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Abstract
Masked priming is one of the most important paradigms in the study of visual word recognition, but it is usually thought 
to require a laboratory setup with a known monitor and keyboard. To test if this technique can be safely used in an online 
setting, we conducted two online masked priming lexical decision task experiments using PsychoPy/PsychoJS (Peirce et al., 
2019). Importantly, we also tested the role of prime exposure duration (33.3 vs. 50 ms in Experiment 1 and 16.7 vs. 33.3 ms 
in Experiment 2), thus allowing us to examine both across conditions and within-conditions effects. We found that our online 
data are indeed very similar to the masked priming data previously reported in the masked priming literature. Additionally, 
we found a clear effect of prime duration, with the priming effect (measured in terms of response time and accuracy) being 
stronger at 50 ms than 33.3 ms and no priming effect at 16.7 ms prime duration. From these results, we can conclude that 
modern online browser-based experimental psychophysics packages (e.g., PsychoPy) can present stimuli and collect responses 
on standard end user devices with enough precision. These findings provide us with confidence that masked priming can 
be used online, thus allowing us not only to run less time-consuming experiments, but also to reach populations that are 
difficult to test in a laboratory.
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Masked priming (Forster & Davis, 1984) is one of the most 
important techniques to study the effects of orthography, 
phonology, morphology, and meaning in visual word recog-
nition (see Forster, 1998; Grainger, 2008, for reviews). Prim-
ing refers to the influence of a prime stimulus (e.g., nurse, 
horse) on a subsequently presented stimulus that the partici-
pant has to respond to (e.g., “is DOCTOR a word?”). Prim-
ing effects are measured as the difference in a dependent 
variable (e.g., response time [RT]) between two conditions 
(e.g., unrelated: horse-DOCTOR; related: nurse-DOCTOR). 

In masked priming, the prime stimulus is presented very 
briefly (for less than 60 ms) and is itself preceded by a pat-
tern mask (e.g., #####) for a much longer duration (typically 
500 ms). The rationale of the procedure is to make partici-
pants unaware of the identity of the masked prime (Forster, 
1998; Forster & Davis, 1984), thus minimizing the role of 
participants’ strategies. Indeed, masked priming experiments 
do not show the strategical effects that occur with visible, 
unmasked primes (e.g., Grossi, 2006; Perea & Rosa, 2002).

The masked priming paradigm has been used in a large 
number of studies over the last decades. For instance, a 
search of the expression “masked priming” in Google 
Scholar in May 2021 produced more than 10,000 hits. Nearly 
all masked priming experiments have been run in a labora-
tory setting, often using the DMDX software developed by 
Forster and Forster (2003). The issue we examine in the 
present paper is whether masked priming experiments can 
be conducted in an online setting without significant changes 
in the pattern of results. Even before the exceptional situa-
tion due to the COVID-19 pandemic in 2020-21, in which 
many labs around the world were closed (or reduced their 
activity) for many months, online data collection had shown 
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its many advantages: 1) easy access to a much more diverse 
population than that accessible at the typical university 
research laboratory; 2) independence from laboratory space 
constraints, and, often, lower costs as participants only need 
to be compensated for their time on the experiment; 3) no 
time spent commuting, waiting for the experiment to start, 
etc. Indeed, researchers in decision-making and economics 
have been using online paradigms for several decades now 
(e.g., Birnbaum, 2000; Paolacci et al., 2010).

Cognitive psychologists have been much slower that their 
behavioral economics colleagues in taking up online para-
digms (see Brysbaert et al., 2016; Cai et al., 2017; Dufau 
et al., 2011; Eerland et al., 2013; Rodd et al., 2016, for some 
exceptions), often due to concerns about the validity of the 
results. Such concerns are not limited to cognitive studies 
(see Aust et al., 2013), but they are exacerbated by the reli-
ance on precise presentation times in cognitive psychology. 
Furthermore, these concerns are even more central in the 
masked priming technique, where it is critical for the onset 
of the mask, the prime, and the target to occur at the nomi-
nal times. For instance, presenting the masked prime for 
longer than intended (e.g., 83 ms or longer instead of the 
nominal 50 ms) could counteract the effect of the mask, 
making the prime consciously visible to the participant and 
possibly altering the processes of interest (see Zimmerman 
& Gomez, 2012).

There have been attempts to address these concerns. Wit-
zel et al. (2013) developed a Web version of DMDX (web-
DMDX) showing promising results in a trial experiment. 
However, webDMDX is a self-contained Windows execut-
able file that participants have to download and run rather 
than a “true” online programming script that could be run 
inside of a browser. A downside of this format is that partici-
pants often are understandably skeptical about downloading 
and running executable files from the Internet. Addition-
ally, many participants may not have access to a Windows 
PC, or may be discouraged from participating by the extra 
work it takes to deploy the experiment on their computer. 
As a consequence, the use of webDMDX in masked priming 
experiments has been rather limited so far (see Alluhaybi & 
Witzel, 2020; Dubey et al., 2018, for exceptions).

Fortunately, in recent years, there have been significant 
improvements in how content can be presented on the World 
Wide Web. Most notably, the HTML5 standard now makes 
it possible to use JavaScript in order to draw stimuli inter-
actively and monitor participant responses with remarkable 
flexibility inside the browser. Participants do not have to 
install any software, and the HTML5 standard is supported 
by a wide variety of devices, including mobile phones and 
tablets (Reimers & Stewart, 2015). There have been attempts 
to use this technology for online masked priming experi-
ments: Crump et al. (2013) (Experiment 7) attempted a 
masked priming paradigm using custom written JavaScript 

code, but failed to replicate the masked priming effect, which 
may be due to problems with their implementation (unfor-
tunately, their study does not provide many details about 
the JavaScript code used). Barnhoorn et al. (2015) devel-
oped a software package called QRTEngine designed to run 
experiments within the Qualtrics online survey development 
environment (Qualtrics, 2020) and were able to successfully 
find masked priming effects (Experiment 3). Unfortunately, 
QRTEngine was only maintained for a few years and is now 
defunct, which is an issue with many custom-developed 
solutions.

Nowadays, there a variety of well-maintained software 
packages taking advantage of the HTML5 capabilities to 
present experimental stimuli and collect data, both com-
mercial, such as Gorilla (Anwyl-Irvine, Massonni, et al., 
2020b) or Testable (Rezlescu et al., 2020), and open-source 
such as jsPsych (de Leeuw, 2015) or PsychoJS (the JavaS-
cript version of PsychoPy 3, Peirce et al., 2019). In addition, 
online setups allow researchers to target any individual with 
an Internet connection as a participant, from very different 
countries and backgrounds. Indeed, various online platforms 
(e.g., Prolific, Amazon Mechanical Turk) offer the possibil-
ity of recruiting participants for on-line experiments based 
on various specific characteristics set up by the experiment-
ers regardless of their location (e.g., native French speakers, 
not older than 30 years old, not currently in college).

