuss known neural sites of action, oxytocin’s interactions with various other
feeding-related peptides in the control of food intake, and volume transmission as a pos-
sible neural signaling pathway through which oxytocin influences eating behavior. We
further review evidence related to behavioral mechanisms through which oxytocin inhibits
food intake, including effects on satiation control, brain reward signaling pathways, and
competing motivations.

2. Neural Sites of Action for Oxytocin’s Effects on Food Intake

Oxytocin neurons in the PVH and SON project widely throughout the brain.
Immunohistochemistry-based tracing from these neurons has identified projections to
various food intake-relevant nuclei, including (but not limited to) the medial preoptic
area (MPOA), bed nucleus of the stria terminalis (BST), septal nuclei, prefrontal cortex
(PFC), nucleus accumbens (ACB), central (CEA) and medial amygdala (MEA), basolateral
amygdala (BLA), hippocampus, ventral tegmental area (VTA), nucleus tractus solitarius
(NTS), and the dorsal nucleus of the vagus nerve (DMV) [1,32–34]. While these projections
highlight a mechanism for oxytocin-mediated anorexigenic effects via synaptic axonal
release at distal targets, additional signaling modalities exists wherein oxytocin release
can also occur following somatic or dendritic release, and possibly via release into the
cerebrospinal fluid (see Section 3 for additional discussion). In support of these alternate
pathways, the oxytocin receptor is expressed in additional eating-relevant brain areas
that receive minimal or no oxytocinergic projections, such as the ventromedial nucleus of
the hypothalamus (VMH) [11,35]. Therefore, below we review evidence for site-specific
effects of oxytocin on eating behavior in sites of action that receive direct oxytocin neuron
innervation as well as regions containing the oxytocin receptor yet lack dense innervation
from oxytocin neurons.

2.1. Caudal Brainstem

Receiving direct oxytocinergic input, the caudal brainstem is a critical region for
oxytocin’s anorexigenic effects. Within this region, NTS neurons are an essential hub
for energy balance control and integrate vagally-mediated gastrointestinal (GI) satiation
signals, hormonal and nutrient signals in the blood, with descending input from the
forebrain [36]. Recent evidence from rodent models demonstrates that oxytocin receptor
(OT-R) signaling in the medial NTS (mNTS) reduces chow intake in a dose-dependent
manner, and an interaction between mNTS OT-R signaling and meal-related gastrointestinal
(GI) nutrient processing (e.g., induced via preload ingestion) contributes to further food
intake reduction [12,37,38]. Consistent with these findings, fourth ventricular (restricted
to hindbrain) oxytocin receptor antagonism reduces the anorexigenic effect of GI-derived
satiation signals, such as leptin and cholecystokinin (CCK) [37,39], and modulates visceral
vagal afferent-evoked neural activity [40]. These outcomes are likely mediated by a direct
synaptic pathway from oxytocin neurons, as parvocellular PVH oxytocin fibers innervate
the NTS [41]. Oxytocin may also engage the caudal brainstem indirectly via action on
OT-Rs expressed in the vagal sensory neurons (nodose ganglia) [42], as the increased
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c-Fos expression in the NTS and the reduced food intake following peripheral oxytocin
administration are each blocked in vagotomized animals [43].

Not surprisingly, oxytocin’s action in the hindbrain reduces food intake primarily via
a reduction in meal size. For example, mNTS OT-R knockdown (KD) in rats yields larger
spontaneous meal size consumption with a compensatory reduction in meal frequency
such that cumulative caloric intake is not affected [38]. Considering GI signals contribute
to meal size control [44,45], these results support the hypothesis that NTS OT-R signaling
augments the efficacy of GI-derived satiation signals. In addition, consistent with this
model, NTS oxytocinergic projections are upregulated following primary adrenalectomy,
which is also associated with reduced meal size [46]. In addition to oxytocin acting in the
NTS to amplify vagally-mediated satiation signals, Wald and colleagues revealed that NTS
oxytocin signaling reduces conditioned motivated behaviors for palatable food. Specifically,
oxytocin administration to the NTS reduces motivation to work for sucrose in a progressive
ratio schedule of operant reinforcement, and reduces reinstatement of palatable food-
seeking behavior [47]. Altogether, these data indicate that NTS OT-R signaling is important
for amplification of GI signals in the control of both satiation and food-motivated behavior.

