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Abstract

Here magnetohydrodynamic (MHD) boundary layer flow of Jeffrey nanofluid by a nonlinear

stretching surface is addressed. Heat generation/absorption and convective surface condi-

tion effects are considered. Novel features of Brownian motion and thermophoresis are

present. A non-uniform applied magnetic field is employed. Boundary layer and small mag-

netic Reynolds number assumptions are employed in the formulation. A newly developed

condition with zero nanoparticles mass flux is imposed. The resulting nonlinear systems are

solved. Convergence domains are explicitly identified. Graphs are analyzed for the outcome

of sundry variables. Further local Nusselt number is computed and discussed. It is observed

that the effects of Hartman number on the temperature and concentration distributions are

qualitatively similar. Both temperature and concentration distributions are enhanced for

larger Hartman number.

1. Introduction

The mixture of ultrafine nanometer sized particles and a convectional heat transfer base fluid

is known as nanofluid. These nanometer sized particles have different physical and chemical

characteristics. Such particles have thermal conductivities remarkably higher than base liquids.

The prime use of nanofluids is for thermal conductivity improvement. Nanofluids are signifi-

cant in various applications including paper and printing, paints and coatings, power genera-

tion, drug delivery, cancer therapy, ceramics and food products etc. Further magneto

nanofluids are quite prevalent in MHD pumps and accelerators, hyperthermia, cancer tumor

treatment, sink float separation, wound treatment and several others. Choi and Eastman [1]

proposed the word nanofluid. They concluded that insertion of metallic nanoparticles in the

ordinary fluids can dramatically enhance the thermal conductivities and improve the heat

transfer performance of these fluids. A model for convective transport in nanofluids was pre-

sented by Buongiorno [2]. He pointed out that Brownian diffusion and thermophoresis are

the most important slip mechanisms. Boundary layer flow of nanofluid induced by a linear

stretching surface was discussed by Khan and Pop [3]. Turkyilmazoglu and Pop [4] examined
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unsteady natural convection flow of nanofluids by a vertical flat plate with radiation. Double

stratification effect in boundary-layer flow of nanofluid by a vertical plate is reported by Ibra-

him and Makinde [5]. Further relevant studies involving nanofluids can be seen through the

investigations [6–25] and various studies therein.

The study of boundary layer flow caused by a stretchable surface is relevant in numerous

industrial and engineering utilizations. Such applications include drawing of copper wires,

condensation process, die forging and extrusion of polymer in melt spinning, polymer extru-

sion, continuous stretching of plastic films, metal extrusion, paper production and fiber pro-

duction etc. It is noted that stretching of surface is not linear in all the cases. The stretching

surface may be nonlinear. Gupta and Gupta [26] declared that the stretching of surface is not

linear in plastic process. Vajravelu [27] addressed two-dimensional flow of viscous fluid over a

nonlinear stretching surface. Here power law surface velocity distribution uw(x) = cxn is con-

sidered. Cortell [28] analyzed heat transfer in the flow past a nonlinear stretching surface.

Here two different thermal boundary conditions on the surface namely constant surface tem-

perature and prescribed surface temperature are employed. The boundary layer flow of viscous

fluid induced by a nonlinear stretching surface with thermal radiation and viscous dissipation

effects is addressed by Cortell [29]. Hydromagnetic flow generated by a nonlinear stretching

surface through modified Adomian decomposition method and Pade approximation tech-

nique is demonstrated by Hayat et al. [30]. Rana and Bhargava [31] studied flow of nanofluid

over a nonlinear stretching surface with heat transfer. Mukhopadhyay [32] addressed the flow

and heat transfer characteristics in the flow of nanofluid over a permeable nonlinear stretching

surface with partial slip condition. Mustafa et al. [33] explored axisymmetric flow of nanofluid

over a nonlinear stretching surface. Magnetohydrodynamic flow of water-based nanofluid

bounded by a nonlinear stretching surface with viscous dissipation is analyzed by Mabood

et al. [34]. Magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching

surface is reported by Hayat et al. [35].

Recently the non-Newtonian fluids have gained much attention due to their extensive

industrial and engineering applications. These applications involve bioengineering and poly-

meric liquids, plastics manufacturing, food processing, petroleum production, annealing and

thinning of copper wires, drawing of stretching sheet through quiescent fluid, aerodynamic

extrusion of plastic films etc. The Navier-Stokes equations are not appropriate to characterize

the flow of non-Newtonian fluids. A single relation is not sufficient to predict the characteris-

tics of all the non-Newtonian materials. Therefore different types of relations are given in the

literature. The fluid model under discussion is called Jeffrey material [36–41]. This model is

linear viscoelastic fluid which exhibits the effects of ratio of relaxation to retardation times and

retardation time. The Jeffrey fluid is a relatively simpler linear model considering time deriva-

tives while in non-Newtonian fluid mechanics convective derivatives are assumed. Further the

analysis of liquid-liquid two-phase flows are widely encountered in several industrial processes

such as spray processes, lubrication, natural gas networks, nuclear reactor cooling etc. Thus

