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Abstract: Cynipoidea is a medium-sized superfamily of Hymenoptera with diverse lifestyles. In
this study, 16 mitochondrial genomes were newly sequenced, 11 of which were the first obtained
mitochondrial genomes in the family Liopteridae and four subfamilies (Anacharitinae, Aspicerinae,
Figitinae, and Parnipinae) of Figitidae. All of the newly sequenced mitogenomes have unique
rearrangement types within Cynipoidea, whereas some gene patterns are conserved in several
groups. nad5-nad4-nad4L-nad6-cytb was remotely inverted and two rRNA genes were translocated to
nad3 downstream in Ibaliidae and three subfamilies (Anacharitinae, Eucoilinae, and Parnipinae within
Figitidae); two rRNA genes in Aspicerinae, Figitinae, and Liopteridae were remotely inverted to the
cytb-nad1 junction; rrnL-rrnS was translocated to the cytb-nad1 junction in Cynipidae. Phylogenetic
inference suggested that Figitidae was a polyphyletic group, while the Ibaliidae nested deep within
Cynipoidea and was a sister-group to the Figitidae. These results will improve our understanding of
the gene rearrangement of the mitogenomes and the phylogenetic relationships in the Cynipoidea.

Keywords: base composition; codon usage; evolutionary rate; gene rearrangements; phylogeny

1. Introduction

Cynipoidea is a medium-sized superfamily of Hymenoptera, including around
223 genera with 3200 species described worldwide [1,2]. It includes five generally accepted
extant families, Austrocynipidae, Cynipidae, Figitidae, Ibaliidae, and Liopteridae [2,3].
Cynipoid wasps exhibit a wide range of lifestyles [1,4,5]. The most well-known members
are phytophagous and easily observed as gall-formers, while the majority of the species
are small parasitoids or hyperparasitoids. Although previous molecular and/or morpho-
logical studies contributed to elucidating the family or subfamily relationships within
Cynipoidea [1,6,7], the phylogenetic relationships within the Cynipoidea are still unclear
and need further study, especially the phylogenetic relationships within the family Figitidae
and Cynipidae.

The typical insect mitochondrial genome is a circular molecule that is 14–19 kb in
size and encodes 37 genes, including 13 protein-coding genes (PCGs), two ribosomal RNA
(rRNA) genes, and 22 transfer RNA (tRNA) genes [8]. Mitogenomes have been widely used
for phylogenetics, though with the limitation of a relatively high evolutionary rate and the
presence of base composition bias [8–10]. Most mitogenomes of insects are highly conserved,
possessing the ancestral mitogenome arrangement; however, hymenopteran mitogenomes
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show extremely high rates of genome rearrangements [11–14]. tRNA rearrangements
are widespread in Hymenoptera, with at least one tRNA rearrangement found in every
sequenced hymenopteran species. Gene rearrangements are usually confined to specific
lineages, which can help with phylogenetic reconstruction at lower taxonomic levels, such
as the subfamily level in Braconidae [13]. At present, the complete or partial mitogenomes
of only seven cynipoid species are available in GenBank (https://www.ncbi.nlm.nih.gov/;
accessed on 20 January 2022). The synapomorphic mitochondrial gene rearrangement
characters and their phylogenetic utility could not be fully assessed due to limited taxon
sampling in the early studies.

In this study, 16 mitogenomes of Cynipoidea were newly sequenced by next genera-
tion sequencing (NGS), and 11 of them were the first obtained mitogenomes in the family
Liopteridae and four subfamilies (Anacharitinae, Aspicerinae, Figitinae, and Parnipinae)
of Figitidae. The obtained information from the study will also facilitate future phyloge-
netic research of Cynipoidea. Furthermore, we analyzed the main features of the newly
generated mitogenomes and those of other Cynipoidea species. We also analyzed gene rear-
rangement patterns. Finally, the phylogeny of Cynipoidea was reconstructed by combining
the available mitogenomes.

2. Materials and Methods
2.1. Sample Identification and DNA Extraction

All 16 newly sequenced samples were identified based on the morphology of adults
according to the taxonomic literature (Table S1). All specimens were initially preserved
in 100% ethanol and then stored at 4 ◦C before DNA extraction. Whole genomic DNA
was non-destructively extracted from every sample using the DNeasy tissue kit (Qiagen,
Hilden, Germany), modified from previous studies [15,16]. Voucher specimens were de-
posited in the Institute of Insect Sciences, Zhejiang University (Voucher specimen numbers:
ZJUH_20220001- ZJUH_20220016, Table S1).

2.2. Next-Generation Sequencing and Assembly

All libraries were constructed using the VAHTS® Universal DNA Library Prep Kit.
Whole-genome data were generated on the Illumina NovaSeq platform (Illumina,
San Diego, CA, USA) with a PE150 strategy (2 × 150 base, paired-end reads).

More than 2 GB of raw data of each sample was obtained. The raw reads were
checked by FastQC v0.11.9 [17], with adapter contamination trimmed by Trimmomatic [18].
The target mitochondrial reads were filtered out using BLAST v2.9.0+ (BLASTn, E-value
cutoff 1 × 10−5) against a reference dataset of published Cynipoidea mitogenomes [19].
The mitochondrial reads were assembled by SPAdes v3.0 [20] and IDBA v1.1.3 [21] with
default parameters, respectively. Two assemblies were then integrated with GENEIOUS
v2020.0.5 (Biomatters Ltd., San Diego, CA, USA).

2.3. Mitochondrial Genome Annotation and Analysis

Assembled contigs were initially annotated using the MITOS web server (http://mitos.
bioinf.uni-leipzig.de/index.py; accessed on 15 June 2021) [22]. The start and stop positions
of 13 PCGs were adjusted manually and corrected by aligning published data of Cynipoidea
species in GenBank. The putative tRNA genes were confirmed by the tRNAscan-SE search
server with their homologs from related species [23]. The obtained mitogenomes were
submitted to GenBank (Accession number: OM677820-OM677835, Table 1).

The nucleotide composition of all components and the relative synonymous codon
usage (RSCU) of PCGs were estimated using MEGA 11.0 [24]. The base composition values
(AT and GC-skews) were calculated using the following formulas: AT-skew = (A − T)/(A + T)
and GC-skew = (G − C)/(G + C) [25]. The numbers of the synonymous substitutions (Ks)
and non-synonymous substitutions (Ka), and the ratios of Ka/Ks for each PCG were calcu-
lated in the DnaSP 6.0 [26]. The gene rearrangement of all protein-coding genes, all tRNAs,
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and two rRNAs in the 20 cynipoid mitogenomes were analyzed by comparison with the
ancestral mitogenomes and with each other.

Table 1. Information of mitochondrial genomes used in phylogenetic analysis.

Family Subfamily Species Accession Number

Figitidae Anacharitinae Anacharis sp. OM677820 *
Figitidae Anacharitinae Aegilips sp. OM677821 *
Figitidae Aspicerinae Melanips sp. OM677822 *
Figitidae Aspicerinae Prosaspicera validispina OM677823 *
Figitidae Aspicerinae Pujadella villari OM677824 *
Figitidae Parnipinae Parnips nigripes OM677835 *
Figitidae Eucoilinae Gastraspis sp. MG923497
Figitidae Eucoilinae Endecameris sp. OM677825 *
Figitidae Eucoilinae Ganaspini sp. OM677826 *
Figitidae Eucoilinae Trybliographa sp. OM677827 *
Figitidae Figitinae Figites sp. 1 OM677828 *
Figitidae Figitinae Figites sp. 2 OM677829 *
Ibaliidae Ibalia leucospoides KJ814197
Ibaliidae Ibalia sp. OM677830 *

Liopteridae Paramblynotus sp. OM677831 *
Liopteridae Oberthuerella sharkeyi OM677832 *
Liopteridae Tessmannella kiplingi OM677833 *
Cynipidae Trichagalma acutissimae MN928529
Cynipidae Synergus sp. MG923514
Cynipidae Saphonecrus sp. OM677834 *
outgroup

Platygastridae Platygaster sp. MG923507
Platygastridae Trissolcus basalis JN903532

* Newly obtained in this study.

2.4. Phylogenetic Analysis

A total of 20 mitogenomes representing the superfamily Cynipoidea, including
16 newly obtained taxa, were used for phylogenetic analyses. Two species from Platy-
gastridae, Platygaster sp. and Trissolcus basalis were used as outgroups (Table 1). The PCGs
were realigned using the G-INS-i algorithm implemented in MAFFT v7.464 [27]. Bayesian
inference analysis (BI) was conducted with MrBayes v3.2.7a [28] using the most optimal
partition schemes and best model schemes (Table S2) acquired by PartitionFinder v1.1.1 [29].
Four independent Markov chains were run for 100 million generations, with tree sampling
occurring every 1000 generations and a burn-in of 25% of the trees. The stationarity of the
run was assessed by Tracer v1.7. (ESS values > 200) [30]. Maximum likelihood (ML) analysis
was performed with RAxML-HPC2 v8.2.12 [31] under the GTRGAMMA model. A total of
200 runs for different individual partitions were conducted with 1000 bootstrap replicates.

3. Results and Discussion
3.1. General Features of Mitochondrial Genomes

We obtained 16 new mitogenomes from the taxa of Cynipoidea. The 37 typical genes
were identified in each of the newly sequenced mitogenomes except for Trybliographa sp.
(missing trnF), Figites sp. 1 (missing trnW, trnN, trnL1, trnS2, and trnV), Figites sp. 2 (missing
trnL1), and Pujadella villari (missing trnQ) (Figure 1). The complete control region (CR) of
all the species failed to be assembled, possibly due to low similarity between reference and
high A and T contents, common in insect mitogenomes, especially in Hymenoptera [19].

The A + T content for the sequenced region of the mitogenomes in the Cynipoidea
ranged from 79.36% (Trybliographa sp.) to 87.01% (Paramblynotus sp.) (Table 2). There was
no significant difference in base composition among the species of Cynipoidea. Relative
high A + T content in the mitogenomes is not unusual in Hymenoptera compared with
other orders [32].
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Trybliographa sp. 16,034 79.36 11,123 76.91 −0.0878 −0.1340 

Figites sp. 1 15,333 84.24 10,986 82.90 −0.0930 0.0495 

Figites sp. 2 16,775 83.09 11,145 81.31 −0.0984 0.0302 

Ibalia sp. 17,176 86.40 11,069 85.66 −0.1175 0.0422 

Paramblynotus sp. 15,482 87.02 11,173 85.58 −0.1127 0.0130 
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Figure 1. Mitogenomic architecture of the Cynipoidea referenced with the ancestral insect mito-
chondrial genome. An, Anacharitinae; Eu, Eucoilinae; Li, Liopteridae; Fi, Figitinae; As, Aspicerinae;
Ib, Ibaliidae; Pa, Parnipinae; Cy, Cynipidae. Families are shown in different colors.

Table 2. Base composition of 16 mitochondrial genomes in Chalcidoidea.

Species
Whole Genome Protein-Coding Genes

Length (bp) A + T (%) Length (bp) A + T (%) AT-Skew GC-Skew

Anacharis sp. 18,513 80.57 11,381 78.67 −0.0560 −0.1112
Aegilips sp. 16,709 84.00 11,080 81.75 −0.0832 −0.0722
Melanips sp. 16,103 85.52 11,186 83.67 −0.1121 0.0323

Pr. validispina 15,938 84.27 11,136 82.88 −0.1075 0.0336
Pu. villari 16,650 79.51 11,148 76.81 −0.1241 0.0662

Endecameris sp. 16,234 84.95 11,133 83.26 −0.0946 −0.0687
Ganaspini sp. 17,078 82.62 11,183 80.81 −0.0891 −0.0596

Trybliographa sp. 16,034 79.36 11,123 76.91 −0.0878 −0.1340
Figites sp. 1 15,333 84.24 10,986 82.90 −0.0930 0.0495
Figites sp. 2 16,775 83.09 11,145 81.31 −0.0984 0.0302

