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Abstract

Natural disasters such as flooding and landslides are important unexpected events during

the rainy season in Thailand, and how to direct action to avoid their impacts is the motivation

behind this study. The differences between the means of natural rainfall datasets in different

areas can be estimated using simultaneous confidence intervals (SCIs) for pairwise com-

parisons of the means of delta-lognormal distributions. Our proposed methods are based on

a parametric bootstrap (PB), a fiducial generalized confidence interval (FGCI), the method

of variance estimates recovery (MOVER), and Bayesian credible intervals based on mixed

(BCI-M) and uniform (BCI-U) priors. Their coverage probabilities, lower and upper error

probabilities, and relative average lengths were used to evaluate and compare their SCI per-

formances through Monte Carlo simulation. The results show that BCI-U and PB work well

in different situations, even with large differences in variances s2
j . All of the methods were

applied to estimate pairwise differences between the means of natural rainfall data from five

areas in Thailand during the rainy season to determine their abilities to predict occurrences

of flooding and landslides.

Introduction

Thailand, which is located above the Equator in the tropical zone, is in the center of Southeast

Asia and shares borders with Laos (north and east), Myanmar (north and west), Cambodia

(east), and Malaysia (south). Its total area is 513,115 square kilometers [1] and its population is

over 60 million. From climatological and meteorological perspectives, Thailand is divided into

northern, northeastern, central, eastern, and southern (east and west coast) areas. Past natural

disasters in Thailand have involved flooding, drought, tropical storms, earthquakes, landslides,

and forest fires. When considering natural rainfall in the rainy season (mid-May to mid-Octo-

ber), heavy storms can cause flooding and landslides. Moreover, basins, caves, and waterfalls

are especially susceptible to dangerous flash flooding during the rainy season. In July 2018,

two situations in the northern area caused significant loss of life, affected transportation, and
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damaged property and infrastructure. In a recent well-known incident, flash flooding trapped

twelve football players and their coach in the Tham Luang cave complex in northern Thailand

that triggered a major international search and rescue effort [2]. In another incident, landslides

due to heavy downpours for around two weeks claimed victims from seven hill tribes in the

northern region [3].

A delta-lognormal distribution can be applied to data having a mixture of non-negative and

zero observations: the zero values are binomially distributed with the proportion of zeros δ,

while the positive values follow log-normality with mean μ and variance σ2 on a logarithmic

scale. Inference on the delta-lognormal mean has been applied to real-world datasets in several

fields, such as climatology [4], fishery survey [5, 6], environmental studies [7, 8], and medical

treatment [8, 9]. There are two main methodologies in probability and statistical inference to

estimate a parameter of the model: point and interval estimation and hypothesis testing. The

most well-known interval estimation technique is the confidence interval (CI), and many stud-

ies have focused on CIs for a single delta-lognormal mean [5, 8, 10–13]. Meanwhile, some

authors have expanded the concept to the comparison between two delta-lognormal means [4,

14], and especially, others have constructed CIs for the difference between two delta-lognormal

means [15, 16]. The simultaneous confidence interval (SCI) can be used to estimate all of the

parameters of interest in a model at the same time. Constructing CIs for them makes it neces-

sary to perform multiple comparisons provided that each dataset is independently and identi-

cally distributed (i.i.d.). In some situations, the SCI might be more important than the CIs for

individual parameters [17]. Moreover, no studies have yet been conducted on constructing

SCIs for pairwise comparisons of delta-lognormal means.

The aim of the present study is to estimate the differences between the means of the natural

rainfall datasets of five areas in Thailand during the rainy season using constructed SCIs for

pairwise comparisons of delta-lognormal means of more than two populations (k> 2). Herein,

we propose five methods for constructing SCIs: the parametric bootstrap (PB), the fiducial

generalized confidence interval (FGCI), the method of variance estimates recovery (MOVER),

and Bayesian credible intervals based on mixed (BCI-M) and uniform (BCI-U) priors. The PB

is extended from SCIs for the ratio of lognormal means provided by Sadooghi-Alvandi and

Malekzadeh [18]. Moreover, we constructed the FGCI based on the fiducial generalized pivotal

quantity (FGPQ) of the non-zero proportion (δ0) [8, 13]. Motivated by Donner and Zou [19],

we used the Wilson interval for δ0 together with the CI for the lognormal mean to formulate

the MOVER-based SCI. The BCIs were developed using the different priors: mixed (BCI-M

based on normal and inverse Chi-squared distributions) and uniform (BCI-U based on nor-

mal approximation and a beta distribution) motivated by Harvey and Merwe [4] and Maneerat

et al. [14], respectively.