Of course, despite the technological advances, many cog-
nitive psychologists still have concerns about timing and 
measurement precision. While JavaScript-based experiments 
run on the participants’ devices and thereby avoid any lag 
due to connection issues (e.g., to avoid delays, all stimuli 
are usually downloaded before the start of the experiment), 
experimenters have little control over which devices the 
experiment are run on beyond the option of explicitly pre-
venting the experiment to run on specific device types such 
as mobile devices. Moreover, experimenters have no control 
at all over what other applications are running on the device, 
screen size and resolution, viewing distance, properties of 
the keyboard/touchscreen, etc., as all of these are determined 
by the device or the participants’ preferences. As Reimers 
and Stewart (2015) pointed out, there are two ways of test-
ing whether timing and response issues are problematic: (1) 
comparing a Web-based experiment directly with an estab-
lished lab-based version by measuring presentation timings 
(using a photodiode) and response timings on various device 
configurations and (2) attempting to replicate existing lab-
based findings using a Web-based paradigm. If the results of 
the Web-based study are comparable to previous lab-based 
results, this suggests that, whatever the deviations in stimu-
lus and response timing are, they are not severe enough to 
affect the overall findings in the paradigm in question.

The first approach has the advantage that differences 
in presentation timings can be objectively recorded and 
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evaluated. A very thorough recent example of this approach 
is the “timing mega-study” by Bridges et al. (2020), who 
compared the timing in experiments run in lab-based setups 
with the timing in online packages run in different brows-
ers. A very similar study by Anwyl-Irvine, Dalmaijer, et al. 
(2020a) compares only online packages and browsers with 
regard to timing. Overall, Bridges et al. (2020) found that 
online packages were capable of presenting visual stimuli 
with reasonable precision, although the lab-based packages 
were slightly better in this regard. This first approach is 
important in order to establish that a certain level of pre-
cision and accuracy can be achieved at all. If this is not 
possible, there is no point in moving forward to the second 
approach and replicating specific paradigms. However, it is 
of course impossible to test every possible device and con-
figuration that participants might use. On the other hand, 
some of the differences in precision and accuracy between 
setups that can be observed using a photodiode may be too 
small to have an influence on actual participant performance. 
Therefore, we consider replication of previous key lab-based 
effects a more important test of online paradigms than pho-
todiode measurements. Based on the results by Bridges 
et al. (2020) and Anwyl-Irvine, Dalmaijer, et al. (2020a), 
modern JavaScript-based stimulus presentation systems are 
capable of sufficiently fast and precise stimulus presenta-
tion. To establish whether masked priming studies can be 
successfully run online, the next step is to follow the sec-
ond approach and implement the masked priming paradigm 
online and test whether results obtained via in-lab studies 
can be replicated, which is at the heart of the present study. 
Importantly, we will do so using PsychoPy/PsychoJS (Peirce 
et al., 2019), as it showed high precision and accuracy across 
the great majority of platforms (Anwyl-Irvine, Dalmaijer, 
et al., 2020a; Bridges et al., 2020), in addition to being open-
source software.

Specifically, in this study we were interested in whether 
we could replicate and extend a key phenomenon in labora-
tory masked priming lexical decision using an online setup: 
masked identity priming is commonly described as a savings 
effect. As first suggested by Forster (1998), for a masked 
identity prime, “the lexical entry is already in the process of 
being opened, and hence the evaluation of this entry begins 
sooner,” whereas for an unrelated prime, “the entry for the 
target word would be closed down (since it fails to match 
the prime), and no savings would occur” (p. 213). Thus, 
according to the savings account, a target word like DOC-
TOR would enjoy an encoding advantage when preceded 
by an identity prime such as doctor than when preceded by 
an unrelated prime such as pencil (i.e., a head-start). One 
implication of such benefit is that the RT distributions of 
the unrelated and identity pairs should reflect a shift rather 
than a change in shape. Furthermore, this shift should be 
approximately similar in magnitude to the prime-target 

stimulus-onset asynchrony (SOA). Empirical evidence sup-
porting this view has been obtained in several studies not 
only with skilled adults but also with developing readers 
(e.g., Gomez et al., 2013; Gomez & Perea, 2020; Taikh & 
Lupker, 2020; Yang et al., 2021). Gomez et al. (2013) pro-
posed an implementation of this hypothesis within the diffu-
sion model (Ratcliff et al., 2004). This implementation pro-
poses that, when making a two-choice decision, the resultant 
RT can be explained as the sum of non-decision parameters, 
which are the encoding time and response execution ( Ter ) 
and decision parameters, which refer to the process of accu-
mulation of information until a decision criteria is reached. 
Importantly, in the decision process, the information gath-
ered from the stimulus can vary in noise, depending on its 
quality, which modifies the rate at which information is 
accumulated (i.e., the drift rate). With regards to RTs from 
masked priming tasks, Gomez et al. (2013) found that the 
difference between identity and unrelated conditions could 
be accounted for by a change in the Ter parameter, while 
there were no differences across conditions in the parameter 
that corresponds to the quality of evidence gathered (i.e., 
drift rate)—note that changes in drift rate would necessarily 
produce a more skewed RT distribution in the slower, unre-
lated condition. The same was found by Gomez and Perea 
(2020) for developing readers.

Critically, the above pattern is specific to masked prim-
ing. In fact, the most common pattern of results in latency-
based tasks is that conditions that produce longer latencies 
will also produce larger variance. This pattern is evident in 
priming as well—when primes are visible (i.e., unmasked 
priming), identity priming effects are stronger in the upper 
quantiles of the RT distribution than in the lower quantiles 
(i.e., a change in shape rather than a shift in RT distribu-
tions; see Gomez et al., 2013). Fits from the diffusion model 
show that this result corresponds to changes in both the Ter 
parameter and the drift rate. Hence, when the prime is vis-
ible, it does influence the quality of the information accumu-
lated of the target word, unlike in masked priming. Clearly, 
this dissociation between masked and unmasked priming 
reflects qualitative differences in the way primes affect the 
processing of the target: purely encoding in masked priming 
(with an expected effect close to the prime duration) vs. both 
encoding and information quality in unmasked priming.

In the present paper, we took advantage of the above 
marker to examine whether online masked priming studies 
follow the same pattern as in-lab masked priming studies. 
Specifically, we manipulated prime exposure duration in 
identity vs. unrelated primes: 33.3 vs. 50 ms in Experiment 
1, and 16.7 vs. 33.3 ms in Experiment 2—note that targets 
were presented immediately after the primes (i.e., prime 
exposure duration was equal to the prime-target SOA). The 
rationale of Experiment 1 is that if the actual exposure dura-
tion of the primes is the nominal exposure duration, then 



 Behavior Research Methods

1 3

we would expect the typical shift between the identity and 
unrelated response time distributions, which according to the 
savings hypothesis (Forster, 1998) would be greater for 50 
ms than for 33.3-ms exposure duration (i.e., the head-start 
would be greater for 50 ms identity primes than for 33.3 ms 
identity primes). This outcome would indicate that the on-
line masked priming studies reproduce a characteristic sig-
nature of laboratory masked priming studies. Alternatively, 
if the online presentation conditions lead to a greater actual 
exposure duration on the participant’s device compared to 
that specified in our experiment (e.g., if prime durations 
were, on average, 20 ms longer than intended), then the 50 
ms primes may no longer be adequately masked, but may 
rather be consciously perceived. If this is the case, the prime 
could affect not only the encoding, but also core decision 
processes (i.e., the drift rate), which would be reflected as a 
stronger priming effect in the higher quantiles of the distri-
bution (i.e., the two RT distributions would have a different 
shape). In this scenario, one should be very cautious when 
running online masked priming experiments—at least with 
the typical software and hardware currently available.