Gao et al. [42] provided a multivariate weighted complex network analysis to characterize the

nonlinear dynamic behavior in two-phase flow. Gao et al. [43] also addressed the multi-fre-

quency complex network to uncover oil-water flows. Slug to churn flow transition with multi-

variate pseudo Wigner distribution and multivariate multiscale entropy is reported by Gao

et al. [44]. Recently Gao et al. [45] provided a four-sector conductance method to explore the

low-velocity oil-water two-phase flows.

Present communication explores magnetohydrodynamic (MHD) boundary-layer flow of

Jeffrey nanofluid over a nonlinear stretching surface. Jeffrey fluid is assumed to be electrically

conducting. We considered the simultaneous effects of heat and mass transfer in the presence

of Brownian motion, thermophoresis and heat generation/absorption. Thermal convective
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[46, 47] and zero nanoparticles mass flux [48, 49] conditions are imposed at the stretching sur-

face. These conditions are studied rarely and more realistic physically. To the best of our

knowledge, no such consideration for the flow of Jeffrey nanofluid is made yet. Small magnetic

Reynolds number and boundary layer are used in mathematical modelling. The governing

nonlinear ordinary differential equations are solved by homotopy analysis method (HAM)

[50–60]. This technique for the solutions development has advantages through three directions

i.e., (i) It is independent of small/large physical parameters. (ii) It provides a simple way to

ensure the convergence of series solutions. (iii) It provides freedom to choose the base func-

tions and related auxiliary linear operators. Temperature and concentration profiles are exam-

ined via plots. The local Nusselt number is computed numerically and analyzed.

2. Statement

Two-dimensional (2D) flow of Jeffrey nanofluid induced by a surface stretching with nonlin-

ear velocity is considered. Non-uniform magnetic field of strength B0 acts in the y− direction.

Small magnetic Reynolds number justifies the absence of induced magnetic field. Non-uni-

form heat generation/absorption effect is considered. Brownian motion and thermophoresis

are present. The x− and y− axes are along and transverse to the surface respectively. The

stretching velocity is uw(x) = axn (a, n> 0). The surface temperature is regulated by a convec-

tive heating process which is described by heat transfer coefficient hf and temperature of hot

fluid Tf under the surface. Resulting boundary layer problems are

@u
@x
þ
@v
@y
¼ 0; ð1Þ

u
@u
@x
þ v

@u
@y
¼

n

1þ l1

@2u
@y2
þ l2 u

@3u
@x@y2

�
@u
@x
@2u
@y2
þ
@u
@y

@2u
@x@y

þ v
@3u
@y3

� �� �

�
sB2ðxÞ

rf
u; ð2Þ

u
@T
@x
þ v

@T
@y
¼ a

@2T
@y2
þ
ðrcÞp
ðrcÞf

DB
@T
@y

@C
@y

� �

þ
DT

T1

@T
@y

� �2
 !

þ
QðxÞ
ðrcÞf

ðT � T1Þ; ð3Þ

u
@C
@x
þ v

@C
@y
¼ DB

@2C
@y2

� �

þ
DT

T1

@2T
@y2

� �

; ð4Þ

u ¼ uwðxÞ ¼ axn; v ¼ 0; � k
@T
@y
¼ hf ðTf � TÞ; DB

@C
@y
þ

DT

T1

@T
@y
¼ 0 at y ¼ 0; ð5Þ
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Note that u and v depict the flow velocities in the horizontal and vertical directions respec-

tively while v (= μ / ρf), μ and ρf show the kinematic viscosity, dynamic viscosity and density of

base liquid respectively. The ratio of relaxation to retardation times and the retardation time

are represented by λ1 and λ2. Here σ represents the electrical conductivity, BðxÞ ¼ B0x
n� 1

2 the

non-uniform magnetic field, T the temperature, α = k / (ρc)f, k, (ρc)f and (ρc)p the thermal dif-

fusivity, thermal conductivity, heat capacity of liquid and effective heat capacity of nanoparti-

cles respectively, Q(x) = Q0xn−1 the non-uniform heat generation/absorption coefficient, DB

the Brownian diffusivity, C the concentration, DT the thermophoretic diffusion coefficient, a
the positive constant and T1 and C1 the ambient fluid temperature and concentration
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respectively. Putting

u ¼ axnf 0ðzÞ; v ¼ �
anðnþ 1Þ
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Eq (1) is trivially satisfied while Eqs (2)–(6) are reduced to
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Here β1 denotes local Deborah number, Ha Hartman number, γ Biot number, S1 heat gen-

eration/absorption parameter, Pr Prandtl number, Nb Brownian motion parameter, Nt ther-

mophoresis parameter and Le Lewis number. The definitions of these parameters are
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Local Nusselt number is given by

Re� 1=2
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2
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0
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The non-dimensional local Sherwood number is identically zero and Rex = uwx/v represents

the local Reynolds number.
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3. Solutions by HAM

The appropriate initial approximations and auxiliary linear operators for approximate series

solutions by homotopy analysis method (HAM) are
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where B�j (j = 1–7) denote the arbitrary constants. Deformation problems at zeroth-order are
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Here þ 2[0,1] represents the embedding parameter, ℏf, ℏθ and ℏϕ the non-zero auxiliary

parameters and Nf, Nθ and Nϕ the nonlinear operators. For þ = 0 and þ = 1 we have

�f ðz; 0Þ ¼ f0ðzÞ; �f ðz; 1Þ ¼ f ðzÞ; ð25Þ

�yðz; 0Þ ¼ y0ðzÞ;
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When þ changes from 0 to 1 then �f ðz; þÞ, �yðz; þÞ and ��ðz; þÞ vary from primary approxima-

tions f0(z), θ0(z) and ϕ0(z) to the desired solutions f(z), θ(z) and ϕ(z). The following expres-

sions by Taylor’s series expansion can be written as
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The convergence of above series expressions strongly depends upon ℏf, ℏθ and ℏϕ. The val-

ues of ℏf, ℏθ and ℏϕ are chosen so that Eqs (28)–(30) converge at þ = 1 then
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The m̂ th-order deformation problems can be expressed as follows:
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4. Convergence analysis

The expressions (31)–(33) contain ℏf, ℏθ and ℏϕ. Obviously the convergence is accelerated by

the auxiliary parameters ℏf, ℏθ and ℏϕ for the series solutions. For appropriate values of ℏf, ℏθ
and ℏϕ, the ℏ− curves at 15th order of approximations are sketched. It is apparent from Fig 1

that the admissible ranges of ℏf, ℏθ and ℏϕ are −1.35� ℏf� −0.15, −1.50� ℏθ� −0.15 and

−1.60� ℏϕ� −0.15 respectively. The residual errors for velocity, temperature and
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concentration distributions are calculated through the following expressions:

D
f
m ¼

Z 1
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½ eR
f
m̂ðz;ℏf Þ�

2dz; ð48Þ
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2dz: ð50Þ

To get the suitable range for ℏ, the ℏ− curves for the residual errors of velocity, temperature

and concentration distributions are plotted in the Figs 2–4. It is observed that the correct

results up to fifth decimal place are obtained for values of ℏ from this range. Table 1 presents

that the 24th order of deformations is enough for the convergent series solutions of velocity,

temperature and concentration distributions.

5. Discussion

This portion organized the impacts of local Deborah number β1, Hartman number Ha,

Brownian motion parameter Nb, ratio of relaxation to retardation times λ1, Biot number γ,

Fig 1. The ℏ − curves for f, θ and ϕ.

doi:10.1371/journal.pone.0172518.g001
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Fig 2. ℏf − curve for the residual error D
f
m.

doi:10.1371/journal.pone.0172518.g002

Fig 3. ℏf − curve for the residual error D
y

m.

doi:10.1371/journal.pone.0172518.g003
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thermophoresis parameter Nt, Prandtl number Pr, heat generation/absorption parameter S1

and Lewis number Le on the temperature θ(z) and concentration ϕ(z). Fig 5 illustrates that

how local Deborah number β1 affects the temperature distribution θ(z). It is analyzed that tem-

perature θ(z) and related thermal layer thickness are decreased for larger local Deborah num-

ber β1. Physically there exists a direct relationship between local Deborah number β1 and

retardation time. Hence by increasing local Deborah number β1, the retardation time is also

enhanced. Such enhancement in retardation time corresponds to lower temperature distribu-

tion θ(z) and thinner thermal layer thickness. Influence of λ1 on temperature distribution θ(z)

is shown in Fig 6. For larger λ1, the relaxation time increases and retardation time decays.

Thus temperature distribution θ(z) and thermal layer thickness are increased. Fig 7 presents

variation in temperature distribution θ(z) for Hartman number Ha. An increase in Hartman

number corresponds to more temperature θ(z) and thermal layer thickness. As expected the

Fig 4. ℏϕ − curve for the residual error D
�

m.

doi:10.1371/journal.pone.0172518.g004

Table 1. Homotopic solutions convergence when n = 1.5, β1 = Ha = 0.2, Nb = 0.5, λ1 = γ = Nt = 0.3, Pr = 1.2, S1 = 0.1, and Le = 1.0.

Order of approximations −f0 0(0) −θ0(0) −ϕ0(0)

1 1.05680 0.21543 0.12926

8 1.04981 0.19237 0.11542

15 1.04981 0.19085 0.11451

24 1.04981 0.19065 0.11439

30 1.04981 0.19065 0.11439

40 1.04981 0.19065 0.11439

50 1.04981 0.19065 0.11439

doi:10.1371/journal.pone.0172518.t001
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magnetic field introduces the retarding body force that acts transverse to the direction of an

applied magnetic field. It retards the fluid motion and as a result the temperature distribution

θ(z) enhances. This body force is known as Lorentz force. Fig 8 presents the impact of Biot

number γ on temperature θ(z). Stronger convection is caused by increasing Biot number γ.

Therefore the temperature θ(z) and thermal layer thickness are enhanced. Variation in tem-

perature θ(z) due to heat generation/absorption parameter S1 is shown in Fig 9. Here S1 > 0

represents heat generation and S1 < 0 yields heat absorption. Temperature profile and related

Fig 5. Plots of temperature θ(ζ) for local Deborah number β1.

doi:10.1371/journal.pone.0172518.g005

Fig 6. Plots of temperature profile θ(ζ) for ratio of relaxation to retardation time λ1.

doi:10.1371/journal.pone.0172518.g006
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thermal layer thickness have increasing behavior for heat generation but it is not the case for

heat absorption. Fig 10 demonstrates the variation of temperature θ(z) for Prandtl number Pr.

It is observed that temperature θ(z) and thermal layer thickness are decreasing functions of Pr.

Physically Prandtl number Pr is an integral part of thermal diffusivity. Thermal diffusivity is

responsible for lower temperature θ(z) and thermal layer thickness. Higher values of Prandtl

number yields weaker thermal diffusivity which corresponds to lower temperature and less

thickness of thermal layer. Fig 11 is drawn for impact of thermophoresis parameter Nt on tem-

perature θ(z). Larger thermophoresis parameter Nt lead to higher temperature and more

Fig 7. Plots of temperature profile θ(ζ) for Hartman number Ha.

doi:10.1371/journal.pone.0172518.g007

Fig 8. Plots of temperature profile θ(ζ) for Biot number γ.

doi:10.1371/journal.pone.0172518.g008
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thermal layer thickness. Actually an enhancement in Nt yields a stronger thermophoretic force

which allows deeper migration of nanoparticles in the fluid. Far away from the surface there is

higher temperature field and more thickness of thermal layer. Fig 12 is sketched to examine

concentration field ϕ(z) for local Deborah number β1. Here concentration field is weaker for

larger values of β1. Concentration field ϕ(z) enhances when λ1 increases (see Fig 13). Fig 14

Fig 9. Plots of temperature profile θ(ζ) for heat generation/absorption parameter S1.

doi:10.1371/journal.pone.0172518.g009

Fig 10. Plots of temperature profile θ(ζ) for Prandtk number Pr.

doi:10.1371/journal.pone.0172518.g010
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shows impact of Hartman number Ha on concentration ϕ(z). The concentration ϕ(z) and

associated layer thickness are enhanced for larger Hartman number. From Fig 15 we observed

that an increase in Biot number γ yields an enhancement in concentration profile ϕ(z) and its

related boundary layer thickness. Larger Lewis number Le indicate decay in the concentration

Fig 11. Plots of temperature profile θ(ζ) for thermophoresis parameter Nt.

doi:10.1371/journal.pone.0172518.g011

Fig 12. Plots of concentration profile ϕ(ζ) for local Deborah number β1.

doi:10.1371/journal.pone.0172518.g012
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field ϕ(z) (see Fig 16). Physically Lewis number is based on Brownian diffusivity. An increase

in Lewis number Le yields weaker Brownian diffusivity. Such weaker Brownian diffusivity cor-

responds to lower concentration field ϕ(z). Fig 17 addresses variation of Prandtl number Pr on

concentration ϕ(z). The concentration ϕ(z) and associated thickness of boundary layer are

decreased for higher Prandtl number Pr. From Fig 18 it is clearly examined that a weaker

Fig 13. Plots of concentration profile ϕ(ζ) for ratio of relaxation to retardation time λ1.

doi:10.1371/journal.pone.0172518.g013

Fig 14. Plots of concentration profile ϕ(ζ) for Hartman number Ha.

doi:10.1371/journal.pone.0172518.g014
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concentration profile ϕ(z) is generated by higher Brownian motion parameter Nb. Fig 19

shows that the larger thermophoresis parameter Nt yields a higher concentration profile ϕ(z).