2.2. Hypothalamus (Arcuate Nucleus and Ventromedial Nucleus of the Hypothalamus)

In addition to the caudal brainstem, oxytocin acts within several hypothalamic nuclei
to regulate energy balance. The arcuate nucleus of the hypothalamus (ARH), perhaps the
most widely studied brain nucleus for the control of eating behavior, sends dense projec-
tions to PVH oxytocin neurons [48,49]. Within the ARH there are two opposing neuronal
subtypes that potently regulate food intake and energy balance: (1) proopiomelanocortin/
cocaine- and amphetamine-regulated transcript (POMC/CART) neurons which inhibit
food intake, and (2) the neuropeptide-Y/agouti-related peptide (NPY/AgRP) neurons
which stimulate food intake. POMC is a precursor protein for α-melanocyte stimulating
hormone (α-MSH), which activates PVH magnocellular oxytocin neurons [48] and increases
secretion of oxytocin [50]. Central (intracerebroventricular; ICV) or PVH administration
of α-MSH potently inhibits food intake [51] and induces c-Fos expression in oxytocin
neurons [52]. Interestingly, while ARH-derived neuronal peptides can activate oxytocin
neuronal c-Fos and/or increase oxytocin secretion, oxytocin injection into the ARH also
reduces food intake [53]. The critical interaction between ARH-derived α-MSH and central
oxytocin signaling is further supported by results showing that the anorexigenic effects of
central administration of α-MSH are attenuated by pretreatment with an oxytocin receptor
antagonist [54]. On the other hand, NPY/AgRP neurons in the ARH inhibit oxytocin
neurons, thereby contributing to increased food intake [55].

In contrast to the ARH, the VMH is not apparently innervated by oxytocinergic termi-
nals, yet this region does contain the oxytocin receptor [56]. Moreover, oxytocin increases
the firing activity of ventrolateral VMH neurons [57] and oxytocin reduces food intake
when administered in the VMH [11,58]. Interestingly, VMH oxytocin administration does
not affect intake of sweet and palatable saccharin and sucrose solutions, which is consistent
with findings that c-Fos activated sites following VMH oxytocin injection are primarily in
hypothalamic regions (e.g., ARH, PVH) but not sites linked with reward processing, such
as the ACB and VTA [58] (see Section 2.3 below for discussion on oxytocin’s direct action
in the ACB and VTA). The mechanisms by which oxytocin reaches the VMH given low
levels of innervation remain to be identified.

In addition to reducing food intake, VMH oxytocin administration also increases
short-term energy expenditure and spontaneous physical activity [11], an effect that is
more pronounced in females during the proestrus stage of the estrus cycle due to estrogen
mediated elevation of the OT-R [59]. Indeed, there is an abundance of evidence indicating
that OT-R expression in the VMH is modulated by reproductive hormones, such as testos-
terone, estrogen, and dihydrotestosterone [60–62]. For example, estrogen pretreatment in
ovariectomized (OVX) female rats augments VMH oxytocin-induced running activity [59].
It has been proposed that oxytocin-induced changes in energy expenditure and locomotion



Int. J. Mol. Sci. 2021, 22, 10859 4 of 18

are based on the role of VMH oxytocin in reproductive behavior, and thus it may be that a
reduced eating drive functions to offset a competing motivation [59]; however, this idea
remains to be experimentally tested.

2.3. Ventral Tegmental Area and Nucleus Accumbens

In addition to acting in brain regions, such as the caudal brainstem and hypothalamus
that regulate “homeostatic” or energy need-based aspects of food intake, there is growing
evidence that oxytocin acts within the brain reward circuitry to suppress consumption
of and motivated responding for palatable food. In both rodents and humans, oxytocin
administration preferentially reduces intake for sweet-tasting carbohydrate-based food [63].
Moreover, oxytocin knockout (KO) mice demonstrate enhanced intake of palatable su-
crose solutions, as well as increased operant responding for sucrose in a progressive ratio
paradigm [64]. In the mesolimbic pathway, the VTA sends dopaminergic projections to the
ACB to affect motivated aspects of eating behavior. Both the VTA and ACB receive oxy-
tocin neuron projections and densely express oxytocin receptors [65,66]. Further, numerous
studies have shown that central oxytocin preferentially reduces intake of and motivated
responding for sweet-tasting palatable foods, in part, through actions on the VTA and
ACB [7,10,64,67,68]. For example, recent evidence demonstrates that direct administration
of an OT-R antagonist in the VTA significantly increases sucrose intake [10], and VTA
OT-R agonism reduces sucrose motivation and chocolate pellet seeking [47]. A potential
molecular mechanism through which oxytocin exerts these effects may be through modu-
lation of dopaminergic signaling. Indeed, about 10% of OT-R-expressing VTA neurons are
dopaminergic and these neurons project to the ACB [65]. Recent evidence from our group
revealed that ICV oxytocin administration suppresses phasic dopamine neuron activity in
the VTA in response to cues associated with sucrose [69]. The modulation of VTA excitatory
transmission is pathway specific and may be limited to cells that express the cannabinoid
receptor 1, as OT-R signaling stimulates endocannabinoid release from dopamine neurons,
which acts on excitatory glutamatergic inputs to VTA neurons to suppress glutamatergic
transmission [66,70]. While the impact of this cannabinoid-dependent signaling on food
intake control remains to be determined, this molecular mechanism is analogous to the way
in which insulin induces synaptic long-term depression of mouse VTA DA neurons and
reduces food anticipatory behavior [71]. Another potential mechanism by which oxytocin
modulates dopamine activity is through either direct activation or indirect inhibition of
VTA and substantia nigra pars compacta (SNc) DA neurons [70,72].

