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Purpose: This study aims to explore the impact of adding texture features in dynamic
positron emission tomography (PET) reconstruction of imaging results.

Methods: We have improved a reconstruction method that combines radiological
dual texture features. In this method, multiple short time frames are added to obtain
composite frames, and the image reconstructed by composite frames is used as the
prior image. We extract texture features from prior images by using the gray level-
gradient cooccurrence matrix (GGCM) and gray-level run length matrix (GLRLM). The
prior information contains the intensity of the prior image, the inverse difference moment
of the GGCM and the long-run low gray-level emphasis of the GLRLM.

Results: The computer simulation results show that, compared with the traditional
maximum likelihood, the proposed method obtains a higher signal-to-noise ratio (SNR)
in the image obtained by dynamic PET reconstruction. Compared with similar methods,
the proposed algorithm has a better normalized mean squared error (NMSE) and
contrast recovery coefficient (CRC) at the tumor in the reconstructed image. Simulation
studies on clinical patient images show that this method is also more accurate for
reconstructing high-uptake lesions.

Conclusion: By adding texture features to dynamic PET reconstruction, the
reconstructed images are more accurate at the tumor.

Keywords: dynamic PET, texture feature, gray level-gradient cooccurrence matrix (GGCM), gray-level run length
matrix (GLRLM), tumor

INTRODUCTION

Positron emission tomography (PET) imaging works by imaging an injected radioactive tracer
that combines with negative electrons to produce annihilating photons (Zhang et al., 2019; Hu
et al., 2020; Zeng et al., 2020). PET imaging provides functional information on a wide range of
biochemical and physiological processes (Delcroix et al., 2021; Doyen et al., 2021). To monitor
rapid changes in tracer distribution, the scan time per frame is short, thus resulting in poor image
quality when images are reconstructed by traditional methods under low-count conditions (Wang
and Qi, 2015; Wang, 2019). To improve image quality, scholars have proposed introducing a prior
image into PET reconstruction (Green, 1990; Nuyts et al., 2002; Wang and Qi, 2015). However, in
the past, when using the information of the prior image, only the intensity information was used,
and the texture information of the prior image was ignored. Recently, Gao proposed applying the
texture information of the prior image to PET reconstruction (Gao et al., 2021).
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Texture features are an important feature of the spatial
structure relationship of pixels in an image area (Jiguang, 1984).
The term “texture features” is used to describe the surface features
of a given object or area (Tang, 1998). Texture features have
been widely used in medical image analysis. Initially, texture
feature analysis focused mainly on computed tomography (CT)
and magnetic resonance imaging (MRI) images that reflect
anatomical structure information with higher resolution (Lubner
et al., 2017); the main purpose of texture feature analysis was
to distinguish tumors from normal tissues. In recent years,
there has been an increasing number of studies on texture
feature analysis of PET functional metabolism images. Texture
information in the PET field has been successfully applied in
tumor diagnosis, efficacy evaluation, prognosis prediction, tumor
monitoring, genotyping, and pathological typing (Li et al., 2019;
Kang et al., 2020; Palumbo et al., 2020; Wady et al., 2020; Zhang
J. et al., 2020; Jiang et al., 2021). Machine learning is used to
find the distribution of texture features in different groups to
achieve accurate judgment and prediction. Additionally, texture
features are also used in PET image reconstruction. Gao proposed
applying texture features to PET reconstruction and using MRI
images as prior images to extract texture features to assist PET
reconstruction (Gao et al., 2021).

In this paper, we use two commonly used matrices, namely, the
gray level-gradient cooccurrence matrix (GGCM; Jiguang, 1984)
and the gray-level run length matrix (GLRLM; Galloway, 1975),
to extract texture features and then introduce texture features
into dynamic PET reconstruction. The GGCM reflects the two
most basic elements of the image, grayscale and gradient. The
grayscale reflects mainly the intensity of the image color, and
the gradient value is the element that constitutes the outline of
the image. The GLRLM reflects the direction, adjacent interval
and change of the image grayscale. These two texture features
are widely used in computer-aided diagnosis and medical image
segmentation (Ren et al., 2020; Soydal et al., 2021). To the best
of our knowledge, there are still few studies on the texture
feature extraction of radiomics for PET reconstruction, and our
incorporation of the GGCM and GLRLM into dynamic PET
reconstruction is a new attempt.

