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Abstract: Nanoparticles significantly alter the rheological properties of a polymer or monomeric resin
with major effect on the further processing of the materials. In this matter, especially the influence of
particle material and disperse properties on the viscosity is not yet understood fully, but can only be
modelled to some extent empirically after extensive experimental effort. In this paper, a numerical
study on an uncured monomeric epoxy resin, which is filled with boehmite nanoparticles, is presented
to elucidate the working principles, which govern the rheological behavior of nanoparticulate
suspensions and to simulate the suspension viscosity based on assessable material and system
properties. To account for the effect of particle surface forces and hydrodynamic interactions on
the rheological behavior, a resolved CFD is coupled with DEM. It can be shown that the particle
interactions caused by surface forces induce velocity differences between the particles and their
surrounding fluid, which result in increased drag forces and cause the additional energy dissipation
during shearing. The paper points out the limits of the used simulation method and presents
a correction technique with respect to the Péclet number, which broadens the range of applicability.
Valuable information is gained for a future mechanistic modelling of nanoparticulate suspension
viscosity by elucidating the interdependency between surface forces, shear rate and resulting drag
forces on the particles.

Keywords: nano-composites; CFD-DEM coupling; viscosity simulation; rheology; suspension viscosity;
surface forces; viscosity modelling; polymer viscosity; epoxy resin; nanoparticles; composite materials

1. Introduction

Numerous reports exist on the strong effect of nanoparticles on the rheological behavior of
nanoparticulate suspensions [1]. Surface forces are considered to be the dominating cause of the
strong observable increases in viscosity [2,3]. In the case of polymer suspensions, an immobilization
of molecules is considered to influence the viscosity as well [4]. Despite extensive and persistent
effort of the scientific community to develop methods and models to predict the rheological
properties of suspensions [5], the range of applicability of such methods and models is still very
limited [6,7]. This particular work is done in the focus of the production of lightweight fiber reinforced
nano-composite structures for aerospace applications. Here, boehmite nanoparticles are added to
an uncured monomeric epoxy resin in order to improve the mechanical properties [8] of the matrix
material since they often limit the mechanical performance of fiber reinforced composites. The key
obstacle in this field is the fact that the beneficial effect on the mechanical properties comes with
the disadvantage of a steep increase in viscosity, which has a strong effect on the processing [8,9]
of the material and impedes the injection of the uncured epoxy resin into the fiber layers during
impregnation. Studies on the material system, which is regarded in this study, show that difficulties
during impregnation arise from shortened flow-length of the material in the fiber layers. They originate
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from an increased pressure drop along the fluid path through the layers, which is caused by the
increased viscosity [10]. In addition, filtering effects can amplify this effect, especially when coarse
particles block the flow or inter-fiber spacing is small [11]. Tailoring the particulate system for
a maximum gain in mechanical strength and minimized viscosity increase during production requires
insight on the underlying working principles causing the viscosity increase. To this day, most models
available for the characterization of suspension viscosities are empirical or semi-empirical and require
extensive experimental effort, as model parameters originate from the approximation of measured
experimental data. This is especially true for models dealing with nanoparticulate systems [7].
Furthermore, most analytical models do not cover any disperse properties other than solids content and
disregard the effect of material properties, even though their significance has been proven numerous
times [1]. This is why with the development of capable numerical methods for the investigation of
such physical phenomena, numerical simulations have been employed to predict the viscosity of
particle-laden fluids.

This work applies coupled CFD-DEM simulations to gain insight on the working principles
causing the rheological behavior of nanoparticulate suspensions. Thus, the present work seeks to open
up the prospect of being able to mechanistically model the rheological properties of nanoparticulate
suspensions in a broader range than possible today.

2. State of the Art

Independent from the specific method, numerical simulation of rheological properties focusses
on the combined depiction of solid-fluid interactions (hydrodynamic interactions) and the interaction
between particles. The first methods to be employed for this purpose were Stokesian Dynamics [12]
and Molecular Dynamics (MD) simulation of multiple phases. In 1985, Brady and Bossis [13] proved
the capability of Stokesian Dynamics to model non-Newtonian behavior of fluids, taking advantage
of the fact that in simulation the individual sources of interaction can be studied independent from
another. Doi and Chen [14] employed a Stokesian Dynamics simulation set up to study changes
in the particle-cluster structure with respect to the applied shear rate in order to elucidate the
working principles causing shear thinning behavior of colloidal suspensions. Due to the insight
gained on the colloidal structure of the particles in the shear flow, they were able to suggest that
the rheological behavior of the suspension is not governed by the size or shape of the dynamically
forming and disintegrating structure of particle clusters, but rather on the size of sub-structures
comprised of a few particles with stronger binding. Stokesian Dynamics were also proven to be
applicable [15] for obtaining otherwise non-accessible parameters required for an analytical viscosity
model and were used to verify model assumptions and confirm experimentally obtained parameters.
This enabled the successful modelling of nanoparticle suspensions over a broad range of solids
contents. Yamamoto et al. [16] extended the method to account for the dynamics of rod-like particles
and proved its capability to account for the additional energy dissipation due to the non-spherical
shape of the particles.

Woodcock [17] applied a coarse-grained non-equilibrium Molecular Dynamics simulation to
model the shear thinning behavior of 1 µm sized PVC particles at high solids contents (cv = 0.55)
and received good agreement with experimental findings. With a less coarse-grained approach,
Starr et al. [18] were able to depict that shear thinning behavior depends on the dispersion state of
the suspension. They also confirmed the results of Doi and Chen [14] concerning the subordinated
effect of the size and shape of weak clusters on the rheological behavior and pointed out that the
interaction between particle surface and fluid molecules [19] influences the structure of such molecules,
which might result in an altered rheological behavior of the suspension.

MD simulations excel at elucidating effects on molecular level, but are quite costly.
Disspative Particle Dynamics (DPD) represent fluid elements with discrete spheres, which mimic
the behavior of a fluid. This reduces the computational effort significantly. With this method,
Koelman et al. [20] were able to depict the relative viscosity of a suspension of spheres in the sub-micron
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size range, based on hydrodynamic and Brownian fluctuating forces. Boek et al. [21] investigated the
effect of particle size and the relevance of individual mechanisms of interaction and compared it to
existing models.

A further step in abstracting the fluid phase of a suspension is taken, when exclusively employing
the Discrete Element Method (DEM) to investigate the rheology of suspensions. In recent years,
this method proved to be very capable of illuminating rheological phenomena in suspensions with
a high solids content of micron scale particles [22,23]. Ness et al. [24] employed DEM simulation in
which contact models mimicked hydrodynamic lubrication forces, frictional and contact forces as
well as a repulsive particle interaction, which they simplified to a linear spring model. They could
show that this method allows depicting the flow regime transition in high solids content suspensions
(cv > 0.45). This method even allowed the derivation of a constitutive model with respect to the
dominating sources of interaction, which were found to be characteristic for the respective regimes.
The method also provided rheological regime maps for these suspensions, which are otherwise hard
to model [25]. Lin et al. [26] employed a similar set up, which differed mainly by a fully resolved
repulsive electrostatic force between the particles. They could show that the rheological phenomenon
of shear thickening can be attributed to contact forces rather than to the formation of hydrodynamic
clusters by quantifying the contribution of the individual types of interaction to the overall viscosity
during shear reversal experiments. Pähtz et al. [27] regarded lubrication forces and a viscous drag
force in a DEM simulation. The viscous drag force was calculated as done in Stokesian Dynamics
simulations. They showed that the flow curves of many suspensions and flow conditions could be
characterized by a friction coefficient, which scales with the Péclet number and the contact models
friction parameter.

It is noticeable that DEM can only be used alone, if the suspensions have a high solids content of
coarse particles with pronounced inertia, since friction-, contact-, and lubrication forces were found
to dominate in this region. In contrast, nanoparticulate suspensions already exhibit strong viscosity
increases at low solids contents. Consequently, friction- and contact forces cannot be expected to have
a strong effect. Instead, inter-particle surface forces and particle-fluid interactions must be evaluated
with great care.

Computational Fluid Dynamics (CFD) is a very common method to solve fluid flow. A coupling
of CFD with DEM can therefore yield the required information on the interaction of fluid and solid
phase. Yoshida et al. [28] studied the viscosity of silica particles dispersed in a mixture of ethylene
glycole and water. The particle size was varied from micron to nano scale. Simulations were conducted
by coupling CFD and DEM on the level of Direct Numerical Simulation (DNS). For DNS, the chosen
mesh size resolves the fluid flow down to the level of the Kolmogorov length scale, i.e., to the size of
the smallest eddy in a turbulent flow and hence yields an exact solution of such flow. The method
yielded good agreement between simulation and experiment with respect to particle size and solids
content. All DLVO forces were regarded as contact models in the DEM. Smuts [29] chose an unresolved
way to couple CFD and DEM to simulate the viscosity of suspensions from water and micron particles.
In unresolved CFD-DEM simulations, drag models are employed to account for the drag forces acting
on the particles. In this case, the CFD cells can be larger than the particles, allowing the depiction of
larger systems. The flow field around the particles however remains unresolved.

In a rotatory viscometer, the shear viscosity of a fluid or a suspension is measured by shearing
a fluid sample in a defined gap and measuring the shear stress acting on the wall of the measurement
cell by monitoring the torque acting on the rotating geometry. Most of the simulations mentioned
above were performed with periodic boundary conditions, which prevents any estimation of a shear
stress on a wall, since no walls exist. Independent from the specific simulational method, in most
studies the viscosity of the suspension is estimated by quantifying the stress acting in the system.
The procedure was developed by Batchelor [30], who modified a method of averaging properties in the
volume of a disperse systems [31]. The shear stress τxy in the x-y plane perpendicular to the velocity
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gradient in z-direction is taken to be equal to the difference between the mean stress tensor σ̄xy and the
tensor of momentum flux m̄xy as given in Equation (1).

τxy = σ̄xy − m̄xy (1)

In a stationary system, momentum flux balances to zero, which is why the expression can be
simplified to Equation (2a). The method assumes the average value of a parameter to be equal to the
sum of all local values in a volume V, divided by the volume as presented in Equation (2b).

τxy = σ̄xy (2a)

=
1
V
·∑

i
σi (2b)

=
1
V
·
(

∑
i∈ f l

σi + ∑
i∈particle

σi

)
(2c)

=
1
V
·
(

∑
i∈ f l

σFl,i + ∑
particle

σparticle

)
(2d)

This procedure allows the individual assessment of each phase in the system Equation (2c),
whereby in the last instance a summation of the shear stress contributions of all particles in the system
can take place (compare Equation (2d)). The aforementioned stress contributions are referred to
as ‘stresslets’.

Smuts [29] chose a different approach and conducted his simulations with a set up in which
the boundaries parallel to the shear flow were walls. This enabled him to estimate the stress acting
on these walls by first summing the contact forces Fwall transferred to the wall by the suspended
particles and then relate the value to the walls surface area Awall of the wall (compare Equation (3)).
Additionally, the to the fluids contribution to the wall stress was regarded.

τparticles,x =
∑ Fwall,x

Awall
(3)

3. Materials and Methods

For this numerical study, coupled CFD-DEM simulations were conducted. The simulation domain
consisted of a cubic representative volume element. In a preliminary convergence study, a side length
of 1.44 µm was found to be suitable to produce reproducible, system-size-independent results with
little deviation between runs with varying seeds. The number of particles in the system proved to be the
limiting parameter in this matter, as a certain number of particles is needed to depict a representative
disperse system. Details on the convergence study are given in the Appendix A. For the CFD simulation
the boundary condition of the upper and lower wall enforced a constant shear velocity with respect
to the desired shear rate, as both walls were set with fixed velocities in opposite direction (compare
Figure 1). All other walls were equipped with periodic boundary conditions. The particles were
accounted for by the introduction of polydisperse DEM-particles in accordance with the respective
solids content in each simulated case. The particle size distribution was taken from experiments via
Dynamic Light Scattering (see Nolte et al. [32]). The measured log-normal distribution with more than
50 particle size intervals was reduced to 12–18 intervals. An algorithm chose the number of intervals,
by reducing the resolution of the distribution while trading of the correct overall particle volume in
the system and the Euclidian distance between the original and the simplified distribution.



Materials 2020, 13, 4288 5 of 18

Figure 1. Representative volume element used in the CFD-DEM simulations.

The coupling of CFD and DEM was performed with the immersed boundary method [33],
which allows the depiction of the flow field surrounding the particles. For a realistic result the particle
surface must be resolved by at least eight CFD cells [34]. The simulations were performed with
the academic branch of the coupling code CFDEM, which couples the DEM code LIGGGHTS with
OpenFOAM. The coupling code CFDEM [34] allows coupling between fluid and particle phase in both
directions, as well as particle-particle interactions. Only rotatory velocities of the particle surface are
not transferred to the fluid phase and tangential flow of fluid does not change the rotatory movement
of the particle.

To account for the inter-particle interactions a Hertzian contact model was modified to include
van der Waals type interactions before overlap of the particles. Figure 2 presents the force distance
curve of the contact model for the collision of two particles of 100 nm diameter. For reasons of
representation, the Young’s modulus was reduced to 100 MPa, which corresponds to a value at least
two orders of magnitude below the Young’s modulus of boehmite [35]. As visible from Figure 2,
at a distance of 0.4 nm, van der Waals forces where limited to a constant value to ensure the stability of
the simulation, since attractive forces would tend to infinity at close particle proximity, before repulsive
forces of the Hertzian contact model would be effective. The value of 0.4 nm was chosen, because it is
often considered to be the minimum roughness, which even completely smooth particles exhibit and
prevents particles from approaching closer. MD-based studies [36,37] on the maximum non-contact
forces between silica nanoparticles when regarding Lennard-Jones potential and Born-repulsion,
agreed with this value. The van der Waals forces FvdW where calculated with respect to the first
derivative of the van der Waals potential WvdW (compare Equations (4) and (5)) [38]. The particle radii
are denoted by r and the distance between the surfaces is denoted by b.

WvdW = −H
6

[ 2rirj

(2ri + 2rj + b)b
+

2rirj

(2ri + b)(2rj + b)
+ ln

(2ri + 2rj + b)b
(2ri + b)(2rj + b)

]
(4)

FvdW =
32
3
·

Hr3
i r3

j (ri + rj + b)

b2(2ri + 2rj + b)2(b2 + 2bri + 2brj + 4rirj)2 (5)

The effect of the interstitial fluid phase on the particle-particle interaction is regarded by applying
Equation (6) for the Hamaker constant H.

H =
3
4

kBT
( ε1 − ε3

ε1 + ε3

)2
+

3hνe

16
√

2

(n2
1 − n2

3)
2

(n2
1 + n2

3)
3/2

(6)
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Figure 2. Force distance curve of the contact model for the combined representation of van der Waals
forces and Hertzian contacts.

The calculation of the Hamaker constant for the respective materials requires numerous material
parameters, which were either measured or taken from literature. A detailed list of the input parameters
and their origin is stated in Table 1. The static dielectric constant ε was calculated from the refractive
index as given by Equation (7) [38].

ε = 1 + (n2 − 1)/(1 +
ν2

ν2
e
) (7)

With the given material parameters and the use of Equation (6) a Hamaker constant of
H = 7.5× 10−21 J was calculated and used for the simulations.

Table 1. Parameters used for the calculation of the Hamaker constant.

Parameter Unit Value for Boehmite Origin Value for Epoxy Origin

Main UV-absorption frequency [1/s] 1.43× 1015 Alemi et al. [39] 1.58× 1015 measured
Refractive Index [-] 1.65 Gu et al. [40] 1.36 measured

Dielectric Constant [-] 2.72 calculated 1.85 calculated

Due to the unpolar nature of the epoxy resin, no ion double-layer can form around the particle.
Consequently, electrostatic repulsive forces can be neglected. Due to the lack of repulsive forces,
the particle system must be considered intrinsically instable, as no repulsive force prevents the particles
from agglomerating (compare Figure 2). If the fluid phase of the system was a polar liquid like water,
such forces should be regarded. The unhindered attraction of the particles leads to an artificial
acceleration of the particles, which falsifies the simulations. Therefore, particle insertion was done in
a way that prevented the insertion of particles in a proximity closer than 0.4 nm, which suppressed
such effects. This might be considered an unjustified tempering with the structure of the system.
However, during the production and preparation of the samples for the experiments, particles in
immediate proximity agglomerated unless shear forces separated them. A depletion of particles in the
immediate vicinity of the particle surface is therefore more likely than a direct neighbor.
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The viscosity was evaluated based on the common assumption that multiple effects on the
viscosity add up to the observable suspension viscosity ηsusp. The contribution of the fluid viscosity
η f l , and the particle contribution ηparticle is regarded as stated in Equation (8).