While OTR-expressing VTA neurons directly project to the ACB [65], oxytocin also
directly acts in the ACB core, but not the ACB shell, to reduce food restriction-induced
chow intake and consumption of palatable sucrose and saccharin solutions in nondeprived
animals [7]. Furthermore, the anorexigenic dose of oxytocin in the ACB core does not
induce conditioned flavor avoidance [7], suggesting that oxytocin does not produce malaise
when injected into this region. Interestingly, ACB oxytocin signaling also reduces drug
reinforcement, as evidenced by reduced methamphetamine seeking and motivated re-
sponding [73]. In contrast to a reduced motive for food and drug reward, a recent study
revealed that oxytocin acts in coordination with serotonin to facilitate social reward via
modulation of the ACB core synaptic plasticity [74,75]. Interestingly, the anorexigenic
effect of ACB oxytocin is reduced in a social context [7]. Together, these data suggest that
oxytocin acts in the VTA and ACB to modulate dopamine neuron signaling to enhance
social reward but reduces the reinforcing properties of palatable foods and drugs of abuse,
potentially by reducing phasic dopamine neuron responses to food conditioned cues. The
precise molecular mechanisms through which these competing outcomes interact require
future study.

2.4. Amygdala and Hippocampus

The amygdala is critical for resolving eating versus threat avoidance competition
and for integrating learned food cues [76]. Magnocellular oxytocin neurons project to
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the amygdala, and axonal release of oxytocin in the CEA can attenuate conditioned fear
responses [77]. While it is well established that OT-R signaling in the amygdala plays
an important role in stress responses [77,78] and social behavior [79,80], recent evidence
demonstrates that amygdala OT signaling produces a moderate yet significant reduction
in food intake. For example, oxytocin administration in the BLA or CEA reduces stan-
dard chow intake in rats re-feeding after food restriction, and pretreatment with an OT-R
antagonist attenuates these anorexigenic effects [8]. While high doses of oxytocin in the
amygdala can produce conditioned taste aversion [81], oxytocin at these smaller anorexi-
genic doses does not, suggesting that the anorexigenic effects of oxytocin in this region are
not secondary to malaise [8]. However, while both CEA and BLA oxytocin administration
reduces chow intake after a fast, only BLA oxytocin suppresses consumption of sucrose
and saccharin solutions [8]. Given the amygdala’s role in processing food-associated cues,
future studies examining the role of amygdala oxytocin signaling in motivated responding
for palatable food and cue-induced food seeking is warranted.

The hippocampus also receives direct input from oxytocin neurons, albeit minimal,
and expresses the oxytocin receptor in both the dorsal and ventral subregions of the rat,
particularly in field CA1 [82–84]. Considerable research has focused on the effects of hip-
pocampal oxytocin signaling on social behavior (e.g., social recognition) [85,86]. However,
to our knowledge the role of hippocampal oxytocin receptor signaling on food intake and
food-motivated behavior has not been investigated. Such analyses are warranted as the hip-
pocampus has recently emerged as an important brain structure in regulating food intake.
For example, in addition to oxytocin, hippocampal neurons express receptors to various
endocrine and neuropeptide signals that regulate food intake, including CCK, melanin-
concentrating hormone (MCH), insulin, leptin, ghrelin, glucagon-like peptide-1 [87]. It has
been proposed that the hippocampus, particularly the ventral subregion, integrates exter-
nal visuospatial cues, internal energy status-related contextual information, and learned
experiences to bidirectionally control eating and food-motivated behavior [87,88]. Prelim-
inary data from our lab reveal that doses of oxytocin that are subthreshold for effects in
the cerebral ventricles yield a modest, yet significant reduction in nocturnal chow intake
when administered to either the dorsal or ventral hippocampal subregion in rats. Based on
these preliminary findings and the growing number of publications identifying a role for
memory processing in food intake control [89], we highlight this region as an understudied
brain region with regards to oxytocin’s anorexigenic effects.