The remainder of this article is organized as follows. In section
“Materials and Methods”, we introduce the GGCM, GLRLM and
proposed method. section “Experiments and Results” describes
the computer simulation research and reports the results of
simulation experiments. section “Application to Clinical Data”
presents the results of applying the new method to real clinical
data. We discuss the results in section “Discussion”. Finally, we
conclude this article in section “Conclusion”.

MATERIALS AND METHODS

Gray Level-Gradient Cooccurrence
Matrix Texture Feature Extraction
An element H(i, j) in the GGCM is defined as the total number
of the normalized gray image F(m, n) and the normalized
gradient matrix image G(m, n) that have both gray level i and
gradient j(11). The steps to calculate the image gray gradient
matrix are as follows.

(1) Obtain the normalized gray matrix
The grayscale image normalization transformation is as

follows:

F (K, L) = INT
(
f (K, L)× NH/fM

)
+ 1 (1)

where NH is the maximum gray level of the normalized image. In
the experiment, NH = 8, fM is the maximum gray level of the
original image, and INT represents the rounding operation.

(2) Obtain the normalized gradient matrix
We use the Sobel operator to calculate the gradient value of the

pixel:

gx = f (K + 1, L − 1)+ 2f (K + 1, L)+ f (K + 1, L+ 1)

− f (K − 1, L − 1)− 2f (K − 1, L)− f (K − 1, L+ 1) ,

(2)

gy = f (K − 1, L+ 1)+ 2f (K, L+ 1)+ f (K + 1, L+ 1)

− f (K − 1, L+ 1)− 2f (K, L− 1)− f (K + 1, L− 1) ,

(3)

g (K, L) = (g2
x + g2

y ) (4)

g (K, L) is the gradient value of the (K, L)th pixel, and then we
normalize the gradient image obtained.

G (K, L) = INT
(
g (K, L)× Ng/gM

)
+ 1 (5)

where INT represents the rounding operation, gM represents
the maximum gradient value of the gradient image, and Ng
represents the maximum gradient value of normalization. In the
experiment, Ng = 8.

(3) Statistical GGCM
After obtaining the normalized gray image and the normalized

gradient image, the GGCM H is obtained by using mathematical
statistics. The meaning of a pixel H(i, j) in the GGCM is the total
number of F (K, L) = i and G (K, L) = j.

(4) Calculate texture parameters
In the experiment, we used the inverse difference moment

of the GGCM, and the calculation formula of the GGCM is as
follows:

T =
Ng∑
i =1

Ng∑
j

1

1+
(
i− j

)2 P(i, j) (6)

where P
(
i, j
)
=

H(i,j)∑
i
∑

j H(i,j) .

Gray-Level Run Length Matrix Texture
Feature Extraction
The GLRLM reflects the comprehensive image information on
direction, adjacent interval and amplitude of change (Galloway,
1975). The texture features of the GLRLM are calculated as
follows:

(1) Quantify the image gray level

The grayscale of the original image is quantized to the range
of [1, NH], and the GLRLM obtained after quantization is
[NH,NL], where NL represents the maximum continuous length
of a pixel value.
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(2) Calculate the GLRLM

Set the direction θ and step size d. In the experiment, set the
direction to 0◦, 45◦, 90◦, and 135◦, consecutively; and set the step
size to 1. Then, the GLRLM matrix is obtained by calculating
the total maximum continuous length of each pixel in each
direction. The ordinate of the GLRLM represents the pixel value,
and the abscissa represents the maximum continuous length. For
example, pixel (i, j) is the total number of pixels with a gray value
of i and a continuous length of j in a certain direction.

(3) Calculate texture feature

In the experiment, we use the GLRLM’s long-run low
gray-level emphasis, whose calculation formula is as follows
(Dasarathy and Holder, 1991):

LRLGE =
1
nr

NH∑
i =1

NL∑
j =1

p(i, j) · j2

i2
(7)

where p is the GLRLM and nr =
NH∑

i =1

NL∑
j =1

p(i, j). The mean

value of the long-run low gray-level emphasis in the four
directions is taken as the final texture feature.

Proposed Algorithm
In this paper, we combine the intensity of the prior image, the
inverse difference moment of the GGCM and the long-run low
gray-level emphasis of the GLRLM to form a kernel function.