Ibalia sp. 17,176 86.40 11,069 85.66 −0.1175 0.0422
Paramblynotus sp. 15,482 87.02 11,173 85.58 −0.1127 0.0130

O. sharkeyi 16,053 84.04 11,199 82.58 −0.1060 −0.0169
Te. kiplingi 15,724 83.41 11,154 81.12 −0.1021 −0.0028

Saphonecrus sp. 16,482 85.36 11,271 82.97 −0.1049 0.0083
Pa. nigripes 16,876 84.46 11,168 83.82 −0.1114 0.0515

3.2. Base Composition, Codon Usage, and Evolutionary Rate

All 13 PCGs were identified in the newly generated mitogenomes, with sizes ranging
from 10,986 bp (Figites sp. 1) to 11,381 bp (Anacharis sp.). The entire A + T content
of all the PCGs ranged from 76.81% (Pu. villari) to 85.66% (Ibalia sp.) (Table 2). The
AT-skew in all Cynipoidea mitogenomes was negative. The GC-skew in Anacharitinae,
Eucoilinae, and Liopteridae was also negative, whereas Paramblynotus sp. in Lio-pteridae
was positive (Table 2), which is an unusual feature of cynipoid mitogenomes. Two rRNA
genes (rrnS and rrnL) were identified in all mitogenomes. The length of rrnS ranged from
792 bp (Aegilips sp.) to 879 bp (Endecameris sp.), and the size of rrnL ranged from 1231 bp
(Ganaspini sp.) to 1464 bp (Pu. villari) (Table S3).

The relative synonymous codon usage (RSCU) values of all four subfamilies were
plotted in Figure 2, and all possible synonymous codons of the 22 amino acids were present.
A or T nucleotides were used with higher frequency in the third codon position than
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other nucleotides, and A was used more often than T. The four most frequently used
codons—AUA (Met), AUU (Ile), UUA (Leu2), and UUU (Phe)—were observed (Figure 2,
Table S4). These results are consistent with published mitogenomes of other wasps [33,34].
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Ka (nonsynonymous substitutions) and Ks (synonymous substitutions) are used as in-
dicators of selective pressure [35]. The evolutionary rates (Ka, Ks, and Ka/Ks) of PCGs vary
considerably among genes (Figure 3, Table S5). In Cynipoidea, the Ka values of 13 PCGs
ranged from 0.1177 (cox1) to 0.3506 (atp8), and Ks values ranged from 0.2566 (nad6) to 0.4494
(cox1). The average Ka/Ks ratios were estimated to investigate the evolutionary rates of
Cynipoidea PCGs. Ratios ranged from 0.2619 (cox1) to 1.1850 (nad6). The genes nad2, atp8,
and nad6 > 1, indicating that they evolved at a faster rate in Cynipoidea. This result was
similar to that of the Apoidea [36] and Ichneumonidae [37] in Hymenoptera.

3.3. Gene Rearrangements

Compared with the putative ancestral mitogenome of insects, the mitogenomes of all
the Cypoidea in this study are extremely variable, and all PCGs, tRNAs, and rRNAs had
various degrees of rearrangement (Figure 2).
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of 13 protein coding genes (PCGs) in mitochondrial genomes of all sequenced species in Cynipoidea.

Gene nad2 was locally inverted in all Cynipoidea species, as previously observed
in two Chalcidoidea species, Megaphragma amalphitanum and Eurytoma sp. [38]. In addi-
tion, a large block, “nad5-nad4-nad4L-nad6-cytb”, was remotely inverted in Ibaliidae and
three subfamilies (Anacharitinae, Eucoilinae, and Parnipinae) within Figitidae, which is
a unique gene rearrangement pattern in Cynipoidea and had not been observed in other
Hymenoptera mitogenomes.

Two rRNA genes were translocated to nad3 downstream in Ibaliidae and three sub-
families (Anacharitinae, Eucoilinae, and Parnipinae) within Figitidae, which is consistent
with the large block PCGs rearrangement mentioned above. In addition, the two rRNA
genes in Aspicerinae, Figitinae, and Liopteridae was remotely inverted to the cytb-nad1
junction. In Cynipidae, rrnL-rrnS was translocated to the cytb-nad1 junction.

The tRNA genes exhibited an extremely diverse rearrangement in Cynipoidea. Except
for the stable positions of three tRNA genes (trnK, trnG, and trnH), the other tRNA genes
were more or less rearranged. The hot spots of rearrangement were concentrated in two
tRNA clusters, trnI-trnQ-trnM and trnA-trnR-trnN-trnS1-trnE-trnF. The two tRNA clusters
were rearranged to varying degrees in all species. Patterns of tRNA rearrangement were
conserved in several groups. trnD was relatively stable and only rearranged in Eucoilinae.
In Figitinae and Aspicerinae, the tRNA cluster trnA-trnR-trnN-trnS1-trnE-trnF was shuffled
into trnA-trnR-trnF-trnE-trnS1. In Cynipidae, trnL1 was translocated from upstream to
downstream of nad1, and the cluster trnL2-trnW-trnM-trnQ was upstream of nad2. In
Liopteridae, Ibaliidae, and two subfamilies (Anacharitinae and Parnipinae) of Figitidae,
the cluster trnL1-trnI-trnQ was translocated upstream of nad2.

In conclusion, our analyses indicate that the rearrangement types of all newly se-
quenced mitogenomes in this study are novel within Cynipoidea. The gene rearrangements
in Cynipoidea are randomly distributed, although they are conserved in several groups.

3.4. Phylogenetic Analyses

Concerning the phylogenetic relationships of Cynipoidea, all analyses based on the
PCGs matrix and two inference methods (BI and ML) generated congruent results with
high nodal supports (Figure 4). The results indicate that the Figitidae is a polyphyletic
group, consistent with the results based on UCEs [4]. The family Cynipidae is recovered as
monophyletic by our data, as most previous studies assumed [1], but this contradicts the
result of Blaimer et al. [4]. Adding more members to this family may help to show whether
it is monophyletic or not. Ibaliidae was formerly thought to be an early-branching cynipoid
in most studies [6,7]. However, Blaimer et al. proposed that Ibaliidae nested far inside
Cynipoidea and was a sister-group to Figitidae [4]. Our research likewise came up with a
similar result.
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4. Conclusions

In this study, 16 Cynipoidea mitogenomes were newly obtained using the next-
generation sequencing method, in which the mitogenomes of the family Liopteridae and
four subfamilies Anacharitinae, Aspicerinae, Figitinae, and Parnipinae of Figitidae were
first reported. The mitogenomes of all the Cypoidea in this research are highly variable. All
of the newly sequenced mitogenomes in this study have unique rearrangement types within
Cynipoidea. The gene rearrangements in Cynipoidea are randomly distributed, though
there are gene patterns conserved in several groups, for instance, nad5-nad4-nad4L-nad6-cytb
was remotely inverted and two rRNA genes were translocated to nad3 downstream in
Ibaliidae, and three subfamilies Anacharitinae, Eucoilinae, and Parnipinae within Figitidae;
two rRNA genes in Aspicerinae, Figitinae, and Liopteridae were remotely inverted to
the cytb-nad1 junction; rrnL-rrnS was translocated to the cytb-nad1 junction in Cynipidae.
The BI and ML analysis showed consistent topology and indicated that Figitidae was a
polyphyletic group and Ibaliidae nested far inside Cynipoidea and was a sister-group to
Figitidae. Nevertheless, these results provide valuable information for understanding the
evolution of Cynipoidea. Denser taxon sampling provides more accurate and comprehen-
sive information for the further analysis of gene arrangement and the evolutionary history
of Cynipoidea.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13050914/s1, Table S1: Collection information of Cynipoidea
species in this study; Table S2: The best schemes of partition and substation models selected in
nucleotide dataset; Table S3: Length of tRNA and rRNA genes in the Cynipoidea mitogenomes;
Table S4: Relative synonymous codon usage in 16 Cynipoidea mitogenomes; Table S5: Synonymous
and nonsynonymous substitutional analysis of 13 protein coding genes.
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