3. Volume Transmission of Oxytocin

In contrast to wiring transmission, where fast intercellular communication occurs
between synapses and gap junctions, volume transmission is a slower modulatory form of
intercellular communication, in which cell transmission of signaling molecules occurs via
the interstitial and/or the cerebrospinal fluid (CSF) of the brain [90,91]. Oxytocin has been
postulated to be transmitted via volume transmission based on the fact that the majority
of oxytocin in magnocellular neurons is stored in dendrites and not axon terminals, and
the location of these dendrites within the PVH penetrate the ventricular space and have
been shown to transmit oxytocin into the third ventricle [92,93]. Additional evidence
corroborating volume transmission as an important mode of oxytocinergic communication
is the presence of brain regions where an oxytocin receptor-terminal mismatch exists. For
example, a high density of oxytocin receptor is found in the hippocampus and VMH,
but there are minimal oxytocin projections to either region [94]. Together these findings
suggest that oxytocin could potentially circulate to distal brain regions in CSF, and/or that
CSF- or parenchymal-released oxytocin could potentially have a modulatory impact by
transmission through the interstitial space. Indeed, recent evidence shows that oxytocin
neurons of the SON secrete oxytocin from dendrites [95], and that dendritic secretion of
oxytocin from SON neurons in the medial amygdala is essential for social recognition
memory [96]. Furthermore, oxytocin is released from axonal varicosities originating from
the PVH where they diffuse through the extracellular space to activate gastrin-releasing
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peptide neurons of the lumbar sacral spinal cord to modulate male sexual arousal [97].
Together these findings demonstrate that volume transmission of oxytocin is a relevant
mode of communication for modulating physiological processes.

While the above evidence shows that oxytocin is transmitted via volume transmission,
the impact of this signaling modality to the central regulation of food intake control remains
to be determined. We recently showed that another hypothalamic neuropeptide known to
affect food intake, MCH, is transmitted via the CSF to modulate eating behavior [98], and
thus it is possible that other neuropeptides also utilize the CSF for transmitting appetite-
relevant signals. Indeed, oxytocin has been detected in the CSF of rodents and humans,
with state dependent fluctuations in concentration and a long half-life in the CSF compared
to that in blood (~28 min vs. ~2 min) [92,99–101]. Future research is required to understand
whether oxytocin release in CSF is a signaling pathway relevant to the anorexigenic effects
of this peptide system.

4. Interactions with Energy Balance-Associated Peptides

A burgeoning body of research demonstrates that oxytocin interacts with various
endocrine and neuropeptide systems to regulate food intake, some of which were briefly
touched upon above. Indeed, the literature suggests that “hunger” signals initially silence
oxytocin responses [55], and “satiation” signals enhance oxytocin activity to signal meal
termination [37,102]. Below we review the current literature exploring the role of oxytocin’s
interaction with neural and gut-derived peptides in the control of food intake.

4.1. AgRP (NPY)/POMC (CART)

As described above, AgRP and POMC neurons in the ARH potently regulate food
intake. AgRP neurons integrate peripheral signals to stimulate feeding and directly project
to the PVH where they inhibit oxytocin neurons [55,103,104]. This neural pathway may
be a rapid and short-acting response to initiate food intake at mealtime. Another putative
consequence of reduced oxytocin neuron activity due to increased AgRP signaling is
attenuated conditioned taste aversion (CTA) learning. For example, AgRP injection into
the lateral ventricle impairs acquisition of CTA, with corresponding reductions in the
percentage of c-Fos positive oxytocin neurons induced by lithium chloride (an agent that
produces malaise and a robust CTA) [105,106]. Thus, these data suggest that the AgRP
system engages the oxytocin neurons in an inhibitory manner, impacting both rapid eating
responses and learned flavor-malaise pairing.

Not only do ARH AgRP neurons modulate oxytocinergic signaling, but ARH oxytocin
signaling counteracts the behavioral consequences of AgRP signaling, as evident from
findings that oxytocin reduces food intake when injected into the ARH [53]. Oxytocin
receptor containing neurons in the ARH were identified as glutamatergic neurons that
rapidly induce satiation and project to melanocortin-4 receptor (MC4R)-expressing neurons
in the PVH [107]. Thus, collectively these findings demonstrate that ARH AgRP and
oxytocin signaling have opposing effects on food intake via multiple neural pathways.

4.2. MCH

MCH is a hypothalamic neuropeptide that increases food intake and promotes weight
gain (for review see [108]). Additionally, MCH plays a role in higher-order and learned
aspects of eating and food-motivated processes by promoting behaviors such as food impul-
sivity and cue-potentiated eating [109,110]. Oxytocin neurons express the MCH 1-receptor
(MCH1R) [111] and MCH modulation of oxytocinergic signaling has been shown to affect
diverse range of physiological and behavioral functions, including lactation [112,113] and
mood regulation [114]. Further, MCH signaling facilitates oxytocin-induced reduction in
repetitive, stereotypic behaviors and social recognition memory [115,116].

In addition to MCH regulation of oxytocin signaling, there is evidence for oxytociner-
gic regulation of MCH neuronal signaling. For example, oxytocin neurons directly project
to MCH neurons and ~60% of MCH neurons express oxytocin receptors [116]. Moreover,
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oxytocin excites GABA neurons that contain MCH [117], and targeted oxytocin receptor
deletion from MCH neurons in mice leads to a decrease in primary inputs from the PVH,
LHA, ACB, and VTA, suggesting that oxytocin plays an important role in plasticity and
circuit formation with MCH neurons [115]. To our knowledge, however, the interaction
between MCH and oxytocin in the control of food intake has not been explored. Given that
both of these hypothalamic peptides systems have potent and opposing actions on food
intake understanding their potential interaction in the control of energy balance represents
an important area for future studies.