κ(f
′

j , f
′

l ) = exp

(
−

||f
′

j − f
′

l ||
2

2σ2

)
. (8)

where f
′

j and f
′

l are feature vectors containing the intensity of the
prior image, the inverse difference moment of the GGCM and
the long-run low gray-level emphasis of the GLRLM of pixels j
and l, respectively.

The kernelized expectation-maximization (KEM) algorithm
for dynamic PET reconstruction can be expressed as (Nuyts et al.,
2002):

αn+1
=

αn

KTPT1M

(
KTPT

y
PKαn + r

)
(9)

1M is a unit vector of length M.
The final image estimate x̂ can be derived by α̂ :

x̂ = Kα̂ (10)

The flow chart of the method is shown in Figure 1:
First, we need to obtain prior information, and we divide

24 sinograms into three high-count composite frames according
to time; these three frames correspond consecutively to the
first 20 min, the middle 20 min and the last 20 min. Then,
the maximum likelihood expectation maximization (MLEM)
algorithm is used to iterate 100 times on the three composite
frames to obtain three prior images. The inverse difference
moment of the GGCM and long-run low gray-level emphasis
of the GLRLM of each pixel in the three prior images are

extracted, and corresponding feature images are generated. Then,
the Euclidean distance between the pixel feature vector and the
adjacent pixel feature vector is calculated, the kernel function is
obtained and applied to the KEM method, and the final image
is obtained iteratively. The box labeled 2 in Figure 1 is a specific
description of the box labeled 1.

EXPERIMENTS AND RESULTS

To evaluate the performance of the proposed method, we
conducted a computerized simulation experiment and compared
the visual effects and quantitative indexes of the images
reconstructed by the proposed method with those of the
images reconstructed by other methods. The experimental results
indicate the feasibility and practicability of the proposed method.

Digital Phantom Simulations
In the simulation experiment, we constructed a 2D simulated
PET model based on the anatomical model in the Brain Web
(Cocosco et al., 1997) database, as shown in Figure 2A. An
appropriate axial image of size 217 × 217 pixels was chosen,
and the radius of the tumor was 5 pixels. The scanning schedule
included the following 24 time frames: 4 × 20 s, 4 × 40 s,
4 × 60 s, 4 × 180 s, and 8 × 300 s. Figure 2B shows the
temporal activity curve of the regions. Radiopharmaceuticals
were distributed to different brain regions over time. We used
a forward projection on a moving image to obtain a noiseless
sinogram of 249 × 210 and then introduced Poisson noise. The
estimated total number over 60 min is 30 million, including
20% random and scattered events. Attenuation correction was
performed in all the reconstruction methods. A total of 10
noisy realizations were simulated, and each realization was
independently reconstructed for statistical comparison.

In the computer simulation experiment, in addition to the
proposed algorithm, the MLEM method, the KEM method and
Gao’s method are also simulated. Gao’s method is called the
KEM+ gray-level cooccurrence matrix (GLCM) method in this
article. The prior information of the KEM+GLCM method
includes the correlation between image intensity and GLCM
texture features from prior images. In the simulation experiment,
the prior images were reconstructed by sinograms. In terms
of considering both the time cost of the computing kernel
function and the quality of the reconstructed image, we select
the number of neighbors of the searching kernel function as
50. The quantization gray level of the three methods we choose
to extract texture features is 8; that is, the pixel value of an
image is quantized within the range of 1 to 8. In addition, the
neighborhood image size of the GLCM and GGCM is 5 × 5,
and the neighborhood image size of the GLRLM is 3 × 3. The
neighborhood image size refers to the neighborhood image size
centered on a certain pixel, in which the neighborhood image
texture features are calculated.

Performance Metric Evaluation
To measure the quantitative performance of the proposed
method, we calculated the signal-to-noise ratio (SNR),
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FIGURE 1 | Flowchart of the proposed of algorithm.

FIGURE 2 | Digital phantom and time activity curves used in the simulation studies. (A) 2D brain phantom. (B) Regional time activity curves.
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normalized mean square error (NMSE), structural similarity
(SSIM), standard deviation (SD), and contrast recovery
coefficient (CRC).

The SNR is defined as follows:

SNR = 10 log10

( ∣∣T2
∣∣

|T-R|2

)
(11)

The NMSE is an indicator that reflects the difference between the
reconstructed image and the true image and is expressed by

NMSE =
∑N

i =1(Ti − Ri)2∑N
i =1 (Ti)

2 (12)

where T and R represent the reconstructed image and true image,
respectively; and where N represents the total number of pixels in
the reconstructed image.