ηsusp = (1− cv) · η f l + ηparticle (8)

The contribution of the fluid viscosity is weighted with the fluid volume content (1 − cv),
since energy dissipation due to the inner friction of the fluid cannot take place in the part of the
suspension, which is occupied by particles. The particle contribution is estimated based on the method
of Batchelor [30], presented in Section 2 (see Equation (2)). The relationship between the viscosity,
shear rate γ̇ and shear stress is given in Equation (9).

ηparticle =
τparticle

γ̇
=

σ̄xy

γ̇
(9)

The stress tensor σ̄xy is calculated based on Equation (10), accounting for contribution from drag
forces, van der Waals forces and contact forces.

σ̄xy = σdrag + σvdW + σcontact (10)

The respective stresslet were calculated as presented in Equations (11)–(13). The particle radius is
represented by ri and the distance between the centers of two interacting particles is given by ai,j.

σdrag =
1
V
·
[
∑

i
(ri · Fdrag,i,x + ri · Fdrag,i,y)

]
(11)

σvdW =
1
V
·
[
∑

i
∑
j 6=i

(ai,j · FvdW,i,x + ai,j · FvdW,i,y)
]

(12)

σcontact =
1
V
·
[
∑

i
∑
j 6=i

(ai,j · Fcontact,i,x + ai,j · Fcontact,i,y)
]

(13)

The method of Batchelor [30] can be applied, when the regarded volume can be considered
representative to the system (see convergence study in Appendix A) and no significant changes to the
system happen during the time of evaluation. Consequently, a steady state must be ensured before
performing the stresslet evaluation. Preliminary simulation studies revealed that to reach a steady
state not the simulated time was significant, but the number of coupling intervals between CFD and
DEM. Consequently, the coupling interval was set to 1 and the timestep width to a very small value of
1× 10−8 µs. This limits the distance particles can travel and thus, prevents artificial agglomeration
events to occur. The simulation gains the characteristics of a steady state simulation, as only slight
movement allows a relaxation of the system. Steady state was reached after 900–1200 timesteps.
An average from the last 125 timesteps was evaluated.

For validation of the simulation results, an epoxy-boehmite nano-composite material was chosen.
The suspension consisted of uncured Araldyte LY 556 epoxy resin (HUNTSMAN) and boehmite
nanoparticles HP14 (SASOL), dispersed to a median particle size x50,3 of 75 nm. A detailed depiction
of the manufacturing process can be found in Jux et al. [8].

The rheological characterization of the sample material was conducted in a rheometer
(Kinexus, Malvern) with a plate-plate geometry. Rheological measurements were performed in
a temperature range of 30–80 ◦C for suspension samples with solids contents between 0 and 20 wt.%.
This corresponds to a volumetric solids content of 0 to approximately 10 vol.%. The CFD was equipped
with the neat resin viscosity at the respective temperature. The fluid shows Newtonian behavior and
a strong temperature dependency [41]. Non-Newtonian behavior of the fluid phase could be regarded
by using the viscosity value at a specific shear rate as the fluid viscosity in the CFD. If local changes in
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the shear rate (e.g., due the presence of particles) shall be regarded, a non-Newtonian viscosity can
be defined in the CFD simulation. The CFD code allows a power-law model, which calculates the
viscosity based on the local velocity gradient between neighboring cells. This way also the typical
rheological behavior of polymers can be regarded.

4. Results and Discussion

4.1. Applicability and Limits of the Chosen Method

To test the applicability of the simulation set up for the simulation of the suspension viscosities,
the solids content in the suspension was varied and compared to experimental values. The results
are given in Figure 3 for suspensions characterized at 80 ◦C with a shear rate of γ̇ = 100 1/s.
Good agreement between experimental and simulated results is visible, when surface forces are
regarded in the simulation, especially at low solids contents. If no van der Waals forces are
regarded, the viscosity is much lower and is just slightly larger than the Einstein model [42,43]
predicts. This proves the significance of surface forces for the rheological behavior of nanoparticulate
suspensions. Even without surface forces, the simulated viscosity is slightly larger than Einstein’s
prediction, because the dilute limit of 2 vol.% [44] is exceeded and hydrodynamic interactions lead to
additional energy dissipation.

The error bars of the simulational results with surface forces indicate increasing scattering with
increasing solids content. In addition, slight deviations between experimental and simulational values
arise at high solids contents, as the simulation underestimates the viscosity of such suspensions.
This phenomenon will be addressed later.
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Figure 3. Comparison of experimental and simulated viscosities at varied solids contents.