4.3. Leptin

Leptin, secreted from adipose tissue, crosses the blood–brain barrier, and acts in the
brain to suppress food intake [118]. Systemic administration of leptin increases the electri-
cal activity of oxytocin neurons [102], and ICV administration of leptin activates STAT3
phosphorylation (an intercellular marker for leptin receptor signaling) in a subpopulation
of oxytocin neurons in the PVH that innervate the NTS [39,119]. These data support the
hypothesis that leptin acts via a downstream oxytocinergic pathway to reduce food in-
take. Further supporting this concept, ventricular administration of an oxytocin receptor
antagonist attenuates the effect of leptin on reducing food intake [39]. One study demon-
strated that oxytocin administration alleviates acute but not chronic leptin resistance in
diet-induced obese mice [120]. On the other hand, another study revealed that chronic treat-
ment of oxytocin (via osmotic minipumps implanted subcutaneously) in leptin-resistant
Zucker Fatty rats decreases food intake and body weight [121]. The discrepancies in these
studies could be due to species differences and/or routes of drug administration. Overall,
however, it appears that leptin acts directly on oxytocin neurons, and that oxytocin acts as
a sensitizer to leptin effects on food intake. Whether pharmacological oxytocin can offset
the leptin resistance associated with obesity requires further investigation.

4.4. CCK

CCK is primarily synthesized and released by enteroendocrine cells in the jejunum
and duodenum soon after food reaches the small intestine [122–124]. Peripheral adminis-
tration of CCK inhibits food intake via reductions in meal size, a process that is vagally-
mediated [44,125]. Recent studies have shown that oxytocin and CCK interact within
the NTS to reduce food intake. Specifically, rats that receive an anorexigenic dose of
peripheral CCK show c-Fos activation in NTS regions that receive dense oxytocin axon in-
nervation [37]. Moreover, the intake-inhibitory effects of peripheral CCK are attenuated by
hindbrain OT-R antagonism [37]. Correspondingly, CCK enhances oxytocin functionality.
For example, CCK stimulates oxytocin release [126–129], and peripherally administered
CCK-8 and secretin activates oxytocin neurons to reduce both food and water consump-
tion [130] via a possible noradrenergic mechanism [131]. Interestingly, a taste stimulus,
specifically sucrose, previously paired with central administration of CCK induces oxy-
tocin release [132], suggesting that central CCK signaling promotes the conditioned release
of oxytocin. Together these data demonstrate that oxytocin and CCK systems act in a
coordinated fashion to increase vagally-mediated satiation signaling.

4.5. GLP-1

Like CCK, glucagon-like peptide 1 (GLP-1) is an intestinally derived peptide that
enhances vagally-mediated satiation signaling. GLP-1 is also synthesized from neurons in
the caudal brainstem, and recent data reveal that the peripheral and central GLP-1 systems
reduce food intake via distinct signaling pathways [133]. Oxytocin-positive terminals are in
close apposition with brainstem GLP-1 positive perikaryal, and central infusion of oxytocin
induces c-Fos expression in GLP-1-producing neurons [134]. Additional evidence supports
the notion that central GLP-1 acts downstream of central oxytocin to reduce food intake.
More specifically, while central infusion of a GLP-1 receptor antagonist followed by anorex-
igenic dose of oxytocin eliminated the anorexigenic effect of oxytocin, central infusion of
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an oxytocin receptor antagonist followed by synthetic GLP-1 ligand does not affect GLP-1-
induced anorexia [134]. Together these results suggest that oxytocin modulates hindbrain
GLP-1 neuron signaling to inhibit food intake and that GLP-1-mediated activation of PVH
neurons likely acts through non-oxytocinergic pathways to control food intake. Additional
studies are required to investigate possible interactions between the peripheral GLP-1
system and oxytocin-mediated food intake reductions, particularly given there several
long-acting GLP-1 analogs are FDA-approved for obesity and diabetes treatment.