Motivated by these studies, our contribution to the field is developing and constructing

SCIs based on our proposed methods to elucidate the pairwise differences between the means

of multiple delta-lognormal distributions. As a practical demonstration, we estimated the pair-

wise differences between the means of natural rainfall records from the five areas of Thailand.

Importantly, this approach could be used to recognize and predict natural disasters in a partic-

ular area. From the Akaike information criterion (AIC) results, histograms, and normal Q-Q

plots, the rainfall data from all of the study areas follow delta-lognormal distributions except

for the northeastern area, which was thus excluded from the study.

The rest of this paper is organized as follows. The concepts and computational procedures

of the proposed methods are elaborated in the materials and methods section. Next, simulation

studies and numerical results for sample cases k = 3, 5 are presented, followed by computation

and interpretation of the estimated differences between the means of the rainfall datasets of

the five areas in Thailand. Finally, discussion and conclusions on the study are presented.
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Materials and methods

Let W ¼ ðWj1;Wj2; . . . ;Wjnj
Þ be independent and identically distributed random vector from

an k-dimensional delta-lognormal distribution Δ(μ, σ2, δ), where μ = (μ1, μ2, . . ., μk)0,
σ2 ¼ ðs2

1
; s2

2
; . . . ; s2

kÞ
0
, and δ = (δ1, δ2, . . ., δk)0; j = 1, 2, . . ., k. ForWj> 0,

Y ¼ lnW ¼ ðYj1;Yj2; . . . ;Yjnjð1Þ Þ � Nðμ;σ
2IÞ, where njð1Þ ¼ #fj : W jnj

> 0g, nj = nj(0) + nj(1),

and I denotes the identity matrix of dimension nj(1). The number of zeros, nj(0), has a binomial

distribution Bi(nj, δj). ForWj> 0, Aitchison and Brown [20] defined the distribution of W as

HðWj; mj; s
2
j ; djÞ ¼ dj þ ð1 � djÞGðWj; mj; s

2
j Þ

where GðWj; mj; s
2
j Þ is a lognormal distribution. ForWj = 0,HðWj; mj; s

2
j ; djÞ ¼ dj. Let

�Wj ¼ n� 1
jð1Þ

Pnjð1Þ
r¼1 Yjr and S2

j ¼ ðnjð1Þ � 1Þ
� 1Pnjð1Þ

r¼1 ðYjr � �WjÞ
2

be the sample mean and variance

for the log-transformed observations, respectively, and d̂ j ¼ njð0Þ=nj be the sample proportion

of zero based on the jth sample. Thus, the population mean ofWj is

yj ¼ ð1 � djÞ exp ðmj þ s2
j =2Þ

Using �Wj, S2
j and d̂ j from the samples, the uniformly minimum variance unbiased (UMVU)

estimate of θj can be expressed [20]

ŷ j ¼

0 ; njð1Þ ¼ 0

Wj1=nj ; njð1Þ ¼ 1

ð1 � d̂ jÞ exp ð �WjÞcnjð1Þ
ðS2

j =2Þ ; njð1Þ > 1

8
>>>><

>>>>:

where the Bessel function ψa(b) is defined as

caðbÞ ¼ 1þ
ða � 1Þb

a
þ
ða � 1Þ

3

a22!

b2

aþ 1
þ
ða � 1Þ

5

a33!

b3

ðaþ 1Þðaþ 3Þ
þ . . .