To further constrain the research questions, Experiment 
2 was designed to be analogous to Experiment 1, except for 
replacing the 50-ms prime exposure duration with a very 

short prime exposure duration, namely, 16.7 ms. Similar 
extremely brief prime exposure durations have shown very 
weak masked priming lexical decision experiments in a lab-
oratory setting: less than 5 ms for a prime duration of 14 ms 
(Ziegler et al., 2000) and less than 9 ms for a prime duration 
of 20 ms (Tzur & Frost, 2007)—in the Tzur and Frost (2007) 
experiment, this difference increased to 16.7 ms when using 
a very high level of contrast in the computer screen. Thus, 
if the size of the priming effect is roughly similar to the 
prime exposure duration, we would expect a much larger 
priming effect at the 33.3 ms prime exposure duration than 
at the 16.7 ms prime exposure duration. If we do observe 
a large effect at the 16.7 ms prime exposure duration (e.g., 
above 20-25 ms), this would suggest, again, that there is 
a qualitative difference between using the masked priming 
technique in the laboratory and in online experiments. Keep 
in mind that we are using a software that has very good con-
trol over the exposure duration (Anwyl-Irvine, Dalmaijer, 
et al., 2020a; Bridges et al., 2020). Figure 1 displays the 
link between all these verbal hypotheses, the process model 
that corresponds to each of them, and their predictions in 
the RT distributions.

All in all, replicating the results observed in controlled 
laboratory masked priming studies would be an important step 

Fig. 1  Mapping from hypotheses to data via evidence accumulation 
models. The bottom part of each graph represents sample paths, and 
the top part shows the cumulative density functions. From left to 
right: Null Effect - there are no differences between the conditions; 
Effect in Encoding - the difference between the conditions is on the 

encoding time, hence the RT distributions are shifted; and Effect of 
Encoding and Evidence Accumulation - the differences between the 
conditions is on the rate of evidence accumulation, thus increasing 
the effect size for longer RTs (right-tail of the distribution)



Behavior Research Methods 

1 3

in establishing the validity of online masked priming tasks, 
even in a scenario with no control over many variables (e.g., 
the devices in which the experiment is run, the level of contrast 
of the computer screen, or the additional applications that are 
running in the background of said device), as has been done 
with other paradigms that also require a high control of the 
presentation timing and location of the stimuli (e.g., Parker 
et al., 2021). This would open the possibility for masked 
priming researchers to collect large samples from diverse 
populations via online crowdsourcing methods, as has been 
done previously using other paradigms (e.g., Aguasvivas et al., 
2020; Brysbaert et al., 2021; Brysbaert et al., 2016; Mandera 
et al., 2020; Ratcliff & Hendrickson, 2021). So far, this has 
only been possible in many-labs studies depending on the 
collaboration of many researchers in different countries (e.g., 
Adelman et al., 2014). Importantly, the present experiments 
go beyond an online replication: they allow us to test 
masked priming effects not only across conditions (identity 
vs. unrelated) but also within conditions (the effect of identity 
primes, or unrelated primes, across two prime durations) 
(see Jacobs et al., 1995; Ziegler et al., 2000, for advantages 
of within-condition comparisons). Thus, the within-subject 
manipulation of prime exposure duration in both experiments 
allows us to obtain a comprehensive picture of masked identity 
priming effects–also including the examination of potential 
inhibitory effects of unrelated primes.

Experiment 1

In the first experiment, we tested whether we could observe 
reliable effects of masked priming at prime durations of 33.3 
and 50 ms (roughly corresponding to two and three frames, 
respectively, at a refresh rate of 60 Hz). We report here how 
we determined our sample size, all data exclusions (if any), 
all manipulations, and all measures in the two experiments.

Method

The pre-registration form for Experiment 1 can be found 
at https:// osf. io/ v97bp, and the materials, data files, and R 
scripts can be found at https:// osf. io/ 57rzq/.

Participants

Participants were recruited through Prolific (www. proli fic. 
co, 2021). The experiment was accessed by 101 participants. 
Out of these, 89 provided experimental data. Two of these 
participants did not complete the experiment. A further ten 
were excluded because of low accuracy (less than .8, which was 
the pre-registered criterion). In the end, we analyzed the data 
from 77 participants (36 female), aged from 18 to 71 (mean 
age 31.14). All of these participants indicated that English was 

their first language in the Prolific screening questions. Based 
on their IP addresses, 47 participants were based in the UK, 23 
were based in the US, three participants were based in Canada, 
and two participants were based in Ireland. Two participants 
could not be localized in this way. All participants were naïve 
to the purpose of the experiment and received £1.25 for their 
participation (corresponding to £5/h). Participants could use 
either a desktop/laptop computer or a mobile device. Because 
of a technical display issue with PsychoJS and the Safari 
browser, participants who tried to access the experiment using 
that browser, including all participants on iOS devices, were 
advised to change browser or device and restart the experiment.

Rationale for sample size and stopping rule Brysbaert and 
Stevens (2018) recommended that masked priming experi-
ments should have at least 1600 observations per condition. 
In order to account for potentially smaller effect sizes in an 
online experiment, we set a target of 3000 observations per 
condition (12,000 observations total), which corresponds 
to a minimum of 50 participants given that there were 240 
word stimuli in the experiment (see below). Our stopping 
rule was to keep collecting data until 3000 valid observa-
tions were found. This goal was met and exceeded in our 
initial data collection with a budget of £200.

Materials

We selected 240 six-letter English words from the English 
Lexicon Project (Balota et al., 2007). The mean Zipf frequency 
based on the HAL corpus (Lund & Burgess, 1996) was 3.8 
(range 1.9–5.5). The mean OLD20 (Yarkoni et al., 2008) was 2.1 
(range 1.4–3). We also selected 240 matched, orthographically 
legal six-letter nonwords. For each target, we created an identical 
prime (e.g., region — REGION and fainch — FAINCH) and 
an unrelated prime consisting of another word from the list 
(e.g., launch — REGION and miluer — FAINCH)1. Unrelated 
primes were paired with the targets by rearranging the order 
of identity primes (controlling for neighbors; see Perea et al., 
2018). Appendix 5 contains a list of the target items, and all 
counterbalanced lists can be found in the online repository.

Procedure

Participants were able to sign up for the experiment on the 
Prolific website. Upon signing up, they were redirected to the 
participant agreement form on the Qualtrics online survey 
development environment (Qualtrics, 2020). After indicating 
their agreement to participate, participants were forwarded to 

1 Note that the lexical status of the unrelated prime differed depend-
ing on the target type: for word targets, the unrelated primes were 
words, whereas for nonword targets, they were pseudowords. How-
ever, as shown by Fernández-López et al. (2019), the lexical status of 
the unrelated prime does not affect lexical decision times.

https://osf.io/v97bp
https://osf.io/57rzq/
http://www.prolific.co
http://www.prolific.co
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Pavlovia (2020), where the actual lexical decision task was 
implemented in PsychoJS. In the experiment, all stimuli were 
presented in the center of the screen in black Courier New 
font on a white background. As we do not know the exact 
dimensions of each participant’s screen, all stimulus sizes and 
positions were defined in PsychoPy’s “height” units, with the 
bottom left of a 16:10 aspect ratio screen being represented 
as (-.8, -.5) and the top right being (.8, .5). The height for all 
text stimuli was 0.1 units. Each trial began with a six-character 
pattern mask (######) set to be presented for 500 ms, followed 
first by the lowercase prime (e.g. region) set to be presented 
for either 33.3 or 50 ms, and then by the uppercase target 
(e.g. REGION). Participants were instructed to respond to the 
target stimulus as quickly as possible by pressing the “Z” key 
of their keyboard (if their device had one) if the target was not 
a valid English word or the “M” key if the target was a valid 
English word. Participants on a device without a keyboard were 
instructed to respond by touching one of two rectangular touch 
areas labeled “Z = Non-word” (presented at -0.4, -0.3) and “M 
= Word” (presented at 0.4, -0.3). The touch areas each had a 
width of 0.4 and a height of 0.2 and were presented in white 
with a black outline. If participants did not respond within 
2 s of the target onset, a “Too slow!” feedback message was 
shown for 500 ms and the trial ended. The experimental trials 
were preceded by 16 practice trials during which participants 
also received feedback on the accuracy of their responses. No 
feedback apart from the trial timeout feedback was given during 
the experimental trials. Every 120 trials, participants were 
asked to take a short break before continuing the experiment. 
After completing the experiment, participants were redirected 
to a debriefing form on Qualtrics and from there back to Prolific 
in order to receive their participation payment.