5. Behavioral Mechanisms Mediating Central Oxytocin’s Anorexigenic Effects
5.1. Nutrient-Specific Effects on Intake

Oxytocin release is triggered in response to physiological cues such as gastric disten-
sion and increased plasma osmolality [135], suggesting that oxytocin inhibitory effects
on food intake can be independent of calorie, nutrient, and/or flavor components of
the food. However, more recently it has been suggested that oxytocin may modulate
intake in a macronutrient-dependent manner [63]. Specifically, it has been suggested that
oxytocin may preferentially reduce the intake of palatable, sweet foods [7,8,10,64,68,136].
Studies using injections of the oxytocin receptor antagonist, L-368,899, which crosses the
blood–brain barrier, demonstrate that OT-R blockade preferentially increases intake of
carbohydrates, and OT KO mice demonstrate increased preference for carbohydrates but
not fat [10,137,138]. Similarly, oxytocin KO mice exhibit heightened preference for sucrose
and palatable isocaloric carbohydrate solutions independent of sweetness intensity, as well
as for non-caloric carbohydrate sweetener (saccharin) [64,68]. Relative to wild type controls,
these mice also overconsume sucrose and saccharin solutions when presented ad libitum
as a two-bottle choice with water [136]. Conversely, oxytocin KO mice do not overconsume
palatable intralipid solution, suggesting that lipid intake may not engage the oxytocin
signaling pathway [64,68]. A possible mechanism for increased intake of sweet foods in
oxytocin KO mice may occur through altered taste perception as OT-R is expressed in taste
buds [139]. In support of this idea, intraperitoneal (IP) injection of oxytocin suppresses
licking for sucrose, but not NaCl, quinine, or citric acid, and this response correlates with
sucrose concentration [140].

In the brain, magnocellular oxytocin neurons in the PVH are activated following
consumption of 10% sucrose but not following consumption of 4.1% intralipid with equiv-
alent consumption of tastants [138]. Similarly, oxytocin gene expression is elevated in the
hypothalamus by consumption of carbohydrates but not intralipid [138]. Further, rats that
were given sweetened condensed milk showed increased activation of oxytocin neurons in
both the SON and PVH whereas a cream gavage (high in fat without added sugar) does
not have a compelling effect on oxytocin neuronal activity [141]. Other studies have shown
that consumption of sucrose leads to elevated oxytocin mRNA, and administration of
an OT-R antagonist consistently produces elevation of carbohydrate intake in choice and
no-choice food intake paradigms [137]. Taken together, these data suggest that palatable
carbohydrates activate oxytocin neurons in the brain, whereas foods high in lipids have a
substantially smaller effect.

Oxytocin’s macronutrient specific effects may depend on the site of action. For exam-
ple, injection in the BLA has been shown to reduce sucrose and 0.1% saccharin intake [8].
Saccharin is an artificial sweetener devoid of calories, and thus reduction in saccharin intake
suggests that oxytocin in the BLA reduces intake independent of calories and potentially
driven by hedonic gustatory processing. Additionally, reduction of sucrose consumption
in rodents has also been observed when oxytocin is directly injected into the VTA or ACB
core, further supporting oxytocin’s role in reward processing [7,10]. Indeed, a recent study
from our lab has shown that lateral ICV injection of oxytocin in rats inhibits VTA dopamine
neuron activity and preferentially decreases sucrose motivation and consumption over
chow consumption in a choice task [69].

Oxytocin has been extensively shown to reduce food intake and body weight in ani-
mals maintained on a high fat diet [6,13,21,142,143]; however, many of these palatable high
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fat diets also contain simple sugars as the primary carbohydrate source. For example, one
study investigated the effect of chronic oxytocin infusions into the hindbrain (fourth ventri-
cle) for 27 days and reported that oxytocin attenuates body weight gain, adipose mass, and
reduced consumption of a high fat/high sugar diet [13]. In a similar design, Blevins and
colleagues showed that chronic third ventricle oxytocin infusion into the central nervous
system (CNS) attenuates weight gain, reduces food intake, and enhances sensitivity to
the meal size attenuating effects of CCK [6]. Interestingly, these outcomes were observed
regardless of whether sugar was included in the high fat diet or not. However, in both
studies, chronic oxytocin infusions into either the third or fourth ventricle reduced food
intake in high fat diet fed animals, but the same did not occur in chow-fed rats [6,13].
These findings are contrary to those of Olszewski and colleagues, who investigated the
acute anorexigenic effect of oxytocin in rodents on high fat foods and revealed that oxy-
tocin antagonist injection did not affect intralipid intake but increased sucrose intake in
mice [138].

Some of the earliest observations that oxytocin reduces food intake were performed in
rats fed standard chow [4,5]. Notably, most standard rodent chow diets contain a high per-
centage of calories from carbohydrates and, therefore, it is possible that the intake reducing
effects of chow are dependent on the carbohydrate composition of the chow. Oxytocin’s
capacity to acutely reduce chow intake has been demonstrated when administered either
to the cerebral ventricles, peripherally, or to various regions of the brain [4,21,43,144]. For
example, oxytocin injection in the BLA and CEA attenuates chow intake in rats deprived
of food overnight [8]. Similarly, direct oxytocin injection into either the VMH or the ARH
reduces chow consumption in food-deprived rats [53,58]. Thus, taken together, acute oxy-
tocin administration consistently reduces high carbohydrate foods (both palatable sweet
solutions and bland rat chow) when administered to the aforementioned brain regions,
whereas reduction of foods high in fat but not sucrose may require chronic long-term
administration in cerebral ventricles.