According to Crow and Shimizu [21], the asymptotic expansion in power to 1/nj of the vari-

ance of ŷ j; njð1Þ > 1 is given by

Varðŷ jÞ ¼ exp ð2mj þ s2
j Þ

�
1

n2
j

Xnj

r¼1

nj
r

� �
ð1 � djÞ

r
d
nj � r
j r2 exp

s2
j

r

� �

0F1

r � 1

2
;
ðr � 1Þ

2

4r2
s4

j

� �

� ð1 � djÞ
2

�

¼
exp ð2mj þ s2

j Þ

nj
djð1 � djÞ þ

1

2
ð1 � djÞð2s

2

j þ s
4

j Þ

� �

þ Oðn� 2

j Þ

ð1Þ

where the hypergeometric function is 0F1ða; bÞ ¼
P1

m¼0
bm
ðaÞmm!

, where

ðaÞm ¼

(
1 ;m ¼ 0

aðaþ 1Þ . . . ðaþm � 1Þ ;m � 1

Since our focus is on all pairwise differences among the means of delta-lognormal
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distributions, then

yjl ¼ yj � yl

for 8j 6¼ l; j, l = 1, 2, . . ., k, for which we can obtain estimates ŷ jl ¼ ŷ j � ŷ l. Note that since

W ¼ ðWj1;Wj2; . . . ;Wjnj
Þ be random samples from delta-lognormal distribution. In agree-

ment with Crow and Shimizu [21], this leads to obtain the UMVU estimates ŷ j and ŷ l which

have the properties of random variables. Thus, the pairwise covariance between them is

COVðŷ j; ŷ lÞ ¼ 0. From Eq (1), the variance of ŷ jl can be written as

Varðŷ jlÞ ¼ Varðŷ jÞ þ Varðŷ lÞ

By substituting the estimates ( �Wj; S2
j ; d̂ j) and ( �Wl, S2

l , d̂ l) from the samples, the approximation

of the estimated variance Varðŷ jlÞ is obtained as

Vŷ jl
¼ Vŷ j

þ Vŷ l

�
exp ð2 �Wj þ S2

j Þ

nj
d̂ jð1 � d̂ jÞ þ

1

2
ð1 � d̂ jÞð2S

2

j þ S
4

j Þ

� �

þ
exp ð2 �Wl þ S2

l Þ

nl
d̂ lð1 � d̂ lÞ þ

1

2
ð1 � d̂ lÞð2S

2

l þ S
4

l Þ

� �

The methods to construct the SCIs for θjl are elaborated as follows.

The PB interval

Let �W ðobsÞ
j , S2ðobsÞ

j and d̂
0ðobsÞ
j ¼ 1 � d̂

ðobsÞ
j be the observed values of �Wj, S2

j and d̂ 0j; n
ðobsÞ
jð1Þ ¼ nd̂

0ðobsÞ
j .

These can be used to represent the estimated values of parameters μj, s2
j , and d

0

j, thereby

obtaining the empirical distribution of T based on PB. According to Sadooghi-Alvandi and

Malekzadeh [18], it is well-known that Zj ¼
ffiffiffiffiffiffiffiffiffi

nðobsÞjð1Þ

q

½ �W ðBÞ
j � �W ðobsÞ

j �=S
ðobsÞ
j � Nð0; 1Þ and

Uj ¼ ½n
ðobsÞ
jð1Þ � 1�S2ðBÞ

j =S2ðobsÞ
j � w2

nðobsÞ
jð1Þ
� 1

are independent random variables, and so

�W ðBÞ
j ¼ Zj

SðobsÞj
ffiffiffiffiffiffiffiffiffi

nðobsÞjð1Þ

q ð2Þ

S2ðBÞ
j ¼

S2ðobsÞ
j

nðobsÞjð1Þ � 1
Uj ð3Þ

which are their sampling distributions when the values of the nuisance parameters s2
j are

replaced by S2ðobsÞ
j , while the values of μi are fixed at 0. The sampling distribution of d

0

j can be

considered as a beta distribution, as motivated by Hasan and Krishnamoorthy [8]:

d̂
0ðBÞ
j � betaðnjð1Þ þ 0:5; njð0Þ þ 0:5Þ ð4Þ

which also satisfies the fiducial generalized pivotal quantity (FGPQ) conditions in the FGCI

interval where njð1Þ ¼ njd̂ 0j and nj(0) = nj − nj(1). The PB variable based on the pivotal quantity
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can be written as