The SSIM is an index that measures the similarity between the
reconstructed image and the true image. When two images are
identical, the SSIM equals 1. The SSIM is calculated as follows
(Wang et al., 2004):

SSIM =
(2T̄R̄+ c1)(2σ1 + c2)(

T̄2 + R̄2 + c1
) (

σ2
T + σ2

R + c2
) (13)

where T̄ denotes the average value of the reconstructed
image, σ2

R denotes the variance of the true image, σ2
T

denotes the variance of the reconstructed image, and σ1
denotes the covariance of the reconstructed image and the
true image. c1 = (k1L2) and c2 = (k1L)2 are constants used to
maintain stability, k1 = 0.01 and k1 = 0.03, respectively; and L
denotes the dynamic range of voxel strength.

To more persuasively demonstrate the effects of the proposed
method, we also compared the CRC and SD of images
reconstructed by different methods. The SD is calculated by the
formula below:

SD =
1
R̄

√√√√ 1
n− 1

N∑
i =1

(Ti − Ri)2. (14)

The formula for calculating the CRC is as follows:

CRC = (
R̄

R̄BGD
− 1)/(

T̄
T̄BGD

− 1) (15)

where R̄BGD denotes the average intensity of the reconstructed
image background and T̄BGD denotes the average intensity of the
true image background. R̄ROI denotes the average intensity of the
region of interest (ROI) of the reconstructed image, and T̄ROI
denotes the average intensity of the ROI of the true image.

Simulation Results
To evaluate the performance of the proposed method, we
compared the proposed method with the MLEM method, the
KEM method and the KEM+GLCM method. All reconstructions
ran for 100 iterations.

Figure 3 shows the true images of the 12 and 24th frames
and the images reconstructed by the four methods. Frame 12
and frame 24 have 406 k and 2752 k events, respectively.

Obviously, the 12th and 24th frames reconstructed by the MLEM
algorithm are very noisy. Compared with the SNR of the image
reconstructed by the MLEM method, the SNR of the image
reconstructed by the KEM method has been improved to a
large extent, but the edge preservation is inadequate. Both the
KEM+GLCM method and the proposed method are better in
terms of preserving edges. Compared with the KEM+GLCM
method, the proposed method has higher image quality.

Figure 4 shows the NMSE of the reconstructed images in
each time period. Each point represents a time frame. Compared
with other methods, the proposed method reduces the noise
of the reconstructed images in most time frames. Because the
image reconstructed by the MLEM algorithm is too noisy, no
comparison is added.

Figure 5 compares the CRC and SD in the white matter region
of the tumor with different reconstruction methods in frames 12
and 24. Each point represents ten iterations, and the results show
that the proposed method has a high CRC in the tumor area and
a low SD in the white matter area.

Figure 6 shows the relationship between pixel position
and pixel intensity for the different methods. A comparison
reveals that the image reconstructed by the proposed method
is most similar to the contours of the true images and has the
highest matching degree. The images reconstructed by the three
algorithms all underwent 100 iterations.

APPLICATION TO CLINICAL DATA

Clinical Data Acquisition
Figure 7 shows two clinical patient Digital Imaging and
Communications in Medicine (DICOM) dynamic PET images,
which were collected from a uEXPLORER PET/CT imaging
system (United Imaging Healthcare). Dynamic scanning was
conducted for approximately 1 h after the injection of 18F-
fluorodeoxyglucose (18F-FDG), and the dynamic PET data were
divided into 30 frames: 6 × 5 s, 4 × 10 s, 4 × 30 s,
5 × 60 s, 4 × 180 s, and 8 × 300 s. The data were
reconstructed as an image matrix of 192 × 192 × 673
voxels, with a slice sickness of 2.886 mm. The 3D list-mode
ordered subset expectation maximization (OSEM) algorithm
incorporated high-resolution time-of-flight (TOF) and point-
spread function modeling (OSEM-TOF-PSF) with 3 iterations
and 20 subsets (Zhang et al., 2017; Zhang X. et al., 2020). In
this experiment, we used the data of patients with esophageal
cancer. To observe the lesion more clearly, we selected 30 frames
of the 200th slice. Forward projection was performed on the
real PET image to obtain simulated projection data. Since the
image reconstruction in the PET scanner involves random and
scatter correction, we also added 20% of the projection data as
the background (random and scattered events).

