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Abstract
Quantile regression links the whole distribution of an outcome to the covariates of interest and has become
an important alternative to commonly used regression models. However, the presence of censored data such
as survival time, often the main endpoint in cancer studies, has hampered the use of quantile regression tech-
niques because of the incompleteness of data. With the advent of the precision medicine era and availability
of high throughput data, quantile regression with high-dimensional predictors has attracted much attention
and provided added insight compared to traditional regression approaches. This paper provides a practical
guide for using quantile regression for right censored outcome data with covariates of low- or high-
dimensionality. We frame our discussion using a dataset from the Boston Lung Cancer Survivor Cohort, a
hospital-based prospective cohort study, with the goals of broadening the scope of cancer research, maximiz-
ing the utility of collected data, and offering useful statistical alternatives. We use quantile regression to iden-
tify clinical and molecular predictors, for example CpG methylation sites, associated with high-risk lung
cancer patients, for example those with short survival.
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Introduction
In cancer research, the main objective is often to esti-
mate and infer the relationship between censored out-
comes, say, time to cancer death (denoted by T), and
various independent variables, for example gender, age,

cancer stage, smoking status, and molecular biomar-
kers. Cox proportional hazards models, which link the
hazard (the instantaneous rate of failure) to independ-
ent variables, have long been a standard tool for analyz-
ing censored outcome data. However, the proportional
hazards assumption may not often hold and, moreover,
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some practitioners find the concept of hazard difficult
to understand. Accelerated failure time (AFT) models,
which directly link T (or log(T)) to independent vari-
ables, have become a useful alternative because of the
straightforward interpretation with survival time. The
emergence of precision medicine has realigned our
attention to use patients’ demographic, behavioral, and
genetic data to identify individuals at the highest risk
for disease and to design therapeutic strategies for spe-
cific patient subpopulations,1–3 in which case the focus
is typically placed on the relationship between severe
cases (e.g. those with shorter survival times) and risk
factors.4,5 For most studies, the analytical tools are
either Cox or AFT models, but both models face many
challenges. For example, AFT models assume that risk
factors possess homogeneous effects on every sample
by linking them to the average survival time.6 Although
Cox models offer more flexibility, they are somewhat
restricted because the proportional hazards assumption
does not allow the sign of a covariate to vary between
the high-risk subpopulation (those with shorter survival
time) and the low-risk subpopulation (those with longer
survival time). For example, increased radiation dose
may prolong survival among men with high-risk pros-
tate cancer, but not those at low risk.7 Identifying the
heterogeneous effects of a treatment and maximizing
its effectiveness on a subgroup has been a focal point of
precision medicine. For this purpose, it is necessary to
go beyond the realm of traditional methods that may
have difficulty modeling the heterogeneous effects of
predictors.

Quantile regression, since its inception in 1978, has
emerged as a powerful and natural approach to model
the heterogeneous effects of predictors for a non-
homogeneous population.8 In contrast with the mean-
based and hazard-based models, quantile regression
models the quantile of survival time and links it to the
covariates. Compared to the popular Cox models, quan-
tile regression relaxes the proportional hazards
assumption and links the whole distribution of an out-
come to the covariates of interest. It may offer extra
flexibility by more fully using data and thus provide
more complete information related to covariate-
outcome relationships. Such models will be particularly
useful for exploring the heterogeneity in the effects of
risk factors in the Boston Lung Cancer Study Cohort
(BLCSC) study, a hospital-based cancer epidemiology
cohort established in 1992 by Dr. Christiani (author).

