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Abstract
Rett Syndrome is a severe neurological disorder mainly due to de novo
mutations in the methyl-CpG-binding protein 2 gene ( ). Mecp2 is knownMECP2
to play a role in chromatin organization and transcriptional regulation. In this
review, we report the latest advances on the molecular function of Mecp2 and
the new animal and cellular models developed to better study Rett syndrome.
Finally, we present the latest innovative therapeutic approaches, ranging from
classical pharmacology to correct symptoms to more innovative approaches
intended to cure the pathology.
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Introduction
Rett syndrome (RTT) is a severe neurological disorder with an 
incidence of 1 in about 15,000, which accounts for up to 10% 
of severe intellectual disability of genetic origin in women1. 
The clinical course of the disease consists of an initial nor-
mal development until 6 to 18 months of age followed by an 
arrest of brain development, severely impaired expressive  
language, the development of stereotypic hand movements, and  
the appearance of gait ataxia and truncal apraxia/ataxia between 
1 and 4 years of age. Other frequent symptoms include breath-
ing dysfunction, electroencephalography (EEG) abnormalities, 
seizures, spasticity, scoliosis, and reduced growth2,3. RTT is 
caused mainly by de novo mutations in the methyl-CpG-binding  
protein 2 (MECP2) gene4.

MECP2-pathies
In addition to RTT, MECP2 mutations have been identified in 
individuals with syndromes such as mild learning disability 
in females, neonatal encephalopathy in males, and psychiatric  
disorders, autism spectrum disorders, and X-linked intellectual  
disability in both males and females5. Interestingly, duplication 
or triplication of the Xq28 region containing the MECP2 gene 
results in a postnatal phenotype, known as the MECP2 duplication  
syndrome, in boys6. In most cases, the MECP2 duplication is 
inherited from the mother, who expresses a mild to asympto-
matic phenotype due to highly skewed X chromosome inactiva-
tion (XCI). The main characteristics of this syndrome include 
early infantile hypotonia, delayed psychomotor development 
resulting in severe intellectual disability, absent or very limited 
speech, abnormal gait, epilepsy, and spasticity7. The finding that 
MECP2 underexpression or overexpression leads to RTT-like 
phenotypes raises more than one question: is the severity of  
MECP2-pathies dependent on MECP2 gene dosage? Are 
therapeutic projects directed at increasing MECP2 levels in  
patients considered carefully?

Cell-specific expression of Mecp2
Mecp2 is widely expressed throughout the body and the high-
est abundance is in postmitotic neurons, where it contributes to 
the development and maintenance of synapses8. Moreover, neu-
ron-specific Mecp2 deficiency is sufficient to cause neuronal 
dysfunction with symptomatic manifestations mimicking the 
RTT phenotype9. Since these first findings, the idea that Mecp2  
expression was only neuronal has evolved, as Mecp2 was reported 
in non-neuronal central nervous system (CNS) cells, including 
astrocytes, microglia, and oligodendrocytes, and cell-specific  
Mecp2 deletion in these cell subtypes appears to contribute to  
RTT neuropathology10,11.

Astrocytes were the first non-neuronal cells reported to express 
Mecp2 and to play a key role in neuronal morphology10,12 and 
RTT symptom progression13. Astrocytes lacking Mecp2 exhibit 
abnormal features. For instance, microtubule-dependent vesicle 
transport is altered in Mecp2-deficient astrocytes from Mecp2-
deficient mice14. In addition, recent evidence suggests a role of 
mutant astrocytes in breathing deficits due to a lower chemosen-
sitivity15,16. Mutant astrocytes were also very recently involved  

in an abnormal regulation of excitatory synaptic signaling in 
Mecp2-deficient mice17.

A role for microglia in RTT neuropathology was also reported 
by Derecki et al.18. Their findings were very interesting, as 
they showed that grafting wild-type myeloid cells in irradiated 
Mecp2-null mice led to repopulation of the brain parenchyma by 
microglia-like myeloid cells and a reduction in the vast major-
ity of disease-associated abnormalities18. Unfortunately, subse-
quent studies failed to reproduce these findings19, and, although 
Mecp2 deregulation in microglia was shown to affect other 
immune functions20,21, the mechanisms explaining how microglia  
might contribute to these modifications remain mostly unknown. 
One possible explanation is that microglia contributes to end 
stages of the disease by dismantling neural circuits rendered  
vulnerable by the lack of Mecp222.