In Figure 4 the results of a shear rate variation at 80 ◦C are compared for a suspension with
a solids content of 20 wt.%. Again, good agreement is observed over the depicted range of shear rates.
However, with increasing shear rate, simulation results tend to range below the experimental values,
which causes increasing deviation.
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Figure 4. Shear rate dependency of the rheological behavior of nanoparticulate suspensions.
Comparison of experimental and simulated viscosities at 80 ◦C.

Figure 5 gives the results of the same shear rate variation at lower temperatures.
Although experimental and simulated curves for a temperature of 60 ◦C match at least for low shear
rates, it is obvious that the simulations fail to depict the rheological behavior found in experiments at
lower temperatures.
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Figure 5. Shear rate dependency of the rheological behavior of nanoparticulate suspensions.
Comparison of experimental and simulated viscosities between 30 and 60 ◦C.

The question arises, why the temperature appears to limit the applicability of the chosen
simulation method and high shear rates contribute to the inaccuracies. The viscosity of the resin
under investigation shows a strong temperature dependency and increases quickly as temperature
decreases. Hydrodynamic forces are known to gain increasing relevance in the rheological behavior
of suspensions, when the fluid viscosity, shear rate and solids content are high. The impact of
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hydrodynamic forces is characterized by the dimensionless Péclet number, which is calculated from
the ratio of hydrodynamic and diffusive forces, as given in Equation (14).

Pe =
γ̇ · r2

2D
=

3π · ηFl · r3 · γ̇
kB · T

(14)

Brownian movement allows a system of particles to relax to an energetically favorable
condition, in which the surface interaction potentials between the particles are minimized.
Hydrodynamic forces disturb this equilibrium state, as they enforce relative movement between
the particles. Therefore, the Péclet number describes to what extent hydrodynamic forces change the
state from equilibrium conditions.

Figure 6 displays the deviations in viscosity values between simulation and experiments with
respect to the Péclet number. A normalized difference between experimental and simulated result is
taken as a measure of deviation as given in Equation (15).

∆ηnorm =
|ηexp − ηsim|

ηsim
(15)
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Figure 6. Deviations between experimental and simulated results with respect to the Péclet number.

A clear trend of increasing deviation with increasing Péclet number is visible from Figure 6.
The trend can be expressed by a power function. The fact that the deviations can be described using
the Péclet number suggests that hydrodynamic effects, which were not considered in the simulation,
are the cause of the deviations. As mentioned earlier, the rotatory movement of the DEM-particles
is not coupled with the velocity field of the fluid in the CFD. As a result, the particles experience
no torque from the fluid. Also, the velocity field is not disturbed by the relative rotatory movement
between the particle surface and the surrounding fluid. Lower stresses on the particles result from
these effects and hence, the simulated viscosity is always lower than the experimentally observed one.
Besides the lack of rotatory coupling, deviations may also arise from not regarding effects like absorbed
layers of fluid molecules on the surface of the particles. This effect is commonly attributed to affect the
rheological behavior of polymer suspensions, as it effects the flow behavior of fluid and particles in
larger distances to the particle surface [45–48]. Such behavior has even been included in an analytical
models [4]. In numerical simulations, this effect could be accounted for by an altered viscosity of the
fluid close to the surface of the particles, which would require considerable extensions of the CFD-DEM
code. Another approach would be to introduce another contact model in the DEM, which exhibits
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a normal and tangential force between the particles to cover the effect. It would work similar to
the lubrication forces already used for the simulation of highly loaded micron-sized suspensions
(see Chapter 2). The most challenging part would be to parametrize such contact models, as the effect
is influenced by multiple parameters [4], but the precise behavior of molecules close to the surface can
only be assessed by atomistic MD simulations (see for example Behbahani et al. [49]).