The BLCSC collects rich demographic, clinical, and
genetic information from lung cancer cases, including
smoking and pathology information along with CT
images, whole-genome microarray, mRNA expression,
DNA genotype, and methylation data. The role of epi-
genetics in cancer initiation and progression has stimu-
lated much interest and Cox regression models have
been the main statistical tool used for analysis.9–12 As
lung cancer is characterized by molecular heterogen-
eity, recent insights have pinpointed the functional

roles of aberrant DNA methylation in the disease pro-
gression.13–15 An intriguing question is whether and
how each DNA methylation site might play a different
role among the high-risk (e.g. lower quantiles of overall
survival) and low-risk (e.g. higher quantiles of overall
survival) cancer survivors. In particular, it has been con-
jectured that the difference in histologic patterns of
lung cancer may be associated with the heterogeneity
in causal factors for the high- and low-risk popula-
tions.16,17 Addressing this question using lung cancer
survivors may lead to improved risk stratifications of
lung cancer with epigenetic biomarkers. Quantile
regression could be a natural choice as it helps decipher
the various roles each methylation site plays on differ-
ent quantile levels of survival.

Recent years have witnessed a steady increase in use
of quantile regression in cancer research. A PubMed
search returned 103 publications on applications of
quantile regression related to cancer research from 2014
to 2018. For example, Faradmal et al.18 showed that
changes in the age at diagnosis, number of involved
lymph nodes, and tumor size could significantly change
the median and some other quantiles of overall sur-
vival. Meanwhile, Xu et al.19 developed a G-E interaction
identification approach using the quantile regression
technique, as most of the existing G-E interaction
approaches for prognosis data cannot accommodate
long-tailed or contaminated outcomes.

Many methods have been developed for quantile
regression for complete data without censoring.20–22

When data are subject to censoring, statistical estima-
tion and inference for quantile regression have become
more involved. Using a dataset from the BLCSC, this
paper provides a practical guide to using quantile
regression to analyze survival data in cancer research.
We are very cognizant of the existence of an overview
of quantile regression by Koenker,23 as well as several
excellent tutorial papers with various contexts, such as
child health,24 ecology,25 health services research,26 and
labor market analysis.27 This paper introduces the use
of quantile regression for censored outcome data from
the perspective of precision medicine, with the ultimate
goal of broadening the scope of research, maximizing
the utility of collected data, and offering additional stat-
istical insight. As the most commonly encountered cen-
soring type in cancer studies is right censoring (e.g. in a
cancer trial, a patient drops out or survives the whole
study period and thus the exact death time is unob-
served), this paper focuses mainly on right censoring
cases.

Censored quantile regression with low-
dimensional features
We begin by introducing the concept of quantiles, fol-
lowed by censored quantile regression. For any τ that is
between 0 and 1, the τ-quantile is a value at or below
which a τ-fraction of the data lies. When τ is 0.5, the 0.5
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quantile is called the median, which cuts a distribution
into two equal areas. When the quantile is defined
based on the distribution of T alone, without consider-
ing covariates, X, it is called the marginal quantile or
unconditional quantile. When we consider the quantile
of T [or log(T)] within subgroups defined by X, for
example, we refer to the τ-th conditional quantile of T
given X, denoted by QT|X(τ|X). A quantile regression
describes how the covariate or covariate vector of inter-
est impacts the conditional quantiles of the outcome.
Often, a linear functional form is assumed with

βτ τ( | ) = ( ) ( )|
′Q X X 1T X

where β(τ) refers to the effect of X on the τ-th quantile.
Model (1) allows the covariate effect to change with τ,
adding more flexibility. Going beyond linear or more
broadly, parametric models, one can also non-
parametrically estimate the relationship between the
conditional quantiles and covariates.28 This approach is
computationally intensive, and the estimates typically
have large variations when the number of covariates is
moderate, or the sample size is not large.29

In reality, T is not always observable because of loss
of follow-up or the termination of the study. In a right
censoring situation, Y = min (T, C) and Δ = I (T ≤ C), the
censoring indicator, are observed, where C is the poten-
tial censoring time. Ignoring censoring and directly fit-
ting Y using quantile regression for complete data will
lead to a biased estimate of β(τ). To deal with censoring,
several authors have introduced censored quantile
regression approaches. For example, Portnoy29 proposed
reweighting of the censored observations using a
scheme similar to the redistribution-of-mass idea30 for
the Kaplan-Meier estimator, and Peng and Huang31 pro-
posed a class of martingale-based estimating equations,
which involve minimization of a convex objective
function.