Oligodendrocytes were also involved in RTT neuropathology, 
as the expression of Mecp2 specifically in oligodendrocytes  
alleviated some of the RTT phenotype23. The level of some  
myelin-related proteins was also deregulated in the brain of  
Mecp2-null mice23, and Mecp2 was reported to regulate the 
expression of myelin genes in rat oligodendrocytes24. Altogether,  
Mecp2 is currently known to play a role in most cell types of the 
CNS.

Mecp2 binding and transcriptional regulation
Mecp2 is a member of the methyl-CpG-binding domain (MBD) 
family of proteins25–27 that are known to play a role in chroma-
tin organization and transcriptional regulation through bind-
ing to methylated CpG sites or 5-hydroxymethylcytosine28,29. 
Since then, Guo et al.30 have shown that Mecp2 was also able 
to bind to methylated CpA30, and Sugino et al.31 showed that 
Mecp2 repression was biased toward long genes. In 2015, the  
Greenberg lab revealed that that bias was achieved through 
binding to mCAs that were more frequent within these long 
genes32. Recently, the third base following mCA was shown to 
strongly affect Mecp2 binding, and the strongest binding was 
the tri-nucleotide sequence mCAC33. Further studies will be 
necessary to determine whether Mecp2 binding to either mCG  
or mCAC leads to different biological responses.

Mecp2 was found to be expressed in mouse embryonic  
development from E10.58. Stroud et al. recently showed that a DNA 
methyltransferase (DNMT3A) binds to lowly expressed genes in 
embryonic stages leading to CA methylation, which subsequently  
recruits Mecp2 and enables gene repression in the maturing 
brain34.

In addition to directly binding to methylated DNA, Mecp2 was 
found to regulate gene transcription through the recruitment of 
corepressors such as the NCoR/SMRT corepressor complex35. 
Using a highly truncated version of Mecp2 retaining the MBD 
domain, the NLS, and the NCoR/SMRT signals, the team of 
Adrian Bird demonstrated that almost all functions of the 
Mecp2 protein were maintained, definitively demonstrating the  
leading role of this complex in the pathology36.
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Finally, Mecp2 directly modulates chromatin architecture via 
its three AT-hook-like domains37. AT-hooks are short DNA-
binding motifs that interact with the wide minor groove of AT-
rich DNA regions. A study proposed that AT-hooks function as  
secondary DNA-binding domains either stabilizing or modu-
lating the association of Mecp2 to chromatin. The authors also 
state that this secondary role is supported by the absence of  
RTT-causing missense mutations at these AT-hooks sites38. This 
view may be challenged by recent findings showing that a mouse 
carrying an eight-amino-acid deletion in the AT-hook domain  
1 exhibited locomotor and cognitive dysfunctions39.

These recent findings highlight the complexity of mecha-
nisms by which Mecp2 plays its role of transcriptional regulator 
and partly explains why therapies other than those aimed at  
correcting/replacing Mecp2 are able to improve only some of the  
symptoms in patients with RTT (see below).

Preclinical models of Rett syndrome
Several RTT mouse models have been developed and provided 
scientists with invaluable tools to understand the neurobiologi-
cal mechanisms underlying RTT. Over the past three years, 
thanks to new gene-editing methods such as the transcription 
activator-like effector nucleases (TALENs), zinc finger nuclease 
technology, and the CRISPR-Cas9 system, models in species  
other than mice have been developed40.

In 2016, two novel Mecp2-knockout rat models have been devel-
oped by using zinc finger nuclease technology. In the first one, 
rats present a deletion of exon 4, leading to the complete absence 
of the Mecp2 protein41. Mecp2-null rats recapitulate general 
RTT features such as growth retardation, malocclusion, hypoac-
tivity, and early death. Null rats exhibit weaker forelimb grip 
strength and reduced locomotion activity. Breathing abnormali-
ties such as hyperventilation and high apnea rate were found, and 
this is similar to what is seen in RTT patients and mice. In the  
second model42, a Mecp2-knockout rat was generated and 
here too the rats presented a symptom progression close to 
that of the RTT mice. Male rats showed an advanced disease 
time course and a shorter lifespan compared with female rats. 
Female Mecp2-deficient rats also recapitulated the motor and 
behavioral phenotype observed in existing mouse models. 
More recently, two studies published by the Smith lab showed  
neuronal cytoskeletal gene dysregulation and mechanical hyper-
sensitivity in the male rat model and non-cognitive deficits (motor, 
somatosensory, viscerosensory, and metabolic impairments) 
in the female rat model43,44. To date, research using these new 
rat models has confirmed the observations made in the mouse; 
it will be interesting to see whether future studies will only 
replicate and validate results obtained in the mouse or bring  
new findings specific to the rat.

In 2014, the first non-human primate carrying a MECP2 muta-
tion using TALEN-mediated gene targeting was generated45. The 
authors obtained one male cynomolgus monkey with a MECP2 
deletion out of the 51 TALEN-injected embryos. They suggest 

that the low pregnancy and survival rates could be due to 
TALEN toxicity or that the TALEN-mediated deletion in males 
could be lethal, such as in the human disease. A mosaicism 
of MECP2 deletion was found in the monkey and could be due 
to a delayed TALEN targeting during embryonic development. 
The monkey failed to survive, but these results demonstrated  
the feasibility of MECP2 editing in non-human primates. In 
2017, the same group published a study reporting five living 
MECP2-mutant females46. Magnetic resonance imaging scanning 
showed significantly reduced cortical gray matter volumes in 
mutant monkey brains. In addition, mutant monkeys displayed 
behavioral features such as fragmented sleep, increased ster-
eotypy, and reduced environmental exploration, but no differ-
ences in body weight and head circumference were observed. 
This study seems to validate a robust female monkey model dis-
playing RTT features—such as male embryonic lethality, social 
withdrawal, and eye-tracking defect—absent in rodent models.  
This model will be invaluable to investigate therapies, such as 
gene therapy, that need to be transferred to the clinics and may 
be impacted by the species barrier. However, given the slower 
development in the monkey, their longer lifespan, and the cost 
involved in caring for and maintaining their well-being, it is 
quite obvious that smaller animal models (rodents and zebra fish)  
will be the first ones to be used in RTT mechanisms and  
therapy screening studies.

In vitro models of Rett syndrome
Besides animal models, the use of neuronal cultures has  
facilitated the understanding of Mecp2’s molecular functions. 
However, until recently, only rodent primary neurons and human 
immortalized cell lines were available. Thanks to the forced repro-
gramming of human somatic cells into induced pluripotent stem 
cells (iPSCs)47, human neurons (or any other cell type) can be 
generated from cells of patients with RTT and be used to study 
RTT. Using human iPSCs, a recent study showed that the lack of 
MECP2 led to the de-repression of genes on the inactive X chromo-
some and to transcriptional deregulations of mitochondrial mem-
brane proteins48. The use of astrocytes differentiated from RTT 
human iPSCs showed a profound transcriptional deregulation in  
MECP2-deficient cells49 and confirmed that astrocyte-conditioned 
medium had adverse effects on the cellular physiology and mor-
phology of wild-type neurons12. Using neurons differentiated  
from MECP2-deficient iPSCs, another study showed a signifi-
cant deficit in KCC2 expression, a key factor for chloride neuro-
nal homeostasis. These cells consequently have a delayed GABA 
functional switch from excitation to inhibition. Interestingly, 
overexpression of KCC2 in these MECP2-deficient neurons  
rescued GABA functional deficits, suggesting an important role 
of KCC2 in RTT neuropathology50. In addition to confirming 
previously described abnormalities in patients with RTT or in  
mouse models, iPSC deficits can partially be rescued by insulin-
like growth factor 1 (IGF-1) treatment12, as was previously shown 
in an RTT mouse model51. Overall, iPSCs seem to display cellu-
lar phenotypes similar to those seen in RTT mouse models and  
should prove useful in high-throughput screening of new therapeu-
tic compounds.
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Therapeutic approaches
Gene therapy
As previously mentioned, RTT was shown to be fully revers-
ible in a mouse model of the disease52, indicating that it could be 
amenable to gene therapy. This is of primary importance, as most 
RTT mutations occur de novo and the disease is usually diag-
nosed when the symptoms are present, which also means that 
any therapeutic intervention will be administered to RTT patients 
after disease onset. Moreover, in order to be efficient, any gene 
therapy vector will have to reach the whole CNS, as it is globally 
affected in RTT. Gadalla et al. showed, as a proof of principle,  
a considerable improvement when neonatal RTT male mice 
were administered a gene therapy vector expressing the human 
MECP2e1 isoform by intracranial delivery53. The phenotypic 
rescue was less pronounced when a more translational approach 
(that is, systemic administration of the therapeutic vector in juve-
nile RTT mice) was used. This first publication was followed 
by a second one reporting similar results in male RTT mice  
as well as a phenotypic improvement in female RTT mice54. 
More recently, our lab has shown that using a codon-optimized 
Mecp2e1 isoform improved RTT symptoms, including breath-
ing defects, which had not been shown before55. Although 
these results seemed very promising, some severe side effects 
have been reported after the administration of high doses of  
therapeutic vector, which has led to the development of second- 
generation therapeutic vectors devoid of side effects but with 
decreased therapeutic efficacy56. Another study, focusing on 
the route of administration, showed that this second-genera-
tion vector had better efficacy when administered via an intra-
cerebrospinal fluid route57. Recently, the neonatal intracranial 
administration of a truncated Mecp2 was also shown to partially 
rescue the RTT phenotype36, which shows that gene therapy can 
still be improved and benefit from new discoveries related to 
Mecp2 biology. Expressing Mecp2 in cases of loss-of-function  
mutation seems the best option, but what about cases in which 
a missense mutation leads to the expression of a non-func-
tional Mecp2 protein? Will it act in a dominant-negative man-
ner and prevent a healthy Mecp2 from manifesting its rescuing 
effect? A study by Gadalla et al. indicates that gene therapy 
would also work in the case of certain missense mutations,  
since the therapeutic vector was able to improve the RTT symp-
toms in a knock-in RTT mouse model (T158M)56. Another 
therapeutic approach would be to directly correct the missense 
mutation by gene editing, as was done for a MECP2 duplica-
tion with the CRISPR-Cas9 system58, or by RNA editing using 
the natural editing capability of the adenosine deaminases  
acting on RNA (ADAR) to correct G>A mutations59. However, 
these techniques are still in their infancy and so far their efficacy  
has been shown only in vitro.

