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Pressure accelerates the circadian 
clock of cyanobacteria
Ryo Kitahara   1,2, Katsuaki Oyama2, Takahiro Kawamura2, Keita Mitsuhashi2, Soichiro 
Kitazawa1, Kazuhiro Yasunaga1, Natsuno Sagara1, Megumi Fujimoto2 & Kazuki Terauchi2,3

Although organisms are exposed to various pressure and temperature conditions, information remains 
limited on how pressure affects biological rhythms. This study investigated how hydrostatic pressure 
affects the circadian clock (KaiA, KaiB, and KaiC) of cyanobacteria. While the circadian rhythm is 
inherently robust to temperature change, KaiC phosphorylation cycles that were accelerated from 22 h 
at 1 bar to 14 h at 200 bars caused the circadian-period length to decline. This decline was caused by the 
pressure-induced enhancement of KaiC ATPase activity and allosteric effects. Because ATPase activity 
was elevated in the CI and CII domains of KaiC, while ATP hydrolysis had negative activation volumes 
(ΔV≠), both domains played key roles in determining the period length of the KaiC phosphorylation 
cycle. The thermodynamic contraction of the structure of the active site during the transition state 
might have positioned catalytic residues and lytic water molecules favourably to facilitate ATP 
hydrolysis. Internal cavities might represent sources of compaction and structural rearrangement in 
the active site. Overall, the data indicate that pressure differences could alter the circadian rhythms of 
diverse organisms with evolved thermotolerance, as long as enzymatic reactions defining period length 
have a specific activation volume.

Circadian rhythms are endogenous timing systems that induce the circadian clock, resulting in numerous 
organisms, from cyanobacteria to higher animals, being adapted to the day-night cycle1,2. The circadian clock 
of cyanobacteria is the only model clock that has been reconstituted in vitro. It is consisted of KaiA, KaiB, and 
KaiC proteins and adenosine triphosphate (ATP)3–6. Homologues of the kai genes are widely distributed in var-
ious photosynthetic and non-photosynthetic bacteria2. KaiC forms a homo-hexamer that forms the two stacked 
rings of domains CI and CII. KaiC is able to autophosphorylate and autodephosphorylate S431 and T432. It 
also exhibits self-sustainable oscillation of phosphorylation in vitro when incubated with KaiA, KaiB, and ATP. 
KaiA enhances KaiC autophosphorylation, while KaiB attenuates the effect of KaiA7–10. Therefore, the KaiC phos-
phorylation cycle depends on these dynamics for assembly, in association with KaiC autophosphorylation and 
autodephosphorylation11,12. Furthermore, the in vitro circadian phosphorylation rhythm of KaiC compensates 
for temperature changes, is entrained via the temperature cycle4, and is strongly correlated with KaiC ATPase 
activity associated with KaiC kinase activity13. The ATPase activity of KaiC is 103 to 107 times lower than that of 
other well-known motor proteins14. Although ATPase activity in the CII domain is directly associated with kinase 
activity in the domain, ATPase activity in the CI domain dominates over CII-ATPase activity; consequently, 
CI-ATPase is considered the most fundamental parameter in defining the oscillation period in vitro14,15. However, 
our understanding remains limited about why KaiC-ATPase has such low reactivity and allosteric regulation, i.e. 
the interaction between CI-ATPase and kinase activities.

In addition to temperature, pressure is an important physical factor regulating protein structure, stability, 
and activity; however, how hydrostatic pressure affects biological rhythms, including the circadian rhythms of 
organisms, remains unknown. Pressure-axis experiments are advantageous because they facilitate investigations 
on deep-sea organisms and their proteins. More generally, unlike temperature and denaturing agents, the effects 
of pressure on protein structures and chemical reactions in solution depend solely on a volume change in the 
system16–18. For instance, open conformations of enzymes, wherein internal cavities are exposed and hydrated, 
might be stabilized under high pressure, because the partial molar volume of the open and hydrated protein is 
generally smaller than that of the well-folded, closed conformation19,20. In addition, pressure affects the rate of 
reactions. A reaction requiring a positive activation volume is decelerated under high pressure. Conversely, a 
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reaction requiring a negative activation volume is accelerated under high pressure20. Therefore, investigations on 
high-pressure reaction kinetics help theorize expansions and contractions in molecular structures that are in the 
transition state. Because such volume fluctuations in proteins are correlated with allosteric effects in proteins21–23, 
a pressure approach could be used to assess proteins undergoing allosteric regulation. The present study aimed to 
investigate the responses of the circadian phosphorylation cycle of KaiC from the cyanobacterium Synechococcus 
elongatus PCC 7942 and associated ATPase activity to hydrostatic pressure. Based on the volume fluctuation of 
KaiC, we expect to provide insights on the mechanism underlying the pressure-induced acceleration of the phos-
phorylation cycle and the allosteric regulation of KaiC in cyanobacteria.

Results
Pressure accelerates the circadian clock of cyanobacteria.  KaiC was co-incubated with KaiA and 
KaiB in 20 mM Tris-HCl buffer (pH 8.0) containing 150 mM NaCl, 6 mM ATP, and 5 mM MgCl2. At 30 °C, we 
measured tryptophan (Trp) fluorescence of the solution every 15 min at 1 bar, 100 bars, and 200 bars (see Fig. 1A 
for example). On excitation at 295 nm, maximum Trp fluorescence intensity was 340 nm, and showed temporal 
oscillatory changes. The period length of Trp fluorescence measurements coincided with that of the KaiC phos-
phorylation cycle24. Because KaiA and KaiC have one and three Trp residues in their monomers, respectively, 
changes to fluorescence intensity are expected to reflect changes in protein conformation, inter-molecular inter-
actions among the proteins, and the characteristic reactions of KaiC, including ATP hydrolysis, autophospho-
rylation, and autodephosphorylation. The mean oscillation period in several Trp fluorescence experiments was 
21.7 ± 0.3 h (mean ± standard deviation) at 1 bar (n = 3), which was consistent with the KaiC phosphorylation 
cycle. Figure 1B shows the oscillation frequency of fluorescence intensity at 1 bar, 100 bars, 200 bars, and 1 bar 

Figure 1.  Pressure-induced changes to Trp fluorescence intensity during the KaiC phosphorylation cycle 
at 30 °C. (A) Oscillation of fluorescence intensity at different pressures. (B) Comparison of oscillation of 
fluorescence intensity at 1 bar, 100 bars, 200 bars, and 1 bar after pressure was released. (C) Pressure dependence 
of the period length of the fluorescence oscillation cycle.
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after pressure was released. Unexpectedly, the oscillation frequency increased with increasing pressure. The mean 
period lengths at 100 bars, 200 bars, and 1 bar after decreasing pressure were 17.1 ± 1.5 (n = 2), 14.1 ± 0.8 (n = 2), 
and 21.0 ± 1.6 h (n = 3), respectively. Pressure-induced changes to period length were reversible within the 
experimental error margin. Assuming a monotonous reduction with an increase in pressure, the period length 
decreased by a factor of 3.8 h/100 bars (Fig. 1C).

We also measured pressure-induced changes in the ratios of phosphorylated KaiC to total KaiC in triplicate 
(see Fig. 2 for examples). Solution samples were incubated at 1 bar and 200 bars in the pressure-resistant vessel at 
30 °C, and were collected every 3 h. Temporal changes to KaiC phosphorylation ratios were analysed via sodium 
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and ImageJ (National Institutes of Health, 
Bethesda, MD, USA). The period lengths at 1 bar and 200 bars were 21.8 ± 0.4 h (n = 3) and 13.3 ± 0.9 h (n = 3), 
respectively, which was consistent with those observed in Trp fluorescence measurements.

Structure and thermodynamic stability of KaiA, KaiB, and KaiC at high pressure.  To elucidate 
how pressure affects the structure and thermodynamic stability of Kai proteins, we measured the Trp fluorescence 
spectra of the proteins at 30 °C and at different pressures (from 1 bar to 300 bars). KaiA contains one Trp residue 
(i.e. W10) and KaiC contains three Trp residues in the CI (i.e. W92) and CII (i.e. W331 and W462) domains. Thus, 
Trp florescence is a suitable probe to monitor protein structure and stability. When pressure was increased from 
1 bar to 300 bars, the fluorescence emission of KaiC, in terms of λmax and intensity, remained largely unchanged 
(Fig. S1A). Because the phosphorylation state of KaiC alters during the cycle, we also investigated how pressure 
affects the KaiC phospho-mimic variants KaiC-DE (S431D/T432E) and -AA (S431A/T432A). These variants 
completely mimic phosphorylated and dephosphorylated states, respectively. Similar to wild-type (WT) KaiC, 
the fluorescence emission of the variants also remained largely unchanged at 300 bars (Fig. S1B, C). For KaiA, 
pressure had no noticeable effect on fluorescence emission at 300 bars (Fig. S2A). Because KaiB does not have any 
Trp residues, Tyr fluorescence spectra were measured from 1 bar to 300 bars. KaiB contains four Tyr residues (i.e. 
Y7, Y12, Y39, and Y93). Fluorescence emission of KaiB remained largely unchanged by pressure (Fig. S2B). Thus, 
at 300 bars, KaiA, KaiB, and KaiC retained their folded conformations during the KaiC phosphorylation cycle.

Effect of pressure on the ATPase activity of KaiC.  ATPase activity defines the period length of KaiC 
phosphorylation13. Because CI-ATPase dominates over CII-ATPase, CI-ATPase might set the pace of the cir-
cadian rhythm14. To evaluate the pressure dependence of ATPase activity in each domain, we generated an 
N-terminal domain fragment (CI-model) and an E77Q/E78Q variant (CII-model) of KaiC. We examined the 
ATPase activity of the proteins and WT KaiC at 1 bar, 100 bars, and 200 bars. Changes to ATP and ADP concen-
trations were measured via high-performance liquid chromatography (HPLC; Fig. S3A). Figure. S3B shows the 
representative kinetics of ADP production by WT KaiC at different pressures. The ATPase activity of the proteins, 
kcat, was estimated based on the rate constant for ADP production. The kcat values of the proteins from 1 bar to 
200 bars are listed in Table 1. The ATPase activity of WT KaiC was approximately 1.6-fold greater at 200 bars 
compared to 1 bar, wherein period length decreased by approximately 1.5-fold.

Based on the pressure dependence of kcat (Fig. 3), the activation volume required for ATP hydrolysis via the CI 
and CII domains was estimated to be −18 ± 2 mL/mol and −100 ± 30 mL/mol, respectively (Fig. S4). Evaluation 
of overall ATPase activity in KaiC showed that the activation volume was −57 ± 2 mL/mol. Interestingly, the 
CII-domain showed 5-fold higher volumetric contractions than the CI-domain on activation. To understand 
the origin of thermodynamic contraction, we investigated the internal cavities of the KaiC-ATP complex (PDB 
ID: 1U9I) using the MOLMOL program25. One large cavity was detected in each CII-domain of the KaiC-ATP 

Figure 2.  Oscillation of the phosphorylated KaiC ratio at 1 bar and 200 bars. (A,B) SDS-PAGE analyses of 
KaiC incubated at 1 bar (panel A) and 200 bars (panel B), respectively, with KaiA, KaiB, and ATP in silicon 
tubes. Pressure was applied at 15 h, where the phosphorylation rhythm of KaiC was entrained. Each reaction 
mixture in the silicon tubes was collected every 3 h and subjected to SDS-PAGE. P-KaiC and NP-KaiC indicate 
phosphorylated and unphosphorylated KaiC bands, respectively. Oscillation of the phosphorylated KaiC ratio 
was examined in triplicate. All of the full length gels are listed in a Supplementary Dataset File. (C) Changes to 
the ratio of phosphorylated KaiC bands at 1 bar (open circles) and 200 bars (closed circles).
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complex when using a probe of 3.8-Å in size (Fig. 4A); however, small cavities were detected at all locations in 
KaiC when using a probe of 1.4 Å in size (Fig. S5).

Discussion
This study demonstrated that hydrostatic pressure is positively correlated with a reduction in the length of the 
circadian period and the ATPase activity of KaiC. These results reflect previous reports on ATPase activity and 
period-length correlation among KaiC period-mutant proteins13. Therefore, pressure-induced acceleration of the 
phosphorylation cycle of KaiC might be attributed to the pressure-induced enhancement of its ATPase activity. 
Both the CI- and CII-models showed pressure-induced increments in ATPase activity, indicating that CII-ATPase 
contributes towards setting the pace of the circadian rhythm. The negative activation volume for ATP hydrolysis 
indicates that the transition-state (TS) has smaller partial molar volumes compared to the pre-hydrolysis state. 
Because the partial molar volume of globular proteins generally decreases with the compaction and/or hydration 
of internal cavities17,19,26, TS might have a more compact and/or hydrated conformation than the pre-hydrolysis 
state. Internal cavities, including the large cavity, serve as sources of compaction, hydration, and structural rear-
rangements in the active site of each CII-ATPase.

Akiyama et al. previously reported the osmolality dependence of the in vitro phosphorylation cycle of KaiC27. 
Specifically, with increasing glycerol concentrations of up to 4.5 mosm/kg H2O, corresponding to approximately 
110 bar, period length was shortened to approximately 19 h27. The magnitude of osmotic pressure-induced 
changes in period length is consistent with that of the selected hydrostatic pressure in the present work. This 
co-occurrence indicates that the mechanism underlying the acceleration of the Kai oscillator is common under 
both types of pressure perturbation (i.e. hydrostatic and osmotic). Although the mechanism underlying this 
acceleration was previously unclear, the results of the current study clearly show that the pressure-induced accel-
eration of the circadian clock is attributed to an increase in KaiC ATPase activity.

Furthermore, Abe et al. reported that the retardation of ATP hydrolysis of KaiC is the result of the unfavour-
able position of a lytic water molecule at the active site, as well as the cis-to-trans isomerization of D145−S146 
peptide coupled with ATP hydrolysis in the CI domain14. Based on previous studies and the results of the current 

Pressure/bar

kcat ± stdeva/day−1 (n)b

KaiC-WT
CI domain  
(CI-ATPase)

KaiC E77QE78Q 
(CII-ATPase)

KaiC 
R393C

KaiC 
F470Y

1 14 ± 2 (17) 11 ± 2 (13) 2.3 ± 0.6 (11) 20 ± 3 (5) 21 ± 3 (4)

100 18 ± 4 (7) 12.0 ± 0.8 (5) 4 ± 1 (6) n.d. n.d.

200 22 ± 3 (10) 13 ± 1 (7) 5 ± 2 (6) 23 ± 2 (5) 25 ± 2 (4)

Ratio (200 bar/1 bar) 1.6 1.2 2 1.1 1.2

Table 1.  ATPase activity of wild-type KaiC and its variants at different pressures. aStandard deviations. 
bNumber of protein samples. Concentration of each protein sample was separately adjusted, irrespective of the 
sample lot.

Figure 3.  Pressure dependence of ATPase activity of KaiC. Pressure dependence of kcat (day−1) for ATP 
hydrolysis of the wild-type (closed circles), the CI domain (CI-model) (open circles), and the E77Q/E78Q 
variant (CII-model) (open triangles) of KaiC at 30 °C. Data are presented in Table 1.
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study, we hypothesized that the thermodynamic contraction of the structure of the active site in TS favourably 
positions catalytic residues and lytic water molecules to facilitate ATP hydrolysis (Fig. 4B). According to this 
hypothesis, if catalytic residues and lytic water molecules are proximal to the active site (i.e. favouring ATP hydrol-
ysis) in the pre-hydrolysis state, a less negative activation volume is required for the reaction. Indeed, CI-ATPase 
(which has higher activity than CII-ATPase) yielded a less negative activation volume than CII-ATPase. Of note, 
water molecules were detected at the active site of each CI domain in several crystals14; however, almost no water 
molecules were detected in the CII domains. Because a water molecule is essential for ATP hydrolysis, the dif-
ference in water distribution between the two domains might have been driven by protein dynamics and crystal 
packing. We applied this hypothesis to KaiC period variants, R393C (period length = 15 h) and F470Y (period 
length = 17 h)13, which contained a mutation in the CII domain. The ATPase activity of the variants at 1 and 200 
bars is shown in Table 1. Assuming complete similarity in the CI-ATPase activity of the KaiC-variants with that 
of WT KaiC, the differences in ATPase activity among proteins could be attributed to their CII-ATPase activity. 
Because the CII-ATPase of the variants is expected to be more active than that of WT at 1 bar, less negative acti-
vation volumes for ATP hydrolysis are predicted in short-period mutants. Indeed, the relative ATPase activity of 
R393C and F470Y at a ratio of 200 bars to 1 bar (i.e. 200 bar/1 bar), whose natural logarithms are proportional to 
negative activation volumes, was calculated to be 1.1 and 1.2, respectively. These values were significantly less than 
that of WT (i.e. 1.6). These results also support our hypothesis.

Finally, allosteric effects on KaiC must be considered. A pressure approach is beneficial for proteins subject 
to allosteric regulation. The large volume contraction for CII-ATPase activity probably directly influences the 
kinase activity of the CII domain. While we have yet to elucidate how CI-ATPase influences CII kinase activity, 
the results of this study identified a rather peculiar behaviour in the pressure dependence of KaiC-ATPase activity. 
When CI-ATPase activity and CII-ATPase activity were evaluated separately, the sum of the activity was less than 
the total activity of WT KaiC. Furthermore, this difference in activity was larger under higher pressure (Table 1). 
This residual activity might have been the result of mutual coupling between CI- and CII-ATPase through volume 
contraction, which appears to increase under high pressure.

In the present study, hydrostatic pressure was positively correlated with a reduction in the period length of 
the KaiC phosphorylation cycle. This phenomenon was the result of pressure-induced changes in ATPase activity 
and allosteric effects on the protein. It would be instructive to look at the phosphorylation and dephosphorylation 
rates to obtain a comprehensive understanding of how pressure affects the system. More generally, as expected, 
the temperature-invariant reaction varied with pressure because the proteins of organisms dwelling underground 
and in the upper water layers are not evolutionarily adapted to pressure-induced changes in molecular structure, 

Figure 4.  Internal cavities of KaiC and volume compaction on ATP hydrolysis. (A) Location of the cavity of 
the KaiC-ATP complex (PDB ID: 1U9I). Two subunits of KaiC (gray) and 6 ATP (gold) are depicted by ribbon 
and space-filling models, respectively. Mg+2 ions and water molecules are depicted by cyan and red spheres, 
respectively. Catalytic residues for ATP hydrolysis are depicted by green stick models (i.e., E77, E78, E318, and 
E319). Cavities are depicted by dark-blue spheres, and were estimated using the MOLMOL program25 with a 
3.8-Å probe size. (B) Schematic of KaiC CI-CII domains of pre-hydrolysis and transition states. Three CI-CII 
domains are presented. Catalytic residues, ATP, water molecules, and cavities are depicted by green, yellow, red, 
and white circles, respectively.
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dynamics, and stability. Subsequent pressure-axis experiments are expected to advance our current understand-
ing of circadian rhythms, while, simultaneously, allowing us to elucidate the volumetric properties of the system.

Materials and Methods
Sample preparation.  Recombinant Kai proteins (i.e. KaiA, KaiB, and KaiC) of the cyanobacterium 
Synechococcus elongatus PCC 7942 were synthesized using the conventional E. coli expression system, as reported 
previously28. The expression vector for the N-terminal domain fragment (CI-model, residues 2-247) of KaiC was 
generated from that of wild-type KaiC29. Expression vectors of KaiC-variants, E77Q/E78Q, R393C, and F470Y, 
were generated via the site-directed mutagenesis protocol28. Proteins were purified using a Strep-tactin Sepharose 
column (IBA GmbH, Göttingen, Germany), followed by liquid chromatography with SP Sepharose Fast Flow and 
superdex 75 PG 26/60 columns (GE Healthcare Co. Chicago, IL, USA). Protein concentration was determined 
via the Bradford method, using protein assay kits (FUJIFILM Wako Pure Co., Osaka, Japan) with bovine serum 
albumin (Bio-Rad Laboratories, Inc., Hercules, CA, USA) as the standard.

High-pressure fluorescence spectroscopy.  High-pressure fluorescence spectroscopic measurements 
were obtained using a spectrofluorometer (FP-8300; JASCO Co., Hachioji, Tokyo, Japan) and a pressure-resistant 
optical cell (Syn Co, Kyotonabe, Kyoto, Japan). KaiC (0.2 mg/mL) was co-incubated with KaiA (0.04 mg/mL) and 
KaiB (0.04 mg/mL) in 20 mM Tris-HCl buffer (pH 8.0) containing 150 mM NaCl, 6 mM ATP, and 5 mM MgCl2

4.  
The protein solution was stored in a quartz inner cell. The excitation wavelength from a xenon arc lamp was set 
at 295 nm with a slit-width of 5 nm. Time-dependent tryptophan emission at 340 nm was measured at 900-s 
intervals from 1 bar to 200 bars at 30 °C. Temperature and pressure were maintained within ± 0.1 °C and ± 10 
bars, respectively. The oscillation period was determined via a fast Fourier transformation (FFT) algorithm using 
the program IGOR Pro 6 (WaveMetrics Inc., Portland, OR, USA). All oscillations at a constant pressure could be 
primarily explained at a uniform frequency.