These two methods have been implemented using
various statistical software packages including quantreg

in R and PROC QUANTLIFE in SAS. By specifying various
values of τ between 0 and 1, we can obtain distinct sets
of estimated quantile regression coefficients and also
predict the conditional quantiles of outcomes based on
the given covariates. For the readers’ convenience, we
provide sample commands in R and SAS in the
Appendix for analyzing our data.

Taking τ to be close to 0 or 1, quantile regression can
address whether the different quantiles of the survival
time (lower or upper quantiles of survival time within
each group) differ across the male and female groups,
giving more insight than an AFT model that stipulates
the same gender effect across all quantiles. For
example, if we use X to code gender (1 = male and 0 =
female) and set τ = 0.2 or 0.5, then β(0.2) and β(0.5)
address how much the 0.2 quantile of survival and the
median survival time differ across the male and female
groups. More specifically, based on the patients (n = 153)

from the Boston Lung Cancer Survivor Cohort, β(0.2) and
β(0.5) can be estimated to be −0.67 and −0.69. Because
we use X = 1 for the male group and 0 for the female
group, the negative signs of the coefficient estimates
indicate that the male group had shorter 0.2 and 0.5
quantiles of survival than the female group. Indeed, the
Kaplan-Meier estimates of the 0.2 and 0.5 quantiles
were 1.67 and 6.08 for male, and 2.34 and 6.77 for
female, respectively.

Conceptually, one can consider conditional quantile
estimates for any τ between 0 and 1. In the presence of
censoring, however, some regression quantiles for cen-
sored outcomes may not be estimable and the upper
bound of the estimable quantile level is close to the
point where the curve becomes a plateau; see Fig. 1 and
more detailed discussion later. Standard errors and con-
fidence limits for the quantile regression coefficient
estimates can be obtained with bootstrapping methods,
which are available in the output of R and SAS.

We demonstrate the use of quantile regression using
the BLCSC study. We considered 153 patients with com-
plete methylation data (which will be modeled in the
next section) from BLCSC, of whom 55% were male, 68%
had stage 1 cancer, and 32% had stage 2 or above.

Among these patients, the mean age was 68 ± 9.9
years. The average follow-up was 8.15 years, and during
the follow-up, 101 deaths were observed and 34% were
censored. The majority of the patients were adenocar-
cinoma patients, as a total of 64% patients were lung
adenocarcinoma cases, and the other 36% were squa-
mous cell carcinoma or other subtypes of lung cancer.
Smoking intensity was measured for each patient as
lifetime pack-years at diagnosis and the average pack-
years was 53.4 ± 43.8. Using age (in years), gender
(0: female; 1: male), pack-years, cancer type (0:
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Figure 1. Kaplan-Meier estimates for male and female.
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adenocarcinoma; 1: non-adenocarcinoma), and cancer
stage (0: stage = 1; 1: stage > 1) as predictors for the lung
cancer patients’ overall survival, we considered a quan-
tile regression model that links the conditional quantile
of overall survival, often an endpoint of major interest,
to these predictors. In Fig. 1, the survival curve levels off
around the 0.65 quantile for the female group. This
means that the conditional quantile in the female group
at any level higher than 0.65 would be estimated to be
infinity. Therefore, we focused on the quantile levels of
0.2 and 0.5, where the 0.2 quantile represents the time
for early deaths while the 0.5 quantile corresponds to
the median survival, although one can choose different
levels of interest as long as they do not exceed 0.65.

Table 1 documents the modeling results, which are
worth discussing. First, compared with the more
advanced stage (stage > 1) patients, the early stage
patients’ (stage = 1) 0.2 and 0.5 quantiles of overall sur-
vival were 2.56 and 5.64 years longer, both of which
were significant. This reveals that cancer stage played
an important role in both quantiles. In addition, com-
pared to the adenocarcinoma cases, non-
adenocarcinoma cases had 0.73 fewer years in the 0.2
quantile, but 0.86 more years in the median survival.
Even though the numbers were not statistically signifi-
cant, the opposite signs of the coefficients at these two
quantiles might hint that the effects of the cancer sub-
type are heterogeneous. At the quantile level of 0.5, the
effect of age was highly significant and a 1 year increase
in age was associated with 0.23 years loss in median
survival. On the other hand, the effect of age was not
significant for the 0.2 quantile, indicating that age may
have heterogeneous effects on survival.

Similarly, at the quantile level of 0.5, the effect of
smoking intensity was highly significant and a one unit
increase in pack-years resulted in 0.03 years loss in the
median survival. On the other hand, the effect of smok-
ing intensity was not significant for the 0.2 quantile,
indicating that smoking intensity may have heteroge-
neous effects on survival, which could not be detected
by the Cox model.

As the conditional quantiles under a Cox model are
not linear in covariates, the coefficients from the Cox
model are not directly comparable with their counter-
parts from a censored quantile regression model.29

Nevertheless, a local quantile measure of the effects of

covariates in a Cox model on conditional quantiles was
proposed by Koenker and Geling32 and Portnoy,29 which
can be compared with the coefficients from censored
quantile regression.

Figure 2 further illustrates the differences in cen-
sored quantile regression and Cox models by comparing
the estimates of β(τ) (in blue) and the local quantile
measure (in red) for τ ∈ (0.05, 0.10, . . . , 0.60, 0.65). Here,
the estimated quantile measure for each covariate was
computed using Eq. (9) of Portnoy,29 and the light blue
shaded regions represented 95% pointwise confidence
interval (CI) for the estimated β(τ). For all the covariates,
the estimates of β(τ) (in blue) were largely in disagree-
ment with the local quantile measure as suggested by
the plots. The flexibility offered by quantile regression
may lead to more granular analysis of the data.

Censored quantile regression with high-
dimensional features
Modern cancer studies have generated massive data
with high-dimensional biomarkers such as gene expres-
sions, SNPs, methylation, and next-generation RNA
sequencing. Identifying molecular biomarkers that are
associated with survival of cancer patients is key to
understanding disease progression processes and
designing more effective cancer treatments. Selecting
informative biomarkers for cancer survival from high-
dimensional molecular data is challenging because
quantile regression, along with classical regression such
as Cox and AFT, was designed to be applicable only in
low-dimensional settings, where the number of predic-
tors is much less than the sample size. Variable screen-
ing is often needed to select informative predictors,
often 10 or 20, out of thousands or millions of predic-
tors, before feeding the selected variables into a regres-
sion model to reach a final predictive model. See Hong
and Li33 for a review of variable screening techniques in
the context of high-dimensional censored data analysis.

Although some biomarkers may not be important for
the median survival time, they may be highly asso-
ciated with the lower tail of the survival time distribu-
tion, representing the subpopulation with poor survival.
In this case, applying the screening approaches that
were designed for mean-based regression models would
not help identify predictors with the heterogeneous

Table 1. Point estimates and CI (in parentheses) for censored quantile regression with demographic and clinical factors from
the Boston Lung Cancer Survivor Cohort (BLCSC).

τ = 0.2 τ =0.5

(Intercept) 12.35 (8.67, 18.15) 32.48 (14.97, 47.72)
age −0.07 (−0.14, −0.01) −0.23 (−0.52, −0.07)
sex −0.32 (−2.47, 1.53) −1.05 (−3.74, 2.07)
packyrs −0.00 (−0.02, 0.01) −0.03 (−0.05, −0.01)
cstage: stage > 1 vs. stage=1 −2.56 (−4.32, −1.13) −5.64 (−7.57, −3.67)
ctype: non-adeno vs. adeno −0.73 (−2.60, 0.99) 0.86 (−0.97, 4.90)

Quantile regression for survival data in cancer research | 93



Figure 2. Results of censored quantile regression with point estimates (blue curves) and 95% CI (lighter blue shaded regions); the red lines are
the estimated local quantile measures for the Cox proportional hazards model.