X chromosome reactivation
In female cells, one X chromosome is randomly inactivated and 
this ensures the same expression of X-linked genes in both male 
and female cells. Therefore, in female patients with RTT, about 
half the cells express the mutant version of MECP2 while the 
other half expresses a normal MECP2 protein. Reactivation 
of the inactivated X chromosome (Xi), or at least of the (nor-
mal) inactivated MECP2 allele, could potentially cure RTT. In 

order to identify molecules involved in Xi reactivation, a short  
hairpin RNA (shRNA) library was used in two different studies60,61  
and led to the discovery of factors modulating XCI, includ-
ing PDPK1 (3-phosphoinositide-dependent protein kinase 1) 
and AKA (Aurora kinase A), whose in vitro pharmacological 
inhibition was able to reactivate the Xi60. In addition to those  
factors common to the two studies, Sripathy et al. reported that 
the BMP/TGFb pathway was strongly involved in XCI both  
in vitro and in vivo61. In another study, by combining a gene 
knockdown strategy using antisense oligonucleotides against 
Xist, one of the key XCI regulators, and a pharmacological 
approach, Carrette et al. demonstrated a synergistic effect on 
Xi reactivation in vitro and in vivo62. These studies indicate that 
Xi reactivation is possible; however, the challenge now will be  
to translate these results into safe therapeutic interventions. 
The main issue will be to determine the impact of the induced  
global X-linked protein overdose following Xi reactivation.

Clinical trials
Since 1966 and the first clinical description of RTT, over 25 clini-
cal trials testing therapeutic agents targeting motor, cognitive, 
and autonomous dysfunctions have been initiated. For instance, 
breathing abnormalities such as apneas, which are crucial in RTT, 
have been targeted by several molecules, including desipramine37, 
sarizotan63 (ClinicalTrials.gov identifier NCT02790034), and 
ketamine63,64 (ClinicalTrials.gov identifier NCT02562820). 
Desipramine, an inhibitor of noradrenaline reuptake, was suc-
cessfully tested in a preclinical study, reducing apneas and rescu-
ing breathing anomalies in a mouse model of RTT, probably by 
increasing the number of tyrosine hydroxylase (TH) neurons 
in the brainstem65. The recent desipramine clinical trial did not  
reveal a clinical improvement in all patients with RTT, but the 
authors did find an inverse correlation between desipramine  
concentration and the number of apneas37. Mirtazapine, a 
desipramine acting-like molecule without its side effects, showed 
promising preclinical results in RTT mice and could be the next 
drug of interest66. On the basis of translational studies64,67, patients 
are currently being recruited for the sarizotan clinical trial  
and the one evaluating the efficacy of ketamine is under way.

Brain-derived neurotrophic factor (BDNF) is an important neu-
rotrophic factor playing a key role in RTT; indeed, its deregula-
tion seems strongly correlated with the reduction of dendritic 
arborization identified in RTT and its overexpression in Mecp2-
knockout mice partially rescues their phenotype68,69. These 
different points make the BDNF pathway one of the most  
appealing pathways to target in RTT70. BDNF itself is unable 
to cross the blood-brain barrier (BBB) and needs to be indi-
rectly activated. Fingolimod is able to increase BDNF expres-
sion and improved locomotor activity, sensorimotor coordination, 
and lifespan in RTT mice71, and a clinical trial (ClinicalTrials.
gov identifier NCT02061137) is under way. Glatiramer acetate, 
another BDNF secretion inducer, was first tested on a small cohort 
of patients with RTT, and an improvement of gait velocity  
was reported72. A second clinical trial had to be stopped 
because of a severe adverse effect on patients73. Unlike 
BDNF, IGF-1 crosses the BBB and activates similar intracel-
lular pathways. Two preclinical studies in RTT mice reported  
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the positive effect of IGF-150,74. The IGF-1 full-length, also 
named mecasermin, was tested in three clinical studies75–77. A 
total of 10 patients with RTT treated in a preliminary 20-week 
open-label assessment with mecasermin showed a reduction in 
the incidence of apneas and improvements of deleterious neu-
rological consequences, including depression and anxiety75.  
However, a recent placebo-controlled crossover clinical trial on 
30 patients with RTT did not succeed in confirming the improve-
ments observed in the previous study77. After a pilot study inves-
tigating the safety of the IGF-1 tripeptide form78, a clinical trial  
with trofinetide (an analogue of the IGF-1 tripeptide) was recently 
published and presented improvements in core features of RTT79.

A disruption in the balance between excitation and inhibition 
and between GABA and glutamate pathways is implicated in 
RTT80. Dextromethorphan, an NMDA receptor antagonist, has 
been tested for its capacity to restore normal EEG function and 
reduce seizure, and although no significant improvement in global  
severity was noticed, statistically significant changes were seen in  
clinical seizures, language, and behavioral hyperactivity81.

Recent studies have suggested a systemic redox imbalance in 
a mouse model and in patients with RTT82–84. Polyunsaturated 
fatty acids (PUFAs) are US Food and Drug Administration-
approved oils that act indirectly on this cellular redox imbalance. 
In two clinical trials, PUFA dietary supplementation was able 
to reduce oxidative stress markers and improve the biventricular  
myocardial systolic function85,86.

The abovementioned clinical trials all originated from preclini-
cal studies that identified promising therapeutic molecules. In 
most cases, and as seen in preclinical studies, these treatments 
improved some RTT symptoms. However, one cannot help 
noticing that these therapeutic benefits are restricted to a (some-
times small) subset of symptoms. These last few years have 
been marked by a large improvement in innovative therapeu-
tic strategies, such as gene therapy and gene editing. These new  
approaches are being applied to the RTT field and have already 
been the subject of a few publications. Unlike pharmacologi-
cal approaches, these techniques are aimed at curing the disease 

rather than alleviating RTT symptoms, raising great hope for 
patients with RTT and their families. However, these first publi-
cations also highlighted the need for increased safety, given the  
irrevocable nature of the proposed treatments.

Conclusions
Since the gene responsible for RTT was identified almost 20 
years ago4, a stupefying number of research projects aimed at 
understanding the mechanisms underlying this pathology and 
identifying potential therapeutic targets have been conducted. 
From these studies have stemmed many of the clinical tri-
als whose results have recently been published. Even though 
many trials reported improvements, these were disappoint-
ingly small and restricted to a few symptoms at a time. This may  
be explained in part by the complex and often controversial func-
tions of Mecp2 that have been unveiled throughout the years: from 
simple transcriptional repressor to genome-wide noise dampener 
and from a simple CpG MBD to a protein-binding multiple 
nucleotide sequence. The study of Mecp2 biology revealed an 
unexpected complexity, and this probably explains why Mecp2 
replacement therapies such as gene therapy, gene editing, or X 
chromosome reactivation are now thought to be the best options  
to dramatically improve RTT or one day cure it.
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