TðPBÞ ¼
jfd̂

0ðBÞ
j exp ð �W ðBÞ

j ÞcnðBÞ
jð1Þ
ðS2ðBÞ

j =2Þ � d̂
0ðBÞ
l exp ð �W ðBÞ

l ÞcnðBÞ
lð1Þ
ðS2ðBÞ

l =2Þg � ŷ
ðobsÞ
jl j

ffiffiffiffiffiffiffiffi
VðBÞyjl

q

where nðBÞjð1Þ ¼ njd̂
0ðBÞ
j , nðBÞlð1Þ ¼ nld̂

0ðBÞ
l ,

cnðBÞ
jð1Þ
ðS2ðBÞ

j =2Þ ¼ 1þ
ðnðBÞjð1Þ � 1ÞðS2ðBÞ

j =2Þ

nðBÞjð1Þ
þ
ðnðBÞjð1Þ � 1Þ

3

n2ðBÞ
jð1Þ 2!

ðS2ðBÞ
j =2Þ

2

nðBÞjð1Þ þ 1
þ . . .

cnðBÞ
lð1Þ
ðS2ðBÞ

l =2Þ ¼ 1þ
ðnðBÞlð1Þ � 1ÞðS2ðBÞ

l =2Þ

nðBÞlð1Þ
þ
ðnðBÞlð1Þ � 1Þ

3

n2ðBÞ
lð1Þ 2!

ðS2ðBÞ
l =2Þ

2

nðBÞlð1Þ þ 1
þ . . .

ŷ
ðobsÞ
jl ¼ d̂

0ðobsÞ
j exp ð �W ðobsÞ

j Þcnjð1Þ ðS
2ðobsÞ
j Þ � d̂

0ðobsÞ
l exp ð �W ðobsÞ

l Þcnlð1Þ ðS
2ðobsÞ
l Þ

and

VðBÞyjl
�

exp ð2 �W ðBÞ
j þ S

2ðBÞ
j Þ

nj
d̂
0ðBÞ
j ð1 � d̂

0ðBÞ
j Þ þ

1

2
d̂
0ðBÞ
j ð2S

2ðBÞ
j þ S4ðBÞ

j Þ

� �

þ
exp ð2 �W ðBÞ

l þ S
2ðBÞ
l Þ

nl
d̂
0ðBÞ
l ð1 � d̂

0ðBÞ
l Þ þ

1

2
d̂
0ðBÞ
l ð2S

2ðBÞ
l þ S4ðBÞ

l Þ

� �

Therefore, the 100(1 − α)%PB-based SCI for θjl is written as

SCIðPBÞyjl
¼ ½ŷ jl � qðPBÞa

ffiffiffiffiffiffiffi
Vŷ jl

q
� ð5Þ

where qðPBÞ
a

is the (1 − α)th percentile of the distribution of T(PB). The PB-based SCI in Eq (5)

has the asymptotic coverage property, as demonstrated in Theorem 1 in S1 Appendix. The

proof of Theorem 1 in S1 Appendix is similar to Hanning et al. [22], Kharrati-Kopaei and Efte-

khar [23], Li et al. [24]. From Eq 5, we can imply that there are no differences between the

SCIs for two or more groups due to the constructed SCIs used in multiple comparisons. This

fact is also similar to the formulated MOVER interval.

Algorithm 1: The PB interval
1 Generate �W ðBÞ

j , S2ðBÞ
j , and d̂

0ðBÞ
j as given by Eqs (2), (3) and (4),

respectively,
2 Compute T(PB).
3 Repeat steps 1–2, a large number of times, m = 2500. The empirical
distribution of T(PB) is obtained to compute qðPBÞ

a
.

4 Compute 95%SCI-based PB for θjl, as given by Eq (5).

The FGCI interval

Hannig et al. [25] claim that a variant of the FGPQ1 and FGPQ2 conditions, is stronger than

the GPQ2 condition of Weerahandi [26]. Hence, we developed our FGCI to establish SCIs for

θjl. Let ð �Wj;
�W �
j Þ, ðS

2
j ; S

2�
j Þ and ðd̂ j; d̂

�
j Þ be i.i.d. random variables such that �W �

j , S
2�
j , and d̂�j are
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independent copies of �Wj, S2
j , and d̂ j. The FGPQs of μj and s2

j are given by [27]

ðRmj ;Rs2
j
Þ ¼ �Wj � Tj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnjð1Þ � 1Þ

Uj

S2
j

njð1Þ

s

;
ðnjð1Þ � 1Þ

Uj
S2

j

 !

¼ �Wj �
½ �W �

j � mj�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
j =njð1Þ

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
j

S2�
j

S2
j

njð1Þ

s

;
s2
j

S2�
j

S2

j

0

B
@

1

C
A

ð6Þ

Hasan and Krishnamoorthy [8] developed the FGPQ of d
0

j ¼ 1 � dj as

Rd0j � betaðnjð1Þ þ 0:5; njð0Þ þ 0:5Þ ð7Þ

From Eqs (6) and (7), we can obtain

RyjlðY;Y
�; μ;σ2; δÞ ¼ Rd0j exp ðRmj þ Rs2

j
=2Þ � Rd0l exp ðRml þ Rs2

l
=2Þ ð8Þ

Therefore, the simultaneous 100(1 − α)% FGCI for θjl is given by

SCIðFGCIÞyjl
¼ ½ŷ jl � tðFGCIÞa

ffiffiffiffiffiffiffi
Vŷ jl

q
� ð9Þ

where tðFGCIÞ
a

is the (1 − α)th percentile of the distribution of T(FGCI) developed to apply with the

SCIs for θjl as follows:

TðFGCIÞ ¼ max
j6¼l

ŷ jl � RyjlðY;Y
�;μ;σ2; δÞ
ffiffiffiffiffi
Vjl

p

�
�
�
�
�

�
�
�
�
�

ð10Þ

Motivated by Hasan and Krishnamoorthy [8], Li et al. [13], Hanning et al. [22], Kharrati-

Kopaei and Eftekhar [23], we slightly adjusted the results in [22] to prove the asymptotic cov-

erage probability of the FGCI-based SCI for θjl. Concerning the properties of the SCI in (9),

the simultaneous 100(1 − α)% FGCI for θjl follows the asymptotic coverage probability in The-

orem 2 in S1 Appendix.

Algorithm 2: FGCI interval
1 Generate �W �

j , S2�
j and d̂�j being the independent copies of �Wj, S2

j and d̂ j,
respectively.
2 Compute ðRmj ;Rs2

j
Þ and Rd0j in Eqs (6) and (7), respectively.

3 Compute Ryjl in Eq (8) and T(FGCI) in Eq (10).

4 Repeat steps 1–3, a large number of times, m = 2500. The empirical
distribution of T(FGCI) is obtained to compute tðFGCIÞ1� a .
5 Compute the simultaneous 95% FGCI for θjl, given by Eq (9).

The MOVER interval

The MOVER-based SCI for θjl is constructed using the concepts of Zou et al. [28] and Donner

and Zou [19]. The construction of 100(1 − α)% MOVER-based SCI for θjl = θj − θl = exp(βj)
− exp(βl) is given by

SCIðMOVERÞyjl
¼ ½LðMOVERÞyij

;UðMOVERÞyjl
�

¼ ŷ jl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðŷ j � lyjÞ

2
þ ðuyl � ŷ lÞ

2
q

; ŷ jl þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuyj � ŷ lÞ

2
þ ðŷ l � lylÞ

2
qh i
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where ŷ jl ¼ exp ðb̂ jÞ � exp ðb̂ lÞ. First, the θj is log-transformed as

bj ¼ lnd0j þ ðmj þ s
2
j =2Þ

The estimate of βj is obtained from replacing �Wj, S2
j and d̂ j with their parameters, i.e.

b̂ j ¼ ln d̂ 0j þ ð �Wj þ S2
j =2Þ; j = 1, 2, ‥, k. For considering the constructed CIs for θj and θl

denoted as ðlyj ; uyjÞ and ðlyl ; uylÞ, the 100(1 − α)% MOVER-based CIs for βj and βl; j 6¼ l can be

expressed as

CIðMOVERÞbj
¼ ½lbj ; ubj �

¼

�

b̂ j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ln d̂ 0j � ld0jÞ

2
þ ðŴ j þ S2

j =2 � lmj;s2
j
Þ

2
q

;

b̂ j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðud0j � ln d̂ 0jÞ

2
þ ðumj;s2

j
� Ŵ j � s2j =2Þ

2
q �

where the ðld0j ; ud0jÞ is based on the variance stabilized transformation for δ0, proposed by Das-

Gupta [29] as follows:

ðld0j ; ud0jÞ ¼ ln sin 2 arcsin
ffiffiffiffi

d̂
0

j

q

�
Vj;1� a=2

2
ffiffiffiffinj
p

( )" #

ð11Þ

where Vj ¼ 2
ffiffiffiffinj
p
ð arcsin

ffiffiffiffi

d̂
0

j

q

� arcsin
ffiffiffiffi
d
0

j

q
Þ � Nð0; 1Þ; nj!1. Thus, the 100(1 − α)% CI

for mj þ s
2
j =2 becomes

ðlmj;s2
j
; umj;s2

j
Þ ¼

�

Ŵ j þ S2
j =2

� �
�

Tj;1� a=2S2
j

njð1Þ

 !2

þ
S4
j

4
1 �

njð1Þ � 1

w2
j;1� a=2;nð1Þ� 1

 !2( )1=2

;

Ŵ j þ S2
j =2

� �
þ

Tj;1� a=2S2
j

njð1Þ

 !2

þ
S4
j

4

njð1Þ � 1

w2
j;a=2;nð1Þ� 1

� 1

 !2( )1=2�
ð12Þ

where Tj ¼
ffiffiffiffiffiffiffiffinjð1Þ
p

ðŴ j � mjÞ=Sj � Nð0; 1Þ, and w2
j;njð1Þ� 1

is a chi-square distribution with nj(1)

− 1 degrees of freedom. The 100(1 − α)% MOVER interval for θj becomes

CIðMOVERÞyj
¼ ½lyj ; uyj � ¼ ½ expflbjg; expfubjg�

Similarly, we can obtain CIðMOVERÞyl
¼ ½lyl ; uyl � ¼ ½ expflblg; expfublg�. Therefore, the 100(1 −

α)% MOVER-based SCI for θjl is given by

SCIðMOVERÞyjl
¼ ½LðMOVERÞyij

;UðMOVERÞyjl
�

¼

�

ŷ jl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ŷ j � lyj �

2
þ ½uyl � ŷ l�

2
q

;

ŷ jl þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½uyj � ŷ j�

2
þ ½ŷ l � lyl �

2
q �

ð13Þ

In accordance with Harvey and Merwe [4], Donner and Zhou [19], Hanning et al. [22],
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Thangjai and Niwitpong [30], we slightly adjusted the results of [22] and [30] to prove the

MOVER-based SCI in (13) with the asymptotic coverage property, given in Theorem 3 in S1

Appendix.

Algorithm 3:MOVER interval
1 Compute ðld0j ; ud0jÞ and ðlmj ;s2

j
; umj ;s2

j
Þ, as given by Eqs (11) and (12),

respectively
2 Compute CIðMOVERÞbj

and CIðMOVERÞbl
.

3 Compute 95%SCI-based MOVER for θjl, as given by Eq (13).

Bayesian credible intervals

Maneerat et al. [14] proposed highest posterior density (HPD) intervals for the single and dif-

ference between two delta-lognormal means based on mixed (normal and inverse chi-square)

and uniform priors. For the difference between delta-lognormal means, the HPD-based uni-

form prior provided the best performance, while that of the HPD-based mixed prior was no

different from those of the well-established HPD-based Jeffreys and beta priors. Hence, both

are considered and developed here as SCIs for θjl.
Mixed prior. This is a prior of ðmj; s

2
j Þ based on independently drawn samples from nor-

mal and inverse chi-square distributions combined with the beta prior of d
0

j to obtain the

mixed prior of θj as follows:

PMðmj; s2
j ; d

0

jÞ ¼
GðajÞGðbjÞ
Gðaj þ bjÞ

d
0aj � 1

j ð1 � d
0

jÞ
bj � 1

ffiffiffiffiffiffiffiffi

nð0Þjð1Þ
2p

s

ðs2

j Þ
� 1=2 exp

kð0Þj
2s2

j

ðm
ð0Þ

j � mjÞ
2

( )

ðs2
j Þ
� ðu
ð0Þ

j =2Þ� 1

2
u
ð0Þ

j =2
Gðu

ð0Þ

j =2Þ
exp

u
ð0Þ

j s
2ð0Þ

j

2s2
j

( )

/ d
0aj � 1

j ð1 � d
0

jÞ
bj � 1
ðs2

j Þ
� ðu
ð0Þ

j þ1Þ=2� 1 exp
1

2s2
j

kð0Þj ðm
ð0Þ

j � mjÞ
2
þ u

ð0Þ

j s
2ð0Þ

j

h i
( )

ð14Þ

where d
0

j � betaðaj; bjÞ, mj � Nðmjjm
ð0Þ

j ; s
2
j =k

ð0Þ

j Þ and s2
j � w

� 2ðs2
j ju
ð0Þ

j ; s
2ð0Þ

j Þ. The likelihood

function is

Pðwjjmj; s
2
j ; d

0

jÞ ¼
nj
njð1Þ

 !

d
0njð1Þ
j ð1 � d

0

jÞ
njð0Þ ðs

2Þ
� njð1Þ=2

ffiffiffiffiffiffi
2p
p exp �

1

2s2
j

Xnjð1Þ

r¼1

ð lnwjr � mjÞ
2

( )

ð15Þ

The posterior of ðmj; s
2
j ; d

0

jÞ derived from the mixed prior (14) and its likelihood (15) becomes

Pðmj; s2
j ; d

0

jjwjÞ / d
0ðnjð1ÞþajÞ� 1

j ð1 � d
0

jÞ
ðnjð0ÞþbjÞ� 1

ðs2
j Þ
� ðu
ð1Þ

j =2Þ� 1

exp
1

2s2
j

kð1Þj ðm
ð1Þ

j � mjÞ
2
þ u

ð1Þ

j s
2ð1Þ

j

h i
( )
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This can be integrated to obtain the respective marginal distributions of μj,s2
j and d

0

j as

d
0

j;ðMÞjwj � betaðnjð1Þ þ aj; njð0Þ þ bjÞ

s2
j;ðMÞjwj � w

� 2

u
ð1Þ

j
ðs

2ð1Þ

j Þ

mj;ðMÞjs
2
j ;wj � tuð1Þj ðmjjm

ð1Þ

j ; s
2ð1Þ

j =kð1Þj Þ

ð16Þ

where m
ð1Þ

j ¼ �wj, k
ð1Þ

j ¼ njð1Þ, u
ð1Þ

j ¼ njð1Þ � 1, and s
2ð1Þ

j ¼ 1

njð1Þ� 1

Pnjð1Þ
r¼1 ð lnwjr � �wjÞ

2
are fixed

[31]. From Eq (16), the posterior distribution of θjl based on the mixed prior is given by

y
�

jl;ðMÞ ¼ y
�

j;ðMÞ � y
�

l;ðMÞ ð17Þ

where y
�

j;ðMÞ ¼ d
0

j;ðMÞ exp ðmj;ðMÞ þ s
2
j;ðMÞ=2Þ and y

�

l;ðMÞ ¼ d
0

l;ðMÞ exp ðml;ðMÞ þ s
2
l;ðMÞ=2Þ. According to

Ganesh [32], we can define

Q � max
k
fðŷk � y

�

kÞjwkg � mink fðŷk � y
�

kÞjwