Supporting information for Sulfoquinovosyl diacylglycerol is required for dimerization of the *Rhodobacter sphaeroides* RC-LH1 core complex

Elizabeth C. Martin¹, Adam G.M. Bowie¹, Taylor Wellfare Reid^{1,3}, C. Neil Hunter¹, Andrew Hitchcock^{1,*} and David J.K. Swainsbury^{2,*}

¹Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, UK.

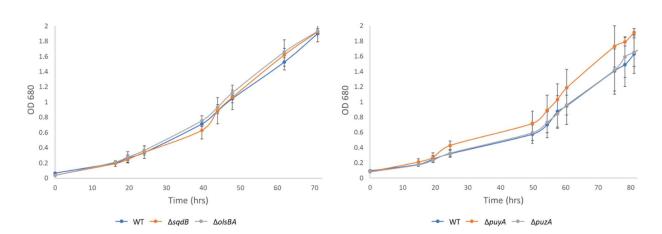
²School of Biological Sciences, University of East Anglia, Norwich, UK.

³Present address: Centre for Bacterial Cell Biology, Newcastle University, Newcastle, UK.

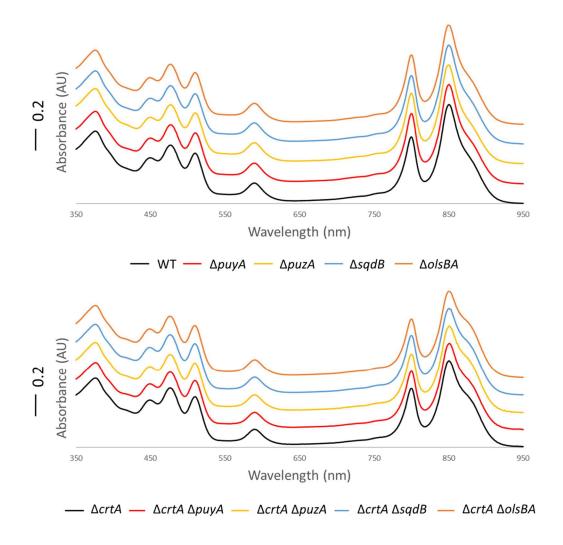
*Corresponding authors: Andrew Hitchcock (<u>a.hitchcock@sheffield.ac.uk</u>) and David J.K. Swainsbury (<u>d.swainsbury@uea.ac.uk</u>)

Table of contents:

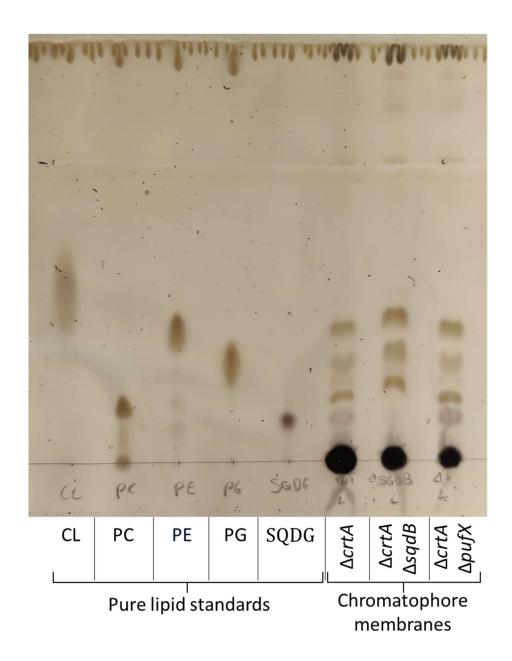
Table S1. Primers used in this study	Page 2
Table S2. Plasmids used in this study.	Page 3
Supplementary Figure 1. Growth curves	Page 3
Supplementary Figure 2. UV/Vis/NIR absorbance spectra of chromatophore membranes	Page 4
Supplementary Figure 3. Full TLC plate	Page 5
Supplementary Figure 4. Attempted reconstitution with SQDG	Page 6
Supplementary Figure 5 . Confirmation of knockouts of <i>puyA</i> , <i>puzA</i> , <i>cycA</i> and <i>cycI</i> by PCR.	Page 7
Supplementary Figure 6. Additional sucrose gradients.	Page 7
Supplementary Figure 7. Sequence alignments for protein-Y and protein-Z	Page 8