Table 2 is calculated for numerical computations of local Nusselt number Re� 1=2
x Nux via β1, λ1,

Ha, γ, S1, Nt, Nb, Le and Pr when n = 1.5. Here we noticed that the local Nusselt number has

Fig 15. Plots of concentration profile ϕ(ζ) for Boit number γ.

doi:10.1371/journal.pone.0172518.g015

Fig 16. Plots of concentration profile ϕ(ζ) for Lewis number Le.

doi:10.1371/journal.pone.0172518.g016
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higher values for larger Prandtl number Pr while opposite trend is noticed for Lewis number

Le. It is also observed that λ1, S1 and Ha yield lower local Nusselt number. The local Deborah

number β1 shows opposite behavior for local Nusselt number when compared with aforemen-

tioned parameters.

Fig 17. Plots of concentration profile ϕ(ζ) for Prandtl number Pr.

doi:10.1371/journal.pone.0172518.g017

Fig 18. Plots of concentration profile ϕ(ζ) for Brownian motion parameter Nb.

doi:10.1371/journal.pone.0172518.g018
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Fig 19. Plots of concentration profile ϕ(ζ) for thermophoresis motion parameter Nt.

doi:10.1371/journal.pone.0172518.g019

Table 2. Numerical calculations of local Nusselt number Re� 1=2
x Nux for different values of β1, λ1, Ha, γ, S1, Nt, Nb, Le and Pr when n = 1.5.

β1 λ1 Ha γ S1 Nt Nb Le Pr Re� 1=2
x Nux

0.0 0.3 0.2 0.3 0.1 0.3 0.5 1.0 1.2 0.2060

0.3 0.2158

0.6 0.2210

0.2 0.0 0.2 0.3 0.1 0.3 0.5 1.0 1.2 0.2187

0.5 0.2098

1.0 0.2004

0.2 0.3 0.2 0.3 0.1 0.3 0.5 1.0 1.2 0.2133

0.5 0.2088

0.8 0.2003

0.2 0.3 0.2 0.1 0.1 0.3 0.5 1.0 1.2 0.0941

0.6 0.3107

1.2 0.4007

0.2 0.3 0.2 0.3 0.0 0.3 0.5 1.0 1.2 0.2282

0.1 0.2133

0.2 0.1839

0.2 0.3 0.2 0.3 0.1 0.0 0.5 1.0 1.2 0.2151

0.5 0.2119

1.0 0.2082

0.2 0.3 0.2 0.3 0.1 0.3 0.5 1.2 0.2133

1.0 1.0 0.2133

1.5 0.2133

0.2 0.3 0.2 0.3 0.1 0.3 0.5 0.5 1.2 0.2140

1.0 0.2133

1.5 0.2128

0.2 0.3 0.2 0.3 0.1 0.3 0.5 1.0 1.0 0.2017

1.5 0.2260

2.0 0.2403

doi:10.1371/journal.pone.0172518.t002

A revised model for Jeffrey nanofluid subject to convective condition and heat generation/absorption

PLOS ONE | DOI:10.1371/journal.pone.0172518 February 23, 2017 18 / 22



6. Conclusions

Magnetohydrodynamic (MHD) flow of Jeffrey nanofluid bounded by a nonlinear stretching

surface with heat generation/absorption is investigated. The observations are summarized in

the following points.

• An increase in local Deborah number β1 depicts a decreasing behavior for temperature θ(z)

and concentration ϕ(z) profiles.

• Both temperature θ(z) and concentration ϕ(z) profiles are enhanced when ratio of relaxation

to retardation times λ1 is increased.

• An increase in Hartman number Ha shows higher temperature θ(z) and concentration ϕ(z)

profiles.

• Biot number γ has similar effects for temperature θ(z) and concentration ϕ(z) profiles.

• Prandtl number Pr indicates qualitatively similar behavior for both temperature θ(z) and

concentration ϕ(z) profiles.

• Temperature profile θ(z) and associated thermal layer thickness are increasing functions of

heat generation/absorption parameter S1.

• Concentration profile ϕ(z) decays for larger Brownian motion parameter Nb.

• Increasing behavior is noted for temperature θ(z) and concentration ϕ(z) profiles for larger

thermophoresis parameter Nt.

• Local Nusselt number reduces for larger Nt but it remains constant for Nb.

Author Contributions

Conceptualization: TH A. Aziz TM A. Alsaedi.

Data curation: TH A. Aziz TM A. Alsaedi.

Formal analysis: TH A. Aziz TM A. Alsaedi.

Investigation: TH A. Aziz TM A. Alsaedi.

Methodology: TH A. Aziz TM A. Alsaedi.

Project administration: TH A. Aziz TM A. Alsaedi.

Resources: TH A. Aziz TM A. Alsaedi.

Software: TH A. Aziz TM A. Alsaedi.