5.2. Satiation/Meal Size Control

As also discussed above in Section 2.1, oxytocin reduces food intake in part by aug-
menting the satiating capacity of various physiological meal termination signals. These
effects are likely mediated, in part, via a descending hindbrain pathway as PVH oxytocin
neurons—primarily those located in the caudal part of the parvocellular division—project
to the dorsal vagal complex (DVC) [41,145]. Meal-related signals induced by preload
ingestion elevate DVC oxytocin content, and NTS OT-R signaling enhances the intake
inhibitory effects of various endogenous GI satiation signals [12,38]. Hindbrain oxytocin
signaling enhances the satiating effect of CCK and leptin, and administration of an oxy-
tocin antagonist can even blunt leptin’s ability to enhance CCK activation of the NTS [37].
Together, these findings demonstrate that oxytocin plays a part in endogenous satiation
signaling by various categories of within-meal physiological signals.

5.3. Reward

Oxytocin plays a role in reducing rewarding aspects of food intake and learned
food-motivated behaviors. For example, oxytocin neurons project to various regions
in the brain reward circuitry, including VTA and SNc, ACB, PFC, and extended amyg-
dala [65,70,72,74,146]. Emerging evidence suggests that oxytocin acts directly within the
mesolimbic pathway (ACB core, VTA) to inhibit food intake [7,10,47]. Further, oxytocin
delivered to the cerebral ventricles, NTS, or VTA reduces motivation to work for palatable
food and reduces re-instatement of food-seeking behavior [47]. As briefly mentioned
above, we recently reported [69] that oxytocin reduces palatable food-seeking behavior in
a conditioned place preference task, impulsive operant responding for palatable food, and
motivation to work for sucrose in a free chow vs. operant sucrose choice task. These out-
comes are likely mediated, in part, via action in the mesolimbic dopamine pathway as we
demonstrated that ICV oxytocin reduces dopamine neuron activity in response to Pavlovian
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cues associated with sucrose access. However, central oxytocin does not affect incentive
learning in a procedure where sucrose motivation is increased when sucrose is consumed
following an energetic motivational shift (from satiety to hunger/fasted) [69]. These data
are consistent with a previous study demonstrating that instrumental incentive learning is
not affected by treatment with flupenthixol, a D1 and D2 receptor antagonist [147], thereby
suggesting that instrumental incentive learning is independent of dopamine signaling.
Another recent study found that oxytocin bath application (ex vivo brain slices) or op-
togenetic stimulation of oxytocin neurons decreases excitatory synaptic transmission in
VTA dopamine neurons via long lasting, presynaptic, endocannabinoid-dependent mecha-
nisms [66]. Thus, together these findings suggest a possible neural mechanism through
which oxytocin may decrease mesolimbic dopaminergic signaling to reduce palatable
food-seeking behaviors.

5.4. Social

Oxytocin is well-studied in the context of social behavior, and regulates various aspects
of social recognition and discrimination, memory, bonding, reproduction, and parental
care [148]. Oxytocin’s importance in the regulation of social function appears to interact
with its role in eating behavior. For example, despite the well characterized anorexigenic
effect of central oxytocin in a singly housed setting, oxytocin does not always decrease food
consumption occurring in a social context [149]. Specifically, while activation of OT-Rs
in the ACB core decreases palatable food tastants in an isolated/non-social setting, ACB
oxytocin is ineffective at reducing intake during a social meal [7]. Oxytocin effects on
food intake are also sensitive to within-group relationships for socially housed mice. In
dominant mice, for example, administration of an OT-R antagonist increases sugar intake
regardless of social context, but in subordinate animals it is only effective in a non-social
context [150]. Together these results suggest that oxytocin effects on food intake are variable
based on social relationships. These effects may result in part from oxytocin’s interaction
with the dopaminergic system to modulate attention-orienting responses to external social
cues, where oxytocin may enhance dopamine’s effect on salience coding [151]. These
responses are necessary for social characterization of others into in- or out-group, resulting
in favoritism and co-operation of members of the in-group, as well as defense and competi-
tion with members of the out-group [152,153]. Future studies are necessary to examine the
dynamic relationship between oxytocin and social feeding behaviors, and to what extent
the effects of oxytocin on dopamine signaling are reinforcement specific.

5.5. Competing Motivations

In addition to food intake and social behavior, oxytocin impact several other behaviors,
including reproduction, fear, and stress [154]. It has been suggested that these behaviors
may be in competition, and thus oxytocin may reduce eating in part to divert attention
and/or resources to another behavioral outcome [155]. This section reviews the impact of
oxytocin on these competing motivations as it relates to the impact of oxytocin on food
intake control.