The identified relationship between the deviations and the Péclet number cannot only be used
to explain the observed deviations, but also allows a correction of the simulated values as well.
The approximated power function, which is displayed as a dashed line in Figure 6, is given by
Equation (16). The values for the parameters c, m, and e are −21.22, 22.02 and 0.28, respectively.

|ηexp − ηsim|
ηsim

= c + m · Pee (16)

ηexp = ηcorr = ηsim + (c + m · Pee) · ηsim (17)

From it, Equation (17) can be derived by solving for ηexp and considering it the targeted corrected
viscosity ηcorr. Figure 7 gives the comparison of experimental and corrected viscosity values. A good
fit between the respective curves is visible. It can be concluded that by calibrating a correction function
with respect to the Péclet number, experimental viscosities can be matched with CFD-DEM simulations,
despite the lack of rotatory velocity coupling. Nevertheless, future studies should apply solvers such
as the one used by Aycock [50], which allows the coupling of rotational velocities, since shear flow
imposes rotational velocities on the particles.
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Figure 7. Shear rate dependency of the rheological behavior of nanoparticulate suspensions.
Comparison of experimental and corrected simulated viscosities at varied temperatures.

4.2. Derivation of Working Principles

The second objective of this study is to identify relationships between the acting forces
in the system to identify working principles causing the observable rheological behavior.
Identifying mechanistic relationships is crucial for robust viscosity models and so far, such relationships
have not been established for nanoparticulate suspensions [7].

Based on the stresslet method, contact-, drag- and van der Waals forces contribute to the stress
state in the suspension. The effect of contact forces is essentially zero. Because of the low solid
contents, the particle insertion at 0.4 nm distance and the short-simulated time spans, particles do
not have time to travel long enough to touch. Even if particles were given the time, the inertia of
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the small particles would not suffice to squeeze the highly viscous fluid out of the gap between the
particles [51]. Consequently, only drag forces and surface interactions contribute to the rheological
behavior. Elucidating their relationship helps identifying the cause of the viscosity increase due to
surface forces.

During the simulation, a network of surface forces is established between the particles and drag
forces act on each particle. The magnitude of these forces depends on the particle size, the proximity
to the next particle and the relative velocity between particle and fluid. The values of the forces
span multiple orders of magnitude, much like the stresslet distribution depicted in Figure A1 in the
appendix. In Figure 8 the mean per-particle drag force Fdrag,SP is plotted against the mean per-particle
van der Waals force FvdW,SP as observed in the CFD-DEM simulations. The data of simulations at 80 ◦C
is used, as it shows the best fit to experimental data. A clear linear relationship between the two forces
is visible. Beyond this, the graph indicates a direct proportionality, as drag and van der Waals force are
almost equal. Only the data points, which are originating from the shear rate variation, show a slight
scattering, which will be assessed later. This allows the formulation of a hypothesis on the origin of
such drag forces and hence the viscosity increase.
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Figure 8. Relationship between the mean van der Waals force on a particle and the resulting mean
single particle drag force in CFD-DEM simulations.

If two adjacent particles are considered, which are in different layers of a laminar flow travelling
at different speeds, an interaction force occurs between them. In the case of van der Waals interactions
this force is attractive. The faster flowing particle thus accelerates the neighboring particle, while the
particle itself is decelerated. This creates a velocity difference between the particles and the respective
surrounding laminars of the fluid. This velocity difference generates the observed drag forces and
causes the increased energy dissipation during the flow and therefore, a higher viscosity of the
suspension. It is plausible that the flow resistance force is as strong as the surface interaction force,
which caused the flow resistance force.

In Figure 8 some scattering was found for the data points from the shear rate variation at 80 ◦C.
This calls for a closer look onto the drag forces dependency on the shear rate, as done in Figure 9.
With the exemption of the data point at 1000 1/s, a reasonable fit with a power function can be
established. The approximated function is given in Equation (18). At low and moderate shear
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rates, the drag force grows under proportion with the shear rates. At higher shear rates, the rise of
hydrodynamic forces may limit this relationship’s applicability.

Fdrag = 2.316 · γ̇0.056 (18)
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Figure 9. Relationship between the system shear rate and the resulting mean single particle drag force
in CFD-DEM simulations.

This proves that even when surface forces dominate the rheological behavior of nanoparticulate
suspensions, hydrodynamic forces contribute significantly as well. The strong effect on the viscosity at
comparatively low solids contents must be attributed to the imposed drag forces.

Based on these findings, a more mechanistic model for the viscosity of nanoparticulate suspensions
is proposed, which will be developed further and investigated in future research work. A first approach
is given by Equation (19), which can serve as a framework for such a model.