Data analysis

We analyzed the data by fitting Bayesian linear and general-
ized linear mixed models, using the brms package (Bürkner, 
2017, 2018) in R (R Core Team, 2021)2. We only analyzed 

trials where the target stimulus was a word. For the response 
time (RT) analysis, we excluded trials with RTs lower 
than 250 ms or higher than 1800 ms as well as incorrect 
responses (5.84 % of trials). For the accuracy analysis, we 
only excluded trials with RTs lower than 250 ms or higher 
than 1800 ms (0.36 % of trials). For both RTs and accu-
racy, we fitted a model with priming condition (unrelated 
vs. identical) and prime duration (33.3 ms vs. 50 ms) as 
well as their interaction as the fixed effects. For the dis-
crete predictors, we used contrasts as follows: For priming 
condition, identical was coded as -0.5 and unrelated was 
coded as 0.5. For priming duration, 33.3 ms was coded as 
-0.5 and 50 ms was coded as 0.5. We used the maximal 
random effects structure possible, with random intercepts 
and slopes for condition, prime duration, and the interac-
tion for participants and items. We used the ex-Gaussian 
distribution to model response times, with both the mean 
of the Gaussian component � and the scale parameter of the 
exponential component � (equaling the inverse of the rate 
parameter � ) being allowed to vary between conditions. To 
model response accuracy, we used the Bernoulli distribu-
tion with a logit link. We used the default priors suggested 
by brms except for the coefficients for the fixed effects, for 
which we applied weakly informative priors of � ∼ N(0, 100) 
in order to rule out improbably large effect sizes. Each model 
was fitted using four chains with 5000 iterations each with 
1000 warmup iterations (10,000 iterations with 2000 warm-
up iterations for the accuracy models). We consider an effect 
as credible if the 95% credible interval (CrI) estimated from 
the posterior distribution does not contain zero. In addition, 
to better visualize the distributional features of the latency 
data, we computed the delta plots for both priming and 
prime duration effects.

Results

Descriptive statistics for response times and accuracy for 
both words and nonwords in the experimental conditions 
are reported in Table 1 (although note that we only analyzed 
the word trials).

Response times

Table 2 shows the mean, standard error, lower and upper 
bounds of the 95% CrI of the estimate of each fixed effect 
in the RT model, as well as the R̂ for each estimate, which 
indicate that the model was fitted successfully as they are 
all close to 1.

The RT model indicates that the mean of the Gaussian 
component � was higher in the unrelated condition than the 
identical (b = 31.55, 95% CrI [27.16, 35.92]), and higher 
in the 33.3 ms prime duration condition than in the 50 ms 
prime duration condition (b = -10.96, 95% CrI [-14.83, 

2 The full list of software we used for our analyses is as follows: R 
(Version 4.1.1; R Core Team, 2021) and the R-packages bayest-
estR (Version 0.11.0; Makowski et al., 2019), brms (Version 2.16.1; 
Bürkner, 2017, 2018), dplyr (Version 1.0.7; Wickham et al., 2021c), 
forcats (Version 0.5.1; Wickham, 2021a), ggplot2 (Version 3.3.5; 
Wickham, 2016), papaja (Version 0.1.0.9997; Aust & Barth, 2020), 
patchwork (Version 1.1.1; Pedersen, 2020), purrr (Version 0.3.4; 
Henry & Wickham, 2020), Rcpp (Eddelbuettel & Balamuta, 2018; 
Version 1.0.7; Eddelbuettel & François, 2011), readr (Version 2.0.2; 
Wickham & Hester, 2020), readxl (Version 1.3.1; Wickham & Bryan, 
2019c), rworldmap (Version 1.3.6; South, 2011), see (Version 0.6.8; 
Lüdecke et al., 2020), sp (Version 1.4.5; Pebesma & Bivand, 2005), 
stringr (Version 1.4.0; Wickham, 2019a), tibble (Version 3.1.5; 
Müller & Wickham, 2021), tidyr (Version 1.1.4; Wickham, 2021b), 
tidyverse (Version 1.3.1; Wickham et al., 2019b), tinylabels (Version 
0.2.1; Barth, 2021), and xfun (Version 0.27; Xie, 2021).
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-7.11]). The interaction term indicates that the priming 
effect was stronger in the 50 ms condition than the 33.3 ms 
condition (b = 19.31, 95% CrI [11.39, 27.09]). The shape 
parameter of the exponential component � was affected very 
little by prime relatedness (b = 0.03, 95% CrI [-0.01, 0.07]). 
However, the 50-ms prime exposure duration seems to be 
associated with a slightly lower � , i.e., a slightly weaker 
right skew of the distribution, than the 33.3-ms condition (b 
= -0.07, 95% CrI [-0.12, -0.03]). On the other hand, there 
did not seem to be an interactive effect of prime relatedness 
and prime exposure time on the shape of the distribution (b 
= 0.03, 95% CrI [-0.05, 0.12]).

These results can be visualized in the delta plots depicted 
in Figure 2. Delta plots are residual quantile plots that show 
the distributional differences between conditions (see De 
Jong et al., 1994). As can be seen in Panel A, there is an 
identity priming effect (computed as the difference in 
response times between responses to the unrelated condi-
tion and responses to the identity condition) of a parallel 
magnitude across all quantiles for both the 33.3-ms and the 
50-ms prime durations, and the effect size is greater for the 
50-ms prime duration condition than for the 33.3-ms one. 
We also found a slight increase of priming effects for the 
longest responses (quantile .9) in the 33.3-ms prime duration 
condition. This apparent anomaly can be understood better 

by looking at Panel B of the same figure. In this panel, we 
show the size of the prime duration effect (computed as the 
difference in response times between responses to the 50-ms 
condition and responses to the 33.3-ms condition) across 
RT quantiles. While the identity condition produced a shift 
in the distributions of response times (i.e., the difference 
between conditions is constant across quantiles), the unre-
lated condition yielded virtually the same response times in 
the 33.3- and 50-ms conditions, except for a small increase at 
the 50-ms prime duration for the very long responses (i.e., .9 
quantile)—we prefer not to over-interpret this latter finding 
with the slowest responses, as it did not appear in Experi-
ment 2.

Accuracy

Table 3 shows the mean, standard error, lower and upper 
bounds of the 95% CrI of the estimate of each fixed effect 
in the accuracy model, as well as the R̂ for each estimate, 
which indicate that the model was fitted successfully as they 
are all close to 1.