RESULTS

The dynamic PET sinogram data were rebinned into three
composite frames with the same duration. The sinogram of
the dynamic PET was obtained by forward projection of the
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FIGURE 3 | 2D brain phantom images reconstructed by different methods.

DICOM images. All composite frames were reconstructed using
the MLEM algorithm with 100 iterations.

Figure 8 shows the reconstructed image of the patient
simulation data at the 15 million count level. Qualitatively, the
overall image quality of the proposed method is higher than that
of the KEM method and the expectation-maximization (EM)
method. Compared with the texture of the image reconstructed
by the KEM+GLCM method, the method proposed at the same
time, the texture of the reconstructed image is closer to that of
the real image. Figure 9 shows the quantitative calculations of the
four reconstruction methods in high-uptake lesions. The results
show that the image reconstructed by this method has a lower SD
and a higher standardized uptake value (SUV) in the high-uptake
lesion area; thus, this image is closer to the original image.

FIGURE 4 | Comparison of the NMSEs of all the frames obtained by different
reconstruction methods.

DISCUSSION

In this article, we use the KEM framework to incorporate
the two different texture features of the prior image into the
kernel function. The difference from the KEM+GLCM method
is that we do not use the MRI image as the prior image but
add multiple short time frames to obtain the composite frame
reconstructed PET image as the prior image. There is no need
to use other modal images. The difficulty of obtaining the prior
images is reduced. Due to the use of two texture features, the
reconstruction speed of the proposed algorithm is relatively slow.

To verify the feasibility of the proposed method, we
conducted simulation experiments and conducted experiments
using clinical data provided by the hospital. In Figure 3,
we show reconstructed images from frames 12 and 24 by
different reconstruction methods. This visualization allows an
intuitive comparison of the images reconstructed by the proposed
method with the images reconstructed by the compared methods.
Compared to the other comparison algorithms, the proposed
method produces better image quality. Figure 4 is a comparison
of the NMSEs of different methods at each time frame. The NMSE
is an index that reflects the difference between the reconstructed
image and the real image. The figure shows that the proposed
method has a lower NMSE in each time frame, thus indicating
that the image reconstructed by the proposed method is the
most similar to the real image. In Figure 5, we compare the
CRC in the tumor area and the SD in the white matter area of
several algorithms. The proposed method has the smallest SD
in the white matter, and a higher CRC is obtained. The figure
shows that the image reconstructed by the proposed algorithm
has the smallest fluctuation in the intensity of the white matter,
and the pixel value of the tumor can be close to the real image.
In addition, we also verified this finding with Figure 6. The
intensity of the image reconstructed by the proposed algorithm
on the line passing through the tumor is closest to the real
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FIGURE 5 | Contrast recovery coefficient of ROIs versus background noise. (A) Frame 12. (B) Frame 24.

FIGURE 6 | Intensity distribution along a straight line (red) through the tumor area.

FIGURE 7 | Clinical patient dynamic PET images. (A) Frame 22. (B) Frame 30.
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FIGURE 8 | Reconstructed images of the 22nd and 30th frames by using different methods.

FIGURE 9 | Mean activity versus SD trade-off of ROIs achieved by different methods for the (A) 22nd and (B) 30th frames.

image. In addition, we also used clinical data for experiments. The
simulation study of PET images of clinical patients also proves
that the proposed method can achieve a better reconstruction
effect in the tumor area.

The GLRLM and GGCM are used in the proposed algorithm.
The GGCM adds edge information on the basis of the GLCM.
The GLCM counts only the number of pixel pairs appearing
in a certain direction, while the GGCM counts the pixel value
and the gradient value common information. We also use the
GLRLM, which reflects comprehensive image information on the
direction, the adjacent interval, and the magnitude of change.
Therefore, after using the features of the GLRLM and GGCM in
the proposed algorithm, the reconstructed image outperforms the
image reconstructed by the KEM+GLCM method in suppressing
noise and retaining edges.

CONCLUSION

In summary, we apply the new texture features to the KEM
algorithm framework of PET reconstruction, and this method
achieves better results in suppressing noise and improving the
tumor contrast recovery coefficient.
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