Recent findings from our lab demonstrate that sex and estrous stage interact with oxy-
tocin to affect feeding behavior. Specifically, central oxytocin administration is less effective
at reducing chow intake in randomly cycling female rats in comparison to males. Further-
more, estrous stage and estrogen administration in OVX female rats enhances oxytocin’s
anorexigenic effects [9]. Given that food intake and mating are mutually exclusive behav-
iors, it is possible that oxytocin interacts with estrogen to further inhibit food intake and
focus on mating behaviors, at least in females. The oxytocin system also changes in response
to pregnancy and its response to many stimuli (such as stress) are attenuated [156] through
progesterone/opioid dependent mechanisms [157]. During pregnancy, body weight in-
creases to prepare for the metabolically demanding act of birth/lactation [158,159]. Starting
in mid-pregnancy, the excitability of oxytocin neurons is reduced, and central dendritic
oxytocin release is inhibited contributing to maternal hyperphagia [158]. Additionally,
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oxytocin receptor binding patterns change [158]. While oxytocin responsiveness to CCK
is enhanced, opioid inhibition restrains the response [160,161]. These processes prevent
loss of accumulating oxytocin stores needed for birth [160], and lead to increased food
intake [158]. Prolactin, which is necessary for milk synthesis, also influences oxytocin
activity during lactation. While prolactin inhibits oxytocin neurons in virgin and pregnant
rats, prolactin activates oxytocin neurons in lactating rats, thus allowing for concurrent
activation for milk synthesis and delivery [162]. Moreover, prolactin-releasing peptide
activates oxytocin neurons in response to food intake or CCK administration, thereby con-
tributing to meal termination [14]. Overall, these findings suggest that oxytocin’s influence
on food intake changes throughout mating, pregnancy, and lactation based on the different
energetic demands during these stages.

In males, oxytocin may reduce food intake, in part, by stimulating sexual arousal. For
example, oxytocin released from axonal varicosities originating from the PVH promotes
penile erection in males [97]. Interestingly, Caquineau and colleagues found that acutely
food-restricted male rats maintain their sexual motivation towards receptive females;
however, mating initiation is delayed when these males are placed in cages with receptive
females [163]. The delay corresponded with reduced c-Fos expression in oxytocin neurons
in the lateral posterior parvocellular region of the PVH compared with levels of fed rats
paired with receptive females. The authors concluded that the desire for food competes
with the motivation to mate when in a hungry state; that reproductive behavior can be
altered by nutrition status possibly via oxytocin signaling in the brain [163].

The effect of oxytocin on eating with respect to competing motivations with social
behavior has also been investigated [150]. For example, as mentioned above in Section 5.4
Olszewski et al. observed that when subordinate mice injected with an IP oxytocin antago-
nist were exposed to their dominant counterparts partially and/or fully in the same context,
the subordinate group’s sucrose solution intake was reduced [150]. However, in the ab-
sence of any social cues related to the dominant animal, the antagonist injection increased
sucrose intake in subordinate mice. Conversely, in dominant mice, oxytocin receptor
antagonism increased sucrose intake regardless of whether the animals were in a social
setting. Moreover, oxytocin mRNA expression in the hypothalamus between dominant
and subordinate mice varied, with the dominant group showing higher oxytocin mRNA
expression in the full social environment when compared to the subordinate group [150].
These findings imply that social context can impact efficacy of the oxytocinergic system to
reduce food intake.

Collectively, familiarity, social hierarchy, and reproduction-related social and other
factors appear to influence oxytocin’s effect on feeding. Future studies are necessary to
further examine oxytocin’s effect on other types of social eating behaviors, such as with
non-familiar vs. familiar conspecifics.

6. Concluding Framework

The literature reviewed above is consistent with the framework that oxytocin’s in-
hibitory effects on food intake are mediated by enhancing within-meal satiation signaling
to reduce meal size rather than by modulating between-meal interoceptive hunger or
satiety states. More specifically, the collective literature indicates that a primary mechanism
through which oxytocin reduces food intake is to boost satiation signals to terminate an
ongoing meal via hindbrain OT-R signaling. The distributed OT-R signaling across the
neuroaxis likely involves a combination of wired synaptic signaling (from oxytocin neuron
projections), as well as non-synaptic volume transmission through the interstitial and/or
cerebrospinal fluid in the brain.

Several studies reviewed herein suggest that oxytocin reduces food intake in a
macronutrient-dependent manner, preferentially decreasing the intake of palatable, sweet
foods. Consistent with these findings, oxytocin also plays a role in reducing rewarding
aspects of eating and learned food-motivated behaviors. In addition to food intake regu-
lation, oxytocin impacts several other behaviors, which may be in competition with the
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drive to eat, and thus oxytocin may reduce eating, at least in part, to divert attention
and/or resources to another competing behavioral outcome. This possibility represents an
important area for future investigations into this system, as does investigating oxytocin
volume transmission signaling and OT-R-mediated effects on food intake in telencephalic
brain regions that regulate cognitive processes.
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