The accuracy model indicates that participants were 
less likely to produce a correct response in the unrelated 
condition than the identical condition (b = -0.50, 95% CrI 
[-0.72, -0.31]). The mean of the posterior distribution for 

Table 1  Mean, Median, standard deviation (SD), range of correct RTs (in ms) and accuracy (proportion of all responses) in Experiment 1 for 
each condition

Stimulus Type Prime Duration Relatedness Mean Median SD Min Max Accuracy

Nonword 33.3 ms Identity 700 665 187 263 1,776 0.91
Nonword 33.3 ms Unrelated 702 664 188 256 1,770 0.92
Nonword 50 ms Identity 700 658 189 256 1,760 0.91
Nonword 50 ms Unrelated 699 657 185 251 1,796 0.93
Word 33.3 ms Identity 630 599 164 254 1,796 0.94
Word 33.3 ms Unrelated 652 619 166 254 1,783 0.93
Word 50 ms Identity 608 575 161 265 1,784 0.96
Word 50 ms Unrelated 649 620 158 294 1,710 0.93

Table 2  Posterior mean, standard error (SE), 95% CrI and R̂ for the fixed effects of the model fitted for correct word RTs in Experiment 1

� is the scale parameter (the inverse of the rate parameter � ) of the ex-Gaussian distribution

Parameter mean SE lower bound upper bound R̂

Intercept ( �) 633.707 8.815 617.142 651.175 1.006
Intercept ( �) 4.686 0.042 4.601 4.768 1.001
Relatedness ( �) 31.551 2.228 27.162 35.915 1.000
Prime duration ( �) -10.959 1.947 -14.825 -7.105 1.000
Relatedness: Prime duration ( �) 19.306 4.026 11.388 27.094 1.000
Relatedness ( �) 0.031 0.022 -0.011 0.073 1.000
Prime duration ( �) -0.074 0.024 -0.120 -0.028 1.000
Relatedness: Prime duration ( �) 0.031 0.042 -0.051 0.115 1.000
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prime duration suggests that accuracy was slightly lower 
in the 33.3-ms prime duration condition than in the 50-ms 
prime duration condition, but as the CrI included 0, this is 
not credible (b = 0.19, 95% CrI [-0.02, 0.42]). The interac-
tion term indicates that the effect of priming condition on 
response accuracy (with the identical condition leading to 
higher accuracy) was stronger in the 50-ms condition than 
the 33.3-ms condition (b = -0.53, 95% CrI [-0.94, -0.14]).

Discussion

The results from Experiment 1 reveal that we were able to 
replicate benchmark masked priming effects using an online 
experiment. The size and shape of the effect is similar to that 

observed in previous studies (e.g., Gomez et al., 2013; Perea 
et al., 2018; Taikh & Lupker, 2020; Yang et al., 2021). In 
addition, we also saw a clear difference between the 33.3-ms 
prime duration and the 50-ms prime duration, indicating that 
the experiment can reliably implement timing differences 
of up to one frame across a variety of participant devices. 
While the shape of the distribution changed slightly between 
the 33.3-ms and the 50-ms prime exposure durations, we 
did not observe an effect of the prime relatedness condition 
on the shape parameter � of the exponential distribution, 
suggesting, according to the savings hypothesis by Forster 
(1998), that only encoding processes were affected by the 
relatedness manipulation. Moreover, as can be observed in 
Figure 2, the effect magnitude was close to the stimulus-
onset asynchrony (see also Perea et al., 2018).

Of course, just because there was a difference between the 
conditions, this does not necessarily mean that the timings 
in the two prime duration conditions actually corresponded 
to the display durations set in the experiment script, just 
that they were different. Indeed, to better define the priming 
effect, one needs a baseline that serves as a reference point 
(i.e., an analog of the minimum “intensity” priming condi-
tion; see Jacobs et al., 1995). In order to further explore this 
question, we performed a second experiment in which we 
set the prime to be displayed for an even shorter duration. 
As described in the Introduction, a 16.7-ms prime exposure 
duration should yield a negligible priming effect (Tzur & 
Frost, 2007; Ziegler et al., 2000) so the pattern should be 

Fig. 2  Delta plots depicting the magnitude of the effect over time in 
Experiment 1. Each dot represents the mean RT at the .1, .3, .5, .7 
and .9 quantiles. Panel A) Difference in RT between unrelated and 
related trials for the 33.3-ms prime duration (left) and the 50-ms 

prime duration (right). Panel B) Difference in RT between 50-ms and 
33.3-ms prime duration trials for the identity (right) and the unrelated 
(left) conditions

Table 3  Posterior mean, standard error (SE), 95% CrI and R̂ for the 
fixed effects of the model fitted for response accuracy on word trials 
in Experiment 1.

Parameter mean SE lower bound upper bound R̂

Intercept 3.458 0.122 3.224 3.705 1.000
Relatedness -0.503 0.105 -0.720 -0.305 1.000
Prime Duration 0.192 0.110 -0.016 0.417 1.000
Relatedness: 

Prime Dura-
tion

-0.530 0.206 -0.944 -0.138 1.000
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qualitatively different from the 33.3- and 50-ms durations 
used in Experiment 1. If it does not, this would cast doubt 
on the timing accuracy in online experiments. In this experi-
ment, we also include the 33.3-ms prime duration condition 
to not only have a better scheme to compare the two experi-
ments, but also to be able to test the within-condition effects 
(Jacobs et al., 1995)—assuming the 16.7-ms prime duration 
serves as a baseline.

Experiment 2

In the second experiment, we tested whether we could 
observe reliable effects of masked priming at prime dura-
tions of 16.7 ms and 33.3 ms (roughly corresponding to one 
and two frames at a refresh rate of 60 Hz).

The pre-registration form for Experiment 2 can be found 
at [https:// osf. io/ 957s8]. The materials, data files, and R 
scripts can be found at [https:// osf. io/ 57rzq/].

Method

Participants

As in Experiment 1, participants were recruited through Pro-
lific (www. proli fic. co, 2021). The experiment was accessed 
by 102 participants. Out of these, 87 provided experimental 
data. One of these participants did not complete the experi-
ment. A further seven were excluded because of low accu-
racy (again, less than .8). The remaining 79 participants were 
aged from 18 to 69 (mean age 31.14). Of the participants, 
40 identified as male, and 39 identified as female. All these 
participants indicated that English was their first language in 
the Prolific screening questions. Based on their IP addresses, 
56 participants were based in the UK, 14 were based in the 
US, two participants were based in Canada, two participants 
were based in South Africa, and one participant each was 
based in Hungary and Ireland. Three participants could not 
be localized in this way. As in Experiment 1, all participants 
were naïve to the purpose of the experiment, and received 
£1.25 for their participation (corresponding to £5/h). Partici-
pants could use either a desktop/laptop computer or a mobile 
device. Because of a technical display issue with PsychoJS 
and the Safari browser, participants who tried to access the 
experiment using that browser, including all participants on 
iOS devices, were advised to change browser or device and 
restart the experiment.

Rationale for sample size and stopping rule As in Experi-
ment 1, our stopping rule was to keep collecting data until 
3000 valid observations were collected. This goal was met 
and exceeded in our initial data collection with a budget of 
£200.

Materials

The materials were identical to those used in Experiment 1.

Procedure

The procedure was identical to Experiment 1, the only dif-
ference being that the primes were set to be displayed for 
either 16.7 ms or 33.3 ms.