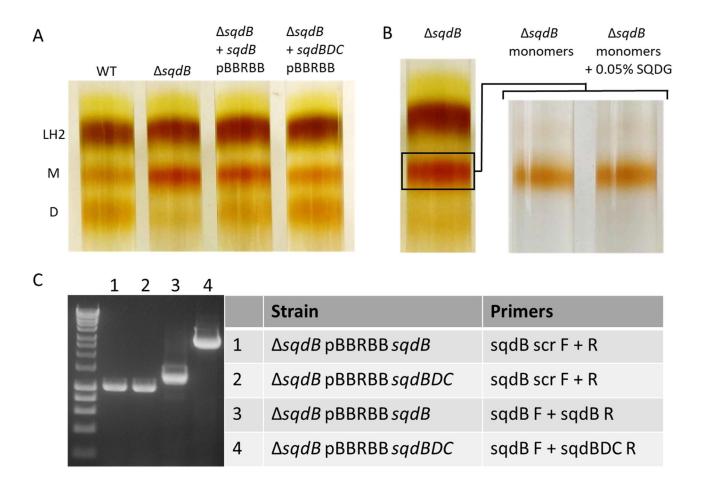

Table S1. Primers used in this study. Restriction enzyme sites used for cloning are underlined in bold.

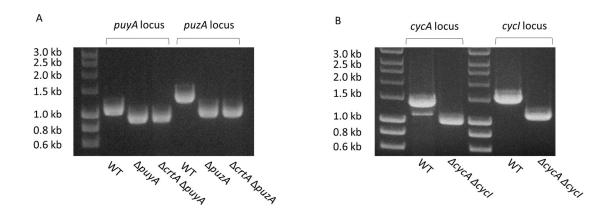
Name	Sequence (5'-3')		
olsBA KO Scr F	CTTTCCGAGATCAGCGCCATCTC		
olsBA KO UF	GATC GAATTC CTGATAAGATCGTGACAGATGCGCG		
olsBA KO UR	GACAGGCTCGTCGGCGATCATTCCCGGAC		
olsBA KO DF	GATCGCCGACGAGCCTGTCGGCTGACCG		
olsBA KO DR	GATCAAGCTTGATCGAGAACCATGTGCTGATGGTC		
olsBA KO Scr R	GATCGATCTCGAGATCTTCCCCGAC		
sqdB KO Scr F	CGGTGGGTGCCGACAAGAT		
sqdB KO UF	GATC GAATTC GTGGCTGCCATCTGCCAT		
sqdB KO UR	CCAATCAGGACACTGCGATGCGCATGAAGCC		
sqdB KO DF	CGCATCGCAGTGTCCTGATTGGATCTGGCAG		
sqdB KO DR	GATC AAGCTT AACAGCCGGTCCACGTTC		
sqdB KO Scr R	TCTCGTAGACATTCGGCGCG		
puzA KO Scr F	CATTTCTGCATCATCGCGCATGAC		
puzA KO UF	CCG GAATTC GAAGCTGGACGAGATGTGGAATCC		
puzA KO UR	CGTCAGACCTCTTTCATATATGCCATTTAAACCTCCCTCTTGC		
puzA KO DF	GAGGTTTAAATGGCATATATGAAAGAGGTCTGACGGACCCGTG		
puzA KO DR	CGGC <u>AAGCTT</u> CCATCGTTTTCGTCTTCCGTCAC		
puzA KO Scr R	GTTCGACGATGGACAGGATCTCG		
puyA KO Scr F	CAGCCGATGGTCCAGACCTC		
puyA KO UF	CCG <u>GAATTC</u> GTCACGATAATGGGCCATGTCTCTC		
<i>puyA</i> KO UR	CAGTTGCTGTTTTCGGGCATGGTGCCTCCTTC		
puyA KO DF	CCATGCCCGAAAACAGCAACTGACGGCGC		
<i>puyA</i> KO DR	CGGC <u>AAGCTT</u> GAGGGCTGGATCGACTACGATC		
puyA KO Scr R	GGCCTATGTCTCGGGGTTTCTC		
cycl KO Scr F	CATTTCGTGAATCCGTCCGAGATCG		
cycl KO UF	CCG <u>GAATTCC</u> AACGTGAAGGTGATGCGTCAGG		
<i>cycl</i> KO UR	CATTTCAGCCCTCCAATCTCATGGTCTTCTCCCTTTGCG		
cycl KO DF	GACCATGAGATTGGAGGGCTGAAATGCCTGTCTGC		
cycl KO DR	CTG <u>AAGCTT</u> GCCCACGTTCTCG		
<i>cycl</i> KO Scr R	GCCACAGGATCTTGCCGTCATTG		
cycA KO Scr F	CATGGTGGAACCTGCAGGAC		
cycA KO UF	GCA <u>GAATTC</u> CCTCGCATCTGCCGGATACC		
cycA KO UR	GGCGACCTGGGCCTTGACTTGGAACTTCATGG		
cycA KO DF	GTCAAGGCCCAGGTCGCCGTCCGGC		
cycA KO DR	CGC <u>AAGCTT</u> GGCGCCTGAATGTACTCACCG		
cycA KO Scr R	CTGAAGCAGGCGGTGTCGG		
sqdB HindIII F	GATC <u>AAGCTT</u> ATGCGCATCGCAGTTCTGG		
sqdB Bcul R	GATC <u>ACTAGT</u> TCAGGACACCGAGCGCAG		
sqdC Bcul R	GATC <u>ACTAGT</u> CTAAATCATGAGCGGCAGCGTTTG		
<i>sqdB</i> seq F	GTTATCTCGACGTCTCGGTCGAGAC		
sqdD seq F	GATTGGATCTGGCAGCCGAAGG		
ECM 18	CCTACACGCAAACCGTCGATTTAC		
PCR1	CGGGCCTCTTCGCTATT		
PCR2	TTAGCTCACTCATTAGG		