Tryptophan emission spectra of KaiA and KaiC were obtained from 1 bar to 300 bars at 30 °C and 310–450 nm, 
with a slit-width of 5 nm at a scanning speed of 200 nm/min. The excitation wavelength was set at 295 nm, with 
a slit-width of 5 nm. Tyrosine emission spectra of KaiB were obtained from 1 bar to 300 bars at 30 °C. Emission 
spectra at 290–380 nm were obtained with a slit-width of 5 nm and a scanning speed of 200 nm/min. The excita-
tion wavelength was set at 280 nm, with a slit-width of 5 nm.

Determination of KaiC ATPase activity.  KaiC (0.2 mg/mL) in 20 mM Tris-HCl buffer (pH 8.0) contain-
ing 150 mM NaCl, 2 mM ATP, and 5 mM MgCl2 stored in silicon tubes was incubated in a pressure-resistant vessel 
(Syn Co, Kyotanabe, Kyoto, Japan) at varying pressures from 1 bar to 200 bars at 30 °C. Silicon tubes containing 
solution samples were removed from the vessel every 6 h and the ATPase activity of KaiC was measured using 
a high-performance liquid chromatography (HPLC) system with a Shim-Pack VP-ODS column (SHIMADZU 
GLC Ltd., Taito, Tokyo, Japan). The mobile phase used 100 mM phosphoric acid, 150 mM triethylamine, and 1% 
acetonitrile. ATP and ADP in reaction mixtures were separated at a flow rate of 0.4 mL/min. ATPase activity, kcat, 
was evaluated as a function of ADP production (i.e. linear slope/enzyme concentration). In Michaelis-Menten 
kinetics, assuming a pre-steady state reaction when [S] >> KM, where [S] and KM are the substrate concentration 
and the Michaelis constant, respectively, the rate of product formation, v, is determined as follows:

=v k E[ ] (1)cat 0

where [E]0 is the initial enzyme concentration. As reported previously14, the concentrations of enzyme and sub-
strate used here satisfied the condition.

Estimation of activation volumes.  The rate constants under high pressure depend exponentially on the 
pressure and activation volumes for the reactions:

=




−

∆ 




≠
k p k p p V

RT
( ) ( )exp

(2)
0

where p and p0 represent high pressure and atmospheric pressure, respectively; V∆ ≠, activation volume; R, gas 
constant; T, absolute temperature. Thus, the plots of ln kcat(p)/kcat(p0) versus p were fitted using linear least-squares 
analysis for the value of V∆ ≠ (Fig. S4).

Analysis of KaiC phosphorylation rhythm.  KaiA (0.04 mg/mL), KaiB (0.04 mg/mL), and KaiC (0.2 mg/mL)  
in 20 mM Tris-HCl buffer (pH 8.0) containing 150 mM NaCl, 3 mM ATP, and 5 mM MgCl2 stored in silicon tubes 
was incubated at 1 bar and 200 bars (in the pressure-resistant vessel) at 30 °C. Silicon tubes containing solution 
samples were collected every 3 h. Temporal changes in KaiC phosphorylation ratios were analysed via SDS-PAGE 
and ImageJ (National Institutes of Health, Bethesda, MD, USA). We measured pressure-induced changes in the 
ratios of the phosphorylated KaiC to total KaiC in triplicate. In each experiment, SDS-PAGE was performed 
twice, and the mean of the KaiC phosphorylation ratios was calculated. The oscillation period was determined 
via the FFT algorithm using the program IGOR Pro 6 (WaveMetrics Inc., Portland, OR, USA). All oscillations at 
a constant pressure could be primarily explained at a uniform frequency.

Data Availability
Figure source data are available from the journal web site.
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