Data analysis

We analyzed the data in the same way as in Experiment 1, by 
only analyzing trials where the target stimulus was a word. 
For the response time (RT) analysis, we excluded trials with 
RTs lower than 250 ms or higher than 1800 ms as well as 
those with incorrect responses (4.93 % of trials). For the 
accuracy analysis, we only excluded trials with RTs lower 
than 250 ms or higher than 1800 ms (0.15 % of trials). For 
priming duration, 16.7 ms was coded as -0.5 and 33.3 ms 
was coded as 0.5. Otherwise, the model specifications were 
identical to those in Experiment 1.

Results

Descriptive statistics for RTs and accuracy in all the experi-
mental conditions are reported in Table 4.

Response times

As in Experiment 1, the RT model indicates that the 
mean of the Gaussian component � was higher in the 
unrelated condition than the identical (b = 8.53, 95% CrI 
[5.07, 12.11]). For the main effect of prime duration, the 
CrI contains 0, suggesting that, when averaging across 
the relatedness conditions, there is no strong difference 
between the 16.7-ms and the 33.3-ms prime duration (b 
= -3.60, 95% CrI [-7.22, -0.03]). However, the interaction 
term demonstrates that this is actually due to the fact that 
there was a strong priming effect in the 33.3-ms condition, 
but only a negligible effect in the 16.7-ms condition (b 
= 15.17, 95% CrI [8.52, 21.73]). The shape parameter of 
the exponential component � was affected very little by 
prime relatedness (b = 0.03, 95% CrI [-0.02, 0.07]), prime 
exposure duration (b = 0.01, 95% CrI [-0.03, 0.05]), or their 
interaction (b = -0.03, 95% CrI [-0.12, 0.05]), suggesting 
that the shape of the RT distribution was not affected by the 
manipulations in Experiment 2.

Table 5 shows the mean, standard error, lower and upper 
bounds of the 95% CrI of the estimate of each fixed effect 
in the RT model, as well as the R̂ for each estimate, which 
indicate that the model was fitted successfully as they are 
all close to 1.

https://osf.io/957s8
https://osf.io/57rzq/
http://www.prolific.co
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We also created delta plots of the data from Experiment 
2 (see Figure 3). Panel A shows there is no priming effect 
for the 16.7-ms condition, in contrast with a consistent effect 
across quantiles for the 33.3-ms condition (parallel to the 
one found in Experiment 1). Interestingly, when examining 
the delta plots for the prime duration effect, we can observe 
a slight facilitation for identity primes, together with a slight 
hindering for unrelated primes.

Accuracy

The accuracy model indicates that participants were less 
likely to produce a correct response in the unrelated condi-
tion than the identical condition (b = -0.22, 95% CrI [-0.43, 
0.00]). The mean of the posterior distribution for prime 
duration suggests that accuracy was was slightly lower in the 
16.7-ms prime duration condition than in the 33.3-ms prime 
duration condition, but as the CrI included 0, this is not cred-
ible (b = -0.05, 95% CrI [-0.31, 0.18]). The interaction term 
indicates that the expected effect of priming condition on 
response accuracy (with the identical condition leading to 
higher accuracy) only present in the 33.3-ms condition, and 
reversed in the 16.7-ms condition (b = -0.71, 95% CrI [-1.16, 

-0.30]), although the effect in the 16.7-ms condition was 
very weak. Table 6 shows the mean, standard error, lower 
and upper bounds of the 95% CrI of the estimate of each 
fixed effect in the accuracy model, as well as the R̂ for each 
estimate, indicating that the model was fitted successfully as 
they are all close to 1.

Discussion

In Experiment 2, we found the pattern we expected from 
previous research: In the mean � of the Gaussian compo-
nent of the ex-Gaussian distribution, we observed a robust 
identity priming effect in response time and accuracy in 
the 33.3-ms prime duration, but a very weak effect in the 
16.7-ms prime duration (Tzur & Frost, 2007; Ziegler et al., 
2000). This outcome suggests that the timing in our online 
experiments was likely to be quite close to the timing set in 
the experiment script. In addition, we did not observe an 
effect of the prime relatedness on the shape parameter � of 
the exponential component (i.e., the effect corresponded to 
a shift of the RT distributions, as shown in in-lab studies; 
e.g., Taikh & Lupker, 2020; Yang et al., 2021). Moreover, 
the magnitude of the priming effect at the 33.3-ms prime 

Table 4  Mean, median, standard deviation (SD), and range of correct RTs (in ms) and accuracy (proportion of all responses) in Experiment 2 for 
all conditions

Stimulus type Prime Duration Relatedness Mean Median SD Min Max Accuracy

Nonword 16.7 ms Identity 719 680 185 330 1,787 0.93
Nonword 16.7 ms Unrelated 717 677 183 284 1,799 0.94
Nonword 33.3 ms Identity 717 668 193 351 1,787 0.94
Nonword 33.3 ms Unrelated 715 672 188 281 1,789 0.94
Word 16.7 ms Identity 659 625 160 311 1,785 0.94
Word 16.7 ms Unrelated 661 623 165 308 1,796 0.95
Word 33.3 ms Identity 649 618 154 280 1,657 0.96
Word 33.3 ms Unrelated 667 633 162 269 1,701 0.94

Table 5  � is the scale parameter (the inverse of the rate parameter � ) of the ex-Gaussian distribution

Parameter mean SE lower bound upper bound R̂

Intercept ( �) 656.975 9.036 639.056 674.711 1.003
Intercept ( �) 4.658 0.043 4.573 4.741 1.003
Relatedness ( �) 8.529 1.795 5.065 12.106 1.000
Prime duration ( �) -3.602 1.813 -7.216 -0.033 1.000
Relatedness: Prime duration ( �) 15.166 3.390 8.517 21.727 1.000
Relatedness ( �) 0.028 0.023 -0.016 0.073 1.000
Prime Duration ( �) 0.011 0.021 -0.031 0.053 1.000
Relatedness: Prime duration ( �) -0.034 0.043 -0.119 0.049 1.000
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exposure duration was close to the magnitude of the prime-
target stimulus-onset asynchrony, as can be seen in the delta 
plots in Fig. 3 (see Gomez et al., 2013; Perea et al., 2018). 
Hence, we replicated again the commonly observed savings 
effect (Forster, 1998).

Critically, because the 16.7-ms prime duration condition 
yielded virtually no priming effects, this very short prime 
exposure duration serves as a within-condition baseline that 
allows us to qualify the facilitative vs. inhibitory nature of 
masked priming effects (Jacobs et al., 1995; Ziegler et al., 
2000). Specifically, when compared to the baseline, our find-
ings at the 33.3-ms prime duration show a combination of 
a slight facilitatory effect for identity primes and a small 
inhibitory effect for unrelated primes.

General discussion

In this study, we set out to test whether we could obtain 
benchmark masked priming effects both qualitatively (i.e., 
shift in the RT distributions) and quantitatively (i.e., effect 
sizes) using an online, browser-based experiment software. 
To that end, we conducted two online masked identity 
priming experiments (e.g., region — REGION vs. launch — 
REGION) in which we manipulated prime exposure duration 
(33.3 vs. 50 ms in Experiment 1; 16.7 vs. 33 ms in Experi-
ment 2). The results of our online-based experiments rep-
licated and extended benchmarks masked identity priming 
effects previous in the lab-based studies. We observed the 
effect sizes predicted by Forster’s (1998) savings hypothesis: 
Our data show a shift in the mean of the Gaussian compo-
nent of the ex-Gaussian distribution, but no change in the 
shape parameter � of the exponential component, suggest-
ing that our priming manipulations affected—as intended—
encoding processes, but not conscious decision-making pro-
cesses. Furthermore, the size of the priming effect was not 
only directly influenced by the prime duration, suggesting 
the experimental software was able to control the display 
timing of the prime accurately, but also of a similar mag-
nitude to the prime duration (within the range reported in 
previous studies, e.g., 35-47 ms for a 50-ms prime duration 
in Perea et al., 2018). Importantly, the use of a within-con-
dition baseline revealed that the identity priming effects at 

Fig. 3  Delta plots depicting the magnitude of the effect over time in Experiment 2

Table 6  Posterior mean, standard error (SE), 95% CrI and R̂ for fixed 
effects of the model fitted for response accuracy on word trials in 
Experiment 2

Parameter mean SE lower bound upper bound R̂

Intercept 3.734 0.135 3.476 4.007 1.000
Relatedness -0.217 0.109 -0.434 -0.004 1.000
Prime Duration -0.055 0.126 -0.306 0.184 1.000
Relatedness: 

Prime Dura-
tion

-0.710 0.218 -1.157 -0.305 1.000
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the 33-ms prime exposure duration were a combination of 
some small facilitation from identity primes and some small 
inhibition from unrelated primes (see Jacobs et al., 1995, for 
evidence with a psychophysical experiment). Likewise, the 
greater identity priming effects at the 50 ms rather than at 
the 33.3-ms prime exposure duration were essentially due 
to the facilitation from the identity pairs.

While accurate display timings are expected in a labora-
tory-based experiment, where the equipment is known and 
can be measured, they are much less certain in a situation 
where the experiment runs on a participant’s own device, 
which could be any of a wide variety of consumer devices 
including Windows PCs, Macs, tablets, and mobile phones 
sold in the last decade. Similarly, unlike in-lab conditions, 
where the contrast of the computer screens can be meas-
ured and kept constant, there is no such a guarantee for the 
screens used by online participants—note that Tzur and 
Frost (2007) were only able to observe strong effects for 
short prime exposure durations when using extreme contrast 
values. Thus, the fact that we can observe results that very 
closely resemble lab results demonstrates the sophistication 
in modern browsers’ JavaScript performance, including 
browsers on mobile devices, as well as the quality of the 
JavaScript implementation of PsychoPy (PsychoJS).

Furthermore, our results extend previous work show-
ing the validity of on-line studies measuring response 
times (e.g., Brysbaert et al., 2016; Cai et al., 2017; Dufau 
et al., 2011; Eerland et al., 2013; Rodd et al., 2016, to cite 
a few instances) to the masked priming technique. Thus, 
the present study opens the door to a wider use of online 
experiments in cognitive research, especially in reaction-
time sensitive fields like word recognition. Not only does 
this enable researchers to continue collecting data in times 
of social distancing, but it also makes it possible to collect 
data from a larger population than previously possible. For 
instance, online participants can be people from different 
countries and/or cultures, from different age groups, bilin-
guals/multilinguals, even those who do not own a computer, 
only a smartphone. Using a JavaScript-based experiment 
software, anyone with a smartphone can be an experiment 
participant. This opens up the possibility of masked-priming 
crowdsourced megastudies. In general, deploying masked 
priming experiments online also means that data can be 
collected very quickly and efficiently, allowing research to 
progress more rapidly.

In conclusion, our results give us confidence that high-
quality behavioral data using the masked priming paradigm 
can be collected online using JavaScript-based experiment 
platforms. We hope that future research takes advantage of 
these new methods in order to make research faster, more 
inclusive, and more efficient.

Open Science Statement

Both experiments in this study were pre-registered prior to 
conducting the research on the Open Science Framework 
(OSF) prior to data collection. The registration form for 
Experiment 1 can be found at [https:// osf. io/ v97bp]. The 
registration form for Experiment 2 can be found at [https:// 
osf. io/ 957s8]. The materials, data files, and R scripts for 
both experiments can be found at [https:// osf. io/ d2txs].

Appendix 1: Stimuli

1.1 Words:

## [1] GLANCE WINTER MILDEW SLEAZY BOTHER POR-
TAL COURSE SOCIAL CENSOR BACKUP

## [11] STABLE PLAGUE OBJECT ABSENT RESIGN 
CREDIT STREAM WICKED INVOKE BEACON

## [21] ADMIRE FACTOR PHRASE BURDEN LOUNGE 
TAILOR WREATH HOCKEY SEARCH MONKEY

## [31] INFECT VERIFY SQUEAL INTAKE PHOBIA 
BEHALF LIQUOR SHRINK BUCKET VOYAGE

## [41] MASCOT HINDER KIDNEY PERIOD VULGAR 
CASINO SELDOM MASTER MOTHER FRINGE

## [51] EXPORT INJECT NATURE CLUMSY GRUMPY 
PIRATE POSTER FLOWER LUMBER FOREST

## [61] FRIGHT BRIDGE KNIGHT TRENCH PLUNGE BUN-
DLE ANCHOR ABRUPT HUSTLE ETHNIC

## [71] CRUISE ORANGE STRIVE ALMOST AMOUNT 
FAUCET CHARGE HUMBLE PATRON BREAST

## [81] SIMPLE JOCKEY WEALTH PRAISE DOMAIN 
SPRINT SCREAM COMEDY SKETCH ORIENT

##  [91] WEAPON BUCKLE BUTLER JUNGLE SOCKET 
VANISH INSULT POWDER INSECT CONVEY

## [101] SPRING CHAPEL TONGUE DANGER CLERGY 
SINGLE INCOME WALNUT SURVEY SNATCH

## [111] HUNGRY IMPOSE POLICE RAMBLE STROKE 
AMBUSH CHANGE FOSTER SPLINT PENCIL

## [121] PONDER REGION LAUNCH THRONE SYMBOL 
GOSPEL POLICY FUMBLE PLENTY SQUARE

## [131] GARDEN BRIGHT SOURCE PLAQUE TROPHY 
EXOTIC RACKET COLUMN THEORY FAMILY

## [141] FRIEND STIGMA RESULT MORTAL SPRAWL 
RODENT FILTER HUNGER PERMIT RELISH

## [151] EXPAND STRAND PUBLIC TRAVEL THREAD 
IGNORE CLIENT BELONG FLUENT CARBON

## [161] WRENCH DIRECT BOUNCE STUDIO NUMBER 
RANSOM SLOGAN RECKON WONDER POLITE

## [171] INDUCE BREATH CHORUS PLACID GUITAR 
TUMBLE BRANCH FLIGHT SPIDER STRAIN

## [181] THRIVE LINGER STRIKE BLOUSE NICKEL 
ENOUGH CASTLE SENIOR MARVEL STUPID

## [191] QUENCH STRONG CHROME STAPLE IMPORT 
BLEACH FINGER MELODY DEBRIS PRINCE

https://osf.io/v97bp
https://osf.io/957s8
https://osf.io/957s8
https://osf.io/d2txs
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## [201] ORPHAN SPRUCE REASON SPONGE PARISH 
COUPLE GARLIC CUSTOM INVADE RANDOM