Figure 3. Selected CpG sites related to the 0.2 or 0.5 quantiles of overall survival.
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effects. Quantile regression approaches may help detect
biomarkers that are associated with the low- or high-
risk groups. For this purpose, He et al.34 proposed the
quantile adaptive sure independence screening (QA).
The algorithm can be implemented in the following
simplified steps.

Step 1. For a τ, compute a ranking statistic, such as in
He et al.,34 for each biomarker (e.g. methylation site).
The magnitude of the statistic represents the level of
importance of that biomarker.

Step 2. Rank the biomarkers based on their statistics
and choose the top ranked biomarkers, often 10 or 20.

Step 3. Repeat Steps 1 and 2 for all τ of interest.
Many studies demonstrate that methylation can be

used as a biomarker to improve risk stratification of
cancer patients. For example,35 developed a model to
predict survival in clear cell renal cell carcinoma
(ccRCC) based on five CpG methylation profiling. The
BLCSC, with methylation data available on 442 613 sites,
provides a unique opportunity to conduct methylation
profiling by applying QA to identify methylation sites
that play an important role at different quantiles of the
patients’ overall survival.

Although we could directly apply QA screening to the
entire 400 000 methylation sites, we used the target
gene approach by focusing on those residing within the
genes that have been identified by the literature to be
associated with development of lung cancer. These
genes include ROS1, RET, PIK3CA, NRAS, BRAF, ALK,
AKT1, VGLL2, MET, KRAS, EGFR, KDM4, ST3GAL3, and
CDH13. We used the array annotations from the
Bioconductor package FDb.InfiniumMethylation.hg19
(version 2.2.0) to identify a total of 589 methylation sites
that lie within these genes.

Applying QA, we selected the top 10 methylation
sites at τ = 0.2 and 0.5. The selected methylation sites
were not identical for these two quantiles. While there
were seven overlapping methylations sites selected for
both quantiles, three distinctive sites were also selected
for each of these quantiles, revealing that the CpG sites
might have heterogeneous effects on survival time (see
Fig. 3).

We further built a joint model with all of the selected
CpG sites (in percent values), along with age, gender,
pack-years, cancer stage, and cancer type, as predictors
for the lung cancer patients’ overall survival. We fitted
models separately for the two quantiles and estimation
results are given in Table 2. Some interesting observa-
tions can be made. For example, a unit (or 1%) increase
in cg11956748 leads to 0.014 years loss in the 0.2 quan-
tile, but 0.033 years increase in the 0.5 quantile (i.e.
median survival), after controlling for all of the other
confounders. Moreover, a unit increase in cg00252422
was associated with 0.002 years loss in the 0.2 quantile
and 0.003 years increase in the median survival, while a
unit increase in cg25763538 was associated with 0.001
years loss in the 0.2 quantile and 0.002 years increase in
the median survival. On the other hand, a unit increase

in cg06895316 results in 0.003 years increase in the 0.2
quantile, but 0.001 years decrease in the median sur-
vival. Varied effects of the other CpG sites were also
observed across the 0.2 and 0.5 quantile models. All of
these results hint that quantile regression could be a
useful tool for discerning predictors with heterogeneous
effects.

Discussion and future directions
The analysis of censored outcome data in cancer
research is predominated by Cox regression models and
accelerated failure time models. This paper tries to con-
vey the message that quantile regression methods can
be a powerful alternative to these popular approaches.
For example, it relaxes the implicit assumption of AFT
that the associations between the outcome and the cov-
ariates are the same across all levels and the propor-
tional hazards assumption of the Cox model. Using a
dataset from the BLCSC, we have illustrated the use of
censored quantile regression by identifying clinical and
molecular predictors, for example CpG methylation
sites, that may have heterogeneous impacts on lung
cancer patient survival. The past decade has seen flour-
ishing research in censored quantile regression. We
envision that the following areas may attract attention
soon.

Model diagnostics

It is an essential task to examine whether the linear
assumption (1) holds for all τ, for some τ, or for no τ at
all. One may also need to check whether the slopes β(τ)
are the same or differ across different quantile levels by
examining the interaction terms with observed covari-
ates. Although some tools, such as the conditional Q-Q
plot (sometimes called the “worm” plot), have been pro-
posed for the model diagnostics of quantile regression
with complete data (see Ref. [36] for a detailed introduc-
tion), model diagnostics for censored quantile regres-
sion is still greatly underdeveloped. Designing effective
model diagnostic tools for censored quantile regression
warrants more in-depth research.

Quantile regression for different types of
censoring

This paper has concentrated on the outcome data that
were right censored, as this was the main feature of our
motivating dataset. More broadly speaking, we are
aware that the emergence of other censoring types,
such as interval censored data, current status data, and
left truncated data, has prompted the extension of
quantile regression. See, for example, the extended
quantile regression work of Zhou et al.,37 Kim et al.,38

and Lin et al.39 for interval censored outcome data, of
Ou et al.40 for current status data, and of Cheng et al.41

and Shen42 for left truncated data.
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Unconditional quantile regression

The quantile regression we have focused on is, more
precisely, the conditional quantile regression, which
assesses the impact of a covariate on a quantile of the
outcome given specific values of other covariates. Some
authors, however, argue that interpretation of such
effects becomes limited when the effects for different
conditional quantiles vary and the estimated effects do
not translate to relevant policy questions that are linked
to these covariates. Recently, the unconditional quantile
regression approach has been proposed to overcome the
limitations of the conditional quantile regression.43 As its
formulation and inference are less intuitive, its readiness
for practical implementation may still need some work.

Non-parametric high-dimensional models

With high-dimensional predictors, quantile regression
forests have been proposed as a non-parametric way of
estimating conditional quantiles.44 Efforts have been
made to extend the approach to accommodate censor-
ing,45 but its practical implementability remains to be
studied.

Finally, as DNA methylation is likely to change dur-
ing the course of lung cancer development, it is plaus-
ible that integrated approaches that combine a variety
of molecular biomarkers, such as whole-genome micro-
array, mRNA expression, DNA genotype, and methyla-
tion data, with demographic, environmental, and
clinical indicators, will be superior for survival predic-
tion. Our work, nevertheless, represents a proof of prin-
cipal, providing evidence that quantile regression can
be a valuable tool for detecting the heterogeneous

effects of clinical variables and molecular biomarkers
on lung cancer survival.
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Appendix
R and SAS commands for the analysis of the BLCSC data in Section 2

R commands and output
Censored quantile regression can be fitted by the function crq in the quantreg package:

The object fit produced by calling crq utilizes, by default, the Portnoy estimator. Other options are ‘Powell’ and
‘PengHuang’. The bootstrap-based standard errors are reported in the output.

The following code was used to draw Fig. 2.

SAS commands
The same model can be fitted using the following SAS commands.
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The categorical variables are listed in the CLASS statement. The MODEL statement specifies the model, and the
option QUANTILE specifies a set of quantiles of interest for comparing quantile-specific covariate effects. The
METHOD=KM and METHOD=NA are analogous to the ‘Portnoy’ and ‘PengHuang’ options in R.

R codes for the analysis of the BLCSC data in Section 3

The R function, QaSIS.surv, to perform the QA screening, is available at the author’s website. The following code
generates the selected methylation sites with τ = 0.2 in Fig. 3.
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