ηsusp = ηvol + ηinteraction (19)

The first term in Equation (19) accounts for the modest viscosity increase, which is caused by the
presence of particles, as the simulation without surface interaction depicted. This term will most likely
be expressed best by existing models like Einstein [42,43], Krieger-Dougherty [52] or Maron-Pierce [53],
which already include the effect of the neat fluid viscosity, which is why an additional term including
ηvol will not be necessary in contrast to the way the simulations were analyzed in this paper
(Equation (8)). The second term ηinteraction accounts for the viscosity increase due to the particle
interactions as identified in this study. Thus, it will depend on the drag forces between fluid and
particles, which are related to the total interaction force between the particles as well as the shear rate,
which the findings in Figures 8 and 9 suggest.

5. Conclusions

Coupled CFD-DEM simulations using the immersed boundary method proved capable of
depicting the rheological behavior of nanoparticulate suspensions at high temperatures. They correctly
depicted the dependency of the suspension viscosity in a broad range of solids contents and shear
rates. The viscosity was calculated based on the particle-particle and fluid-particle interactions. It was
shown that surface forces indeed dominate the rheological behavior of nanoparticulate suspensions,
as simulations without surface forces showed almost Einstein-like behavior.



Materials 2020, 13, 4288 14 of 18

Limits arise due to disregarding particle-fluid interaction caused by particle rotation. The resulting
deviations between simulation and experiment could be corrected based on a correction term,
which depends on the Péclet number. In future, CFD-DEM coupling solvers, which provide rotatory
coupling, such as the one used by Aycock [50] should be used to avoid a correction.

Detailed examination on the relationship between the drag force and influencing parameters like
van der Waals interaction and the shear rate helped identifying working principles of the rheological
behavior of nanoparticulate suspensions.

A mechanism by which surface interaction forces influence the viscosity of the suspension was
proposed, based on the finding that surface forces and resulting drag forces on each particle do always
match in magnitude. Attractive forces between neighboring particles alter the velocity of both particles
and cause the rise of drag forces, which increases the stress state within the suspension.

This model representation of the fundamental working principle as well as the identified
mathematical relationships between the active forces, allowed developing an equation, which can be
used as a framework for a viscosity model for nanoparticulate suspensions. It holds the perspective of
being refined to a mechanistic model for the viscosity of these materials in future.
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Abbreviations

The following Latin abbreviations and symbols are used in this manuscript:
A surface
a distance between particle centers
b distance between particle surfaces
c fit parameter in Equation (16)
CFD Computational Fluid Dynamics
corr corrected
D diffusion constant
DEM Discrete Element Method
DPD Dissipative Particle Dynamics
e fit parameter in Equation (16)
exp experimental
F force
f l fluid
H Hamaker constant
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h Planck constant
kB Boltzmann constant
m fit parameter in Equation (16)
m̄ momentum flux tensor
MD Molecular Dynamics
n refractive index
norm normalized
Pe Péclet number
r radius
sim simulated
SP single particle
T temperature
V volume
vdW van der Waals
W potential
x50,3 median particle size of a volume-weighted (3) particle size distribution

The following Greek abbreviations and symbols are used in this manuscript:
γ̇ shear rate
ε dielectric constant
η viscosity
σ̄ stress tensor
σ stresslet
νe main UV-absorption frequency
τ shear stress

Appendix A. Convergence Study on Required Size of the Simulation Domain

A convergence study on the required size of the representative volume element was conducted
in order to assure size-independent results of low scattering. The key to size-independent results is
an appropriate representation of the particle size distribution and hence the interactions between
the particles. Small simulation domains may not allow enough particles to be inserted, which leads
to distorted particle size distributions and insufficiently resolved interactions. This is especially
critical at low solids contents, as the number of particles per system volume is the lowest.
Consequently, the lowest covered solids content of 1 wt.% was considered in the convergence study.
The key value taken for evaluation of the viscosity are the stresslets as defined in Equation (10). For this
reason, a convergence of the stresslet distribution of the particles within the simulation domain was
taken as the criterion for a sufficient size of the representative volume element.

Figure A1 gives the stresslet distributions for varied system sizes. It is evident that at side lengths
between 0.5 and 1.0 µm the position of the curves changes significantly. Furthermore, a smoothing
of the curves is visible. Above 1.44 µm, which corresponds to three times the volume of a system
with a side length of 1.0 µm, no significant changes to the stresslet distribution can be observed.
Hence, 1.44 µm was chosen as the system side length in this study. The results depicted in Figures 3–5
prove that the scattering of the results is also in a very good range.
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