## [211] MYSTIC ROCKET BEHOLD AUTHOR LIZARD 
CRADLE DRAGON ISLAND DETAIL VIOLET

## [221] PASTOR CANDLE STRING MARKET INVEST 
STARCH DESIGN ANSWER GENIUS POUNCE

## [231] DEPART PATROL SHOWER TURKEY FABRIC 
STRIFE ADVENT INFORM BASKET SILENT

1.2 Non‑Words:

## [1] KNISMA ALCOUD STRELD PRAILE FRUDGE 
URIVEL SCHIND TANDLY FUNTLE CAROEY

## [11] CHRUMS LUNKER DRANCE PITROM IMPURB 
FRUTAN SNAPEL BAITCH LIMPOR SARIDE

## [21] RASTOE ABOUNE DORSEX JAUNCE MINKEL 
RUNAMO GIRCUE SADENT BRUNGE PHRECT

## [31] CAINKY SURDEN BOLVIS SCOUGE TONDLE 
BROGET WANIGH BARCET BAFENT MINGAR 

## [41] JUSTRE ABSULT KISPEL CHAITE WHIVEX 
HOCITE GORBIE WICTOR PADIFS CRUDIO

## [51] NOBEST CIGNEY CRIBLE HABLIN PEBRIC 
JOSTED PHOTIE ACRISE LOBUSH ROBULY

## [61] SMENCO UNWERT MUSIED EATRIC ANOUGS 
PIATON BLARGE STROLE BATROL MILTED

## [71] LUPICT STAPOD RESAIT VAROSH APIGHT 
INLORS VENIOD POLUTH SOUDAL UNJECT

## [81] STUNCH QUILEW DOLICA VACKEL DISTAR 
VARMIT PASINK PACKES ORCHET WRIMSY

## [91] AUBRID DAMILT SORTEL FUMBLO SLEIRT 
YARMON PETAIN UNIGHS CELOND CURBOL

## [101] MELATY PORLEX VERALF SHAPLE PRUDGE 
RELDON NYMBEL YACEUP STARBY SPLINO

## [111] PRETCH ABLINT SWANCE INHORT GLEATH 
BEINCH FERTIC PIERGY STURCH YARION

## [121] FAINCH MILUER FIREAM CLUDIE FORGLE 
SOUNGE KIRAFE PSETCH AMILOY DANIET

## [131] SPROLY NERAWL PAURSE SPRINE LASTON 
SCREGM WORBAL REAGLY ZOMBER JOCKAL

## [141] MIATOR SLANCH ROSAIL STEIKH THRUSE 
IGUADE PLENAC BROAKE YARIKE KENSOM

## [151] GILFEW VANGUE CATRIE WATMEG DESION 
GHODUS REJOLS WREASH FACHOW FIATCH

## [161] MYRTIE RANDOW AIMOSY SCRILY ABSEND 
SAUDIC KERIFT DUMPLE ASYLEN NAGURS

## [171] TIESCH TRINGE CLUREY VIRLEX ZINGLY 
OTHNIS DERAIN FLEACK FONVER DESORY

## [181] PAUCHE TIREAU BREALI IMPOTE GUAIRT 
TOSHEL SLIQUE HORNAL WRONCH SLEACT 

## [191] GEILOY RAMILY BIGENT SLIANT YORQUE 
IGUARE INJORE SHRILE AUTING CAVORY

## [201] HUNIEK SARLEY AUNGRE GUESCO VEIGMA 
ANCUST GRONCE CRAGIN WITMER HATRUS

## [211] THELDY ROUNCY GANOUS SPAQUX COLURY 
FLENGY CAMBLE BLUNDE FOURET WEAROX

## [221] MUSTIL SYNTIC BRUATS CLUIRM FLUMNI 
NOUPLY SUIVER HURNIA ELOPIA TUNORY

## [231] ORCHIN JILUER EQUATS SERBOL HIGSTA 
PATHEL EAROUD SUIDLE SLOUNT GUSHOP

Appendix 2: Diffusion model accounts 
for the data

2.1 About this Appendix

The goal of this appendix is to present a brief description 
of how the diffusion model accounts for the data presented 
in the main article. While the diffusion model fits to the 
grouped data was part of the pre-registration plan, we 
believe that it is best to present such fits in this appendix as 
opposed to the main text to improve the readability of the 
article. For a full description of the experimental setting and 
its goals, please refer to the main text.

2.2 The diffusion model

The diffusion model (Ratcliff, 1978) is a cognitive process 
model for perceptual decisions, and it has been quite suc-
cessful at accounting for lexical decision data (Ratcliff et al., 
2004) and more importantly for the present work, masked 
priming data (Gomez et al., 2013).

The model assumes that RTs to dual choice tasks are a 
sum of three distinct processes: stimulus encoding, evidence 
accumulation, and response execution. The model makes the 
strong assumption that evidence accumulation is a processes 
distinct from the other two components, and for practical 
reasons, it groups response execution and encoding time in 
a single parameter.

The model is agnostic about the correlation between the 
encoding and the evidence accumulation processes; and we 
like to think about it as a tool to instantiate theoretical posi-
tions that can be articulated in terms of encoding, decision, 
and strategic processes.

2.3 Data

The model was fit to the grouped data (as per the pre-regis-
tration plan) of the two experiments. For each stimulus type 
the proportion of word and nonword responses is calculated, 
then for each of the two responses, the RTs at the .1, .3, .5, 
.7, and .9 quantiles is obtained. We repeat this process for 
each participants, and then all of those quantities (response 
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proportions and RTs at quantiles) are averaged across par-
ticipants. This process is also known as Vincentizing, and 
the averaged quantiles are referred to as vintenciles

The diffusion model predicts the cumulative probability 
of a response at each RT vincentile, and these model predic-
tions are compared to the empirical proportions, then the 
sum of the (Observed-Predicted)2/Predicted for correct and 
error responses for each condition that is minimized with 
a general SIMPLEX minimization routine as described by 
Ratcliff & Tuerlinckx (2002).

2.4 Free and fixed parameters

In diffusion model fits, researchers can decide what param-
eters are free to vary across different conditions. In the pre-
sent work, we implemented three versions of the model. 
These versions of the model varied in terms of which param-
eters were allowed to vary for which conditions.

In our case, we decided to examine two models as 
described below. For both models, the a boundary separa-
tion, the z starting point, the � between trial variability in 
drift rate, and all other variability parameters are kept con-
stant across all conditions.

Model 1: Drift rates vary as a function of lexicality and 
prime duration, but not from unrelated to identity primes. 
Ter varied from as a function of prime duration and type and 
also of lexicality.

Model 2: The drift rates vary as a function of prime dura-
tion and type and also of lexicality. And the drift rate varied 
only as a function of prime type/duration but not lexicality.

In short, in Model 1, the priming effects are accounted 
by Ter only, while in Model 2 they are accounted for by both 
drift rate and Ter.

The two models have equal number of parameters so a 
direct comparison in possible. For both experiments, the 
preferred model is Model 1 (the Ter model). This is in agree-
ment with the Gomez et al (2013) study using in-person 
testing methods.

2.5 Summary

Examining the parameter values for Ter in the tables below 
(Table 7, 8, and 9) shows that the Ter effect follows the dura-
tion of the prime-TARGET SOA particularly in the word 
items and not so much in the nonword items.

This is in general agreement with the Gomez et al. (2013) 
original paper and Gomez and Perea’s (2020) work with 
developmental readers. In short, these fits confirm that 
masked priming effects are consistent with the idea of a 
head start in the encoding process when there is an identity 
relationship between primes and targets.
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