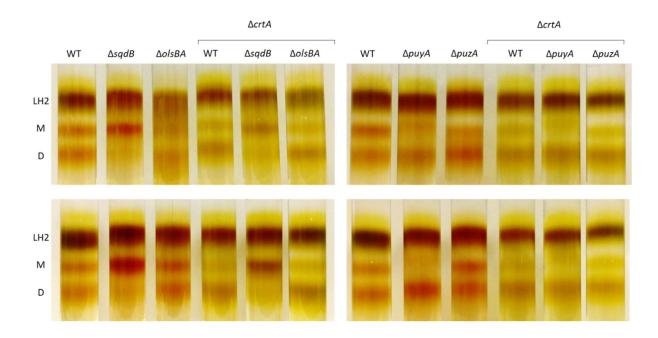

Table S2. Plasmids used in this study.

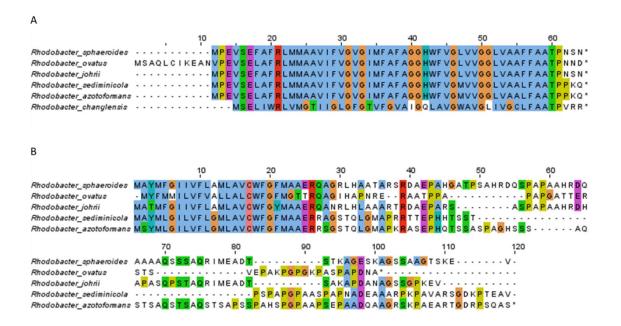
Name	Details	Source/reference
pk18mob <i>sacB</i>	Allelic exchange vector, Km ^R	Professor J. Armitage*
pk18mob <i>sacB</i> ::∆olsBA	Construct for unmarked deletion of olsBA	This study
pk18mob <i>sacB</i> ::∆ <i>sqdB</i>	Construct for unmarked deletion of sqdB	This study
pk18mobsacB::∆puzA	Construct for unmarked deletion of puzA	This study
pk18mobsacB::∆puyA	Construct for unmarked deletion of puyA	This study
pk18mobsacB::∆cycA	Construct for unmarked deletion of cycA	This study
pk18mobsacB::∆cycl	Construct for unmarked deletion of cycl	This study
pBBRBB-P <i>puf</i> ₈₄₃₋₁₂₀₀ -DsRed	Replicative expression plasmid, Km ^R	Addgene.org; Tikh et al.
		2014 [48]
pBBRBB-P <i>puf</i> ₈₄₃₋₁₂₀₀ - <i>cycA</i>	Plasmid for expression of cycA	This study
pBBRBB-P <i>puc-pucBAC</i>	pBBRBB-P <i>puf</i> ₈₄₃₋₁₂₀₀ -DsRed with P <i>puf</i> -	This study
	DsRED replaced with the Ppuc-pucBAC	
pBBRBB-P <i>puc-sqdB</i>	Plasmid for expression of sqdB	This study
pBBRBB-P <i>puc-sqdBDC</i>	Plasmid for expression of sqdBDC	This study