Supervision: TH A. Aziz TM A. Alsaedi.

Validation: TH A. Aziz TM A. Alsaedi.

Visualization: TH A. Aziz TM A. Alsaedi.

Writing – original draft: TH A. Aziz TM A. Alsaedi.

Writing – review & editing: TH A. Aziz TM A. Alsaedi.

A revised model for Jeffrey nanofluid subject to convective condition and heat generation/absorption

PLOS ONE | DOI:10.1371/journal.pone.0172518 February 23, 2017 19 / 22



References
1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Interna-

tional Mechanical Engineering Congress & Exposition, American Society of Mechanical Engineers, San

Francisco 1995.

2. Buongiorno J. Convective transport in nanofluids. ASME J Heat Transfer. 2006; 128: 240–250.

3. Khan WA, Pop I. Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transfer.

2010; 53: 2477–2483.

4. Turkyilmazoglu M, Pop I. Heat and mass transfer of unsteady natural convection flow of some nano-

fluids past a vertical infinite flat plate with radiation effect. Int J Heat Mass Transfer. 2013; 59: 167–171.

5. Ibrahim W, Makinde OD. The effect of double stratification on boundary-layer flow and heat transfer of

nanofluid over a vertical plate. Comput Fluids. 2013; 86: 433–441.

6. Sheikholeslami M, Hatami M, Ganji DD. Nanofluid flow and heat transfer in a rotating system in the pres-

ence of a magnetic field. J Mol Liq. 2014; 190: 112–120.

7. Zeeshan A, Baig M, Ellahi R, Hayat T. Flow of viscous nanofluid between the concentric cylinders. J

Comp Theoretical Nanoscience. 2014; 11: 646–654.

8. Sheikholeslami M, Bandpy MG, Ellahi R, Hassan M, Soleimani S. Effects of MHD on Cu-water nanofluid

flow and heat transfer by means of CVFEM. J Magn Magn Mater. 2014; 349: 188–200.

9. Sheikholeslami M, Abelman S. Two-phase simulation of nanofluid flow and heat transfer in an annulus

in the presence of an axial magnetic field. IEEE Trans Nanotech. 2015; 14: 561–569.

10. Zhang C, Zheng L, Zhang X, Chen G. MHD flow and radiation heat transfer of nanofluids in porous

media with variable surface heat flux and chemical reaction. Appl Math Modell. 2015; 39: 165–181.

11. Sheikholeslami M, Ganji DD, Javed MY, Ellahi R. Effect of thermal radiation on magnetohydrodynamics

nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater. 2015; 374: 36–43.

12. Malvandi A, Safaei MR, Kaffash MH, Ganji DD. MHD mixed convection in a vertical annulus filled with

Al2O3-water nanofluid considering nanoparticle migration. J Magn Magn Mater. 2015; 382: 296–306.

13. Hayat T, Muhammad T, Alsaedi A, Alhuthali MS. Magnetohydrodynamic three-dimensional flow of vis-

coelastic nanofluid in the presence of nonlinear thermal radiation. J Magn Magn Mater. 2015; 385:

222–229.

14. Chamkha A, Abbasbandy S, Rashad AM. Non-Darcy natural convection flow for non-Newtonian nano-

fluid over cone saturated in porous medium with uniform heat and volume fraction fluxes. Int J Numer

Methods Heat Fluid Flow. 2015; 25: 422–437.

15. Hayat T, Aziz A, Muhammad T, Ahmad B. Influence of magnetic field in three-dimensional flow of cou-

ple stress nanofluid over a nonlinearly stretching surface with convective condition. Plos One. 2015;

10: e0145332. doi: 10.1371/journal.pone.0145332 PMID: 26714259

16. Gireesha BJ, Gorla RSR, Mahanthesh B. Effect of suspended nanoparticles on three-dimensional MHD

flow, heat and mass transfer of radiating Eyring-Powell fluid over a stretching sheet. J Nanofluids. 2015;

4: 474–484.

17. Lin Y, Zheng L, Zhang X, Ma L, Chen G. MHD pseudo-plastic nanofluid unsteady flow and heat transfer

in a finite thin film over stretching surface with internal heat generation. Int J Heat Mass Transfer. 2015;

84: 903–911.

18. Sheikholeslami M, Ellahi R. Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure

with sinusoidal upper wall. Appl Sci. 2015; 5: 294–306.

19. Ellahi R, Hassan M, Zeeshan A. Study of natural convection MHD nanofluid by means of single and

multi walled carbon nanotubes suspended in a salt water solutions. IEEE Trans Nanotech. 2015; 14:

726–734.

20. Sheikholeslami M, Ellahi R. Three dimensional mesoscopic simulation of magnetic field effect on natu-

ral convection of nanofluid. Int J Heat Mass Transfer. 2015; 89: 799–808.

21. Rahman SU, Ellahi R, Nadeem S, Zia QMZ. Simultaneous effects of nanoparticles and slip on Jeffrey

fluid through tapered artery with mild stenosis. J Mol Liq. 2016; 218: 484–493.

22. Hsiao KL. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching

sheet. Appl Thermal Eng. 2016; 98: 850–861.

23. Hayat T, Aziz A, Muhammad T, Alsaedi A. On magnetohydrodynamic three-dimensional flow of nano-

fluid over a convectively heated nonlinear stretching surface. Int J Heat Mass Transfer. 2016; 100:

566–572.

24. Malvandi A, Ganji DD, Pop I. Laminar filmwise condensation of nanofluids over a vertical plate consider-

ing nanoparticles migration. Appl Thermal Eng. 2016; 100: 979–986.

A revised model for Jeffrey nanofluid subject to convective condition and heat generation/absorption

PLOS ONE | DOI:10.1371/journal.pone.0172518 February 23, 2017 20 / 22

http://dx.doi.org/10.1371/journal.pone.0145332
http://www.ncbi.nlm.nih.gov/pubmed/26714259


25. Hayat T, Muhammad T, Shehzad SA, Alsaedi A. On magnetohydrodynamic flow of nanofluid due to a

rotating disk with slip effect: A numerical study. Comput Methods Appl Mech Eng. 2017; 315: 467–477.

26. Gupta PS, Gupta AS. Heat and mass transfer on a stretching sheet with suction or blowing. Can J

Chem Eng. 1977; 55: 744–746.

27. Vajravelu K. Viscous flow over a nonlinearly stretching sheet. Appl Math Comput. 2001; 124: 281–288.

28. Cortell R. Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl Math Comput. 2007;

184: 864–873.

29. Cortell R. Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly

stretching sheet. Phys Lett A. 2008; 372: 631–636.

30. Hayat T, Hussain Q, Javed T. The modified decomposition method and Padé approximants for the

MHD flow over a non-linear stretching sheet. Nonlinear Anal-Real World Appl. 2009; 10: 966–973.

31. Rana P, Bhargava R. Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numer-

ical study. Comm Nonlinear Sci Num Simulat. 2012; 17: 212–226.

32. Mukhopadhyay S. Analysis of boundary layer flow over a porous nonlinearly stretching sheet with partial

slip at the boundary. Alexandria Eng J. 2013; 52: 563–569.

33. Mustafa M, Khan JA, Hayat T, Alsaedi A. Analytical and numerical solutions for axisymmetric flow of

nanofluid due to non-linearly stretching sheet. Int J Non-Linear Mech. 2015; 71: 22–29.

34. Mabood F, Khan WA, Ismail AIM. MHD boundary layer flow and heat transfer of nanofluids over a non-

linear stretching sheet: A numerical study. J Magn Magn Mater. 2015; 374: 569–576.

35. Hayat T, Aziz A, Muhammad T, Ahmad B. On magnetohydrodynamic flow of second grade nanofluid

over a nonlinear stretching sheet. J Magn Magn Mater. 2016; 408: 99–106.

36. Kothandapani M, Srinivas S. Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an

asymmetric channel. Int J Non-Linear Mech. 2008; 43: 915–924.

37. Alsaedi A, Iqbal Z, Mustafa M, Hayat T. Exact solutions for the magnetohydrodynamic flow of a Jeffrey

fluid with convective boundary conditions and chemical reaction. Z Naturforsch A. 2012; 67a: 517–524.

38. Turkyilmazoglu M, Pop I. Exact analytical solutions for the flow and heat transfer near the stagnation

point on a stretching/shrinking sheet in a Jeffrey fluid. Int J Heat Mass Transfer. 2013; 57: 82–88.

39. Hayat T, Muhammad T, Shehzad SA, Alsaedi A. A mathematical study for three-dimensional boundary

layer flow of Jeffrey nanofluid. Z Naturforsch A. 2015; 70a: 225–233.

40. Hayat T, Qayyum S, Imtiaz M, Alsaedi A. Impact of Cattaneo-Christov heat flux in Jeffrey fluid flow with

homogeneous-heterogeneous reactions. Plos One. 2016; 11: e0148662. doi: 10.1371/journal.pone.

0148662 PMID: 26859675

41. Hayat T, Abbas T, Ayub M, Muhammad T, Alsaedi A. On squeezed flow of Jeffrey nanofluid between

two parallel disks. Appl Sci. 2016; 6: 346.

42. Gao ZK, Fang PC, Ding MS, Jin ND. Multivariate weighted complex network analysis for characterizing

nonlinear dynamic behavior in two-phase flow. Exp Therm Fluid Sci. 2015; 60: 157–164.

43. Gao ZK, Yang YX, Fang PC, Jin ND, Xia CY, Hu LD. Multi-frequency complex network from time series

for uncovering oil-water flow structure. Sci Rep. 2015; 5: 8222. doi: 10.1038/srep08222 PMID:

25649900

44. Gao ZK, Yang YX, Zhai LS, Ding MS, Jin ND. Characterizing slug to churn flow transition by using multi-

variate pseudo Wigner distribution and multivariate multiscale entropy. Chem Eng J. 2016; 291: 74–81.

45. Gao Z, Yang Y, Zhai L, Jin N, Chen G. A four-sector conductance method for measuring and character-

izing low-velocity oil-water two-phase flows. IEEE Trans Instrumentation Measurement. 2016; 65:

1690–1697.

46. Makinde OD, Aziz A. Boundary layer flow of a nanofluid past a stretching sheet with a convective bound-

ary condition. Int J Thermal Sci. 2011; 50: 1326–1332.

47. Hayat T, Muhammad T, Shehzad SA, Alsaedi A. An analytical solution for magnetohydrodynamic Old-

royd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. Int J Thermal Sci.

2017; 111: 274–288.

48. Kuznetsov AV, Nield DA. Natural convective boundary-layer flow of a nanofluid past a vertical plate: A

revised model. Int J Thermal Sci. 2014; 77: 126–129.

49. Hayat T, Muhammad T, Shehzad SA, Alsaedi A. On three-dimensional boundary layer flow of Sisko

nanofluid with magnetic field effects. Adv Powder Tech. 2016; 27: 504–512.

50. Liao SJ. On the homotopy analysis method for nonlinear problems. Appl Math Comput. 2004; 147:

499–513.

51. Dehghan M, Manafian J, Saadatmandi A. Solving nonlinear fractional partial differential equations using

the homotopy analysis method. Numer Meth Partial Diff Eq. 2010; 26: 448–479.

A revised model for Jeffrey nanofluid subject to convective condition and heat generation/absorption

PLOS ONE | DOI:10.1371/journal.pone.0172518 February 23, 2017 21 / 22

http://dx.doi.org/10.1371/journal.pone.0148662
http://dx.doi.org/10.1371/journal.pone.0148662
http://www.ncbi.nlm.nih.gov/pubmed/26859675
http://dx.doi.org/10.1038/srep08222
http://www.ncbi.nlm.nih.gov/pubmed/25649900


52. Ellahi R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nano-

fluid in a pipe: Analytical solutions. Appl Math Model. 2013; 37: 1451–1467.

53. Malvandi A, Hedayati F, Domairry G. Stagnation point flow of a nanofluid toward an exponentially

stretching sheet with nonuniform heat generation/absorption. J Thermodynamics. 2013; 2013: 764827.

54. Abbasbandy S, Hayat T, Alsaedi A, Rashidi MM. Numerical and analytical solutions for Falkner-Skan

flow of MHD Oldroyd-B fluid. Int J Numer Methods Heat Fluid Flow. 2014; 24: 390–401.

55. Ellahi R, Hassan M, Zeeshan A. Shape effects of nanosize particles in Cu-H2O nanofluid on entropy

generation. Int J Heat Mass Transfer. 2015; 81: 449–456.

56. Sui J, Zheng L, Zhang X, Chen G. Mixed convection heat transfer in power law fluids over a moving con-

veyor along an inclined plate. Int J Heat Mass Transfer. 2015; 85: 1023–1033.

57. Turkyilmazoglu M. An effective approach for evaluation of the optimal convergence control parameter in

the homotopy analysis method. Filomat. 2016; 30: 1633–1650.

58. Hayat T, Hussain Z, Muhammad T, Alsaedi A. Effects of homogeneous and heterogeneous reactions in

flow of nanofluids over a nonlinear stretching surface with variable surface thickness. J Mol Liq. 2016;

221: 1121–1127.

59. Hayat T, Muhammad T, Alsaedi A, Mustafa M. A comparative study for flow of viscoelastic fluids with

Cattaneo-Christov heat flux. Plos One. 2016; 11: e0155185. doi: 10.1371/journal.pone.0155185 PMID:

27176779

60. Hayat T, Waqas M, Shehzad SA, Alsaedi A. Mixed convection flow of viscoelastic nanofluid by a cylin-

der with variable thermal conductivity and heat source/sink. Int J Numer Methods Heat Fluid Flow.

2016; 26: 214–234.

A revised model for Jeffrey nanofluid subject to convective condition and heat generation/absorption

PLOS ONE | DOI:10.1371/journal.pone.0172518 February 23, 2017 22 / 22

http://dx.doi.org/10.1371/journal.pone.0155185
http://www.ncbi.nlm.nih.gov/pubmed/27176779