^{*}Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.


Supplementary Figure 1. Growth curves of all four knockouts in a WT background used in this study at low light (10 μ mol). No significant phenotype was observed in any strain and all knockouts were confirmed by PCR afterwards. $\Delta puyA$ showed some variation, but further repeats (data not shown) showed the same growth as WT. A phenotype may yet be apparent at different light intensities.


Supplementary Figure 2. UV/Vis/NIR absorbance spectra of chromatophore membranes from all strains in the WT and $\Delta CrtA$ backgrounds. Spectra collected of chromatophore membranes isolated from other cellular components by differential centrifugation (see methods). Spectra are offset for clarity.


Supplementary Figure 3. Full TLC plate showing pure lipid standards and lipids extracted from chromatophore membranes. The lipid standards were Cardiolipin (CL), Phosphatidylcholine (PC), Phosphatidylethanolamine (PE), Phosphatidylglycerol (PG), Sulfoquinovosyl diacylglycerol (SQDG). Chromatophore membranes were extracted from *Rba*. *sphaeroides* cells and isolated by separation on 40/15 % w/v sucrose gradients from the $\Delta crtA$, $\Delta crtA$ $\Delta sqdB$, and $\Delta crtA$ $\Delta pufX$ strains.


Supplementary Figure 4. Attempted reconstitution of dimers in the $\Delta sqdB$ strain by in trans complementation or incubation with SQDG. (A) Monomer-dimer gradients of $\Delta sqdB$ cells expressing sqdB from a plasmid show a slight increase in dimer formation. Expression of the sqdBDC operon increases dimer expression to WT levels. (B) Purified monomers from $\Delta sqdB$ incubated with purified SQDG do not spontaneously form dimers. (C) Ethidium bromide-stained PCR products to verify the presence of sqdB or sqdBDC in pBBRBB-Ppuf₈₄₃₋₁₂₀₀ in the $\Delta sqdB$ background. Lanes 1 and 2 confirm the absence of sqdB in the genome of both strains and lanes 3 and 4 confirm the presence of either sqdB or sqdBDC on pBBRBB.

Supplementary Figure 5. Confirmation of knockouts of *puyA***,** *puzA***,** *cycA* **and** *cycI* **by PCR.** Agarose gel of ethidium bromide-stained PCR products showing size differences for the amplified regions. A. PCR products spanning the *puyA* and *puzA* genes showing a clear reduction in size in the knockout strains relative to the wild type. B. PCR products spanning the *cycA* and *cycI* genes showing a clear reduction in size in the knockout strains relative to the wild type.

Supplementary Figure 6. Additional sucrose gradients. Two further repeats were performed showing the same monomer dimer distribution as presented in Figure 3 of the main paper.

Supplementary Figure 7. Sequence alignments for protein-Y and protein-Z (A) Alignment of sequences for protein-Y from species within the *Cereibacter* subgroup. (B) Alignments for protein-Z. A sequence for *Rba. changlensis* could not be found, potentially due to a lack of homology. With the exception of *Rba. changlensis*, protein-Y shows a very high degree of sequence homology between species. Protein-Z has a disordered tail on the C-terminus that is missing in the structure and shows a very high degree of variation between species. Truncations would have to be performed to establish if this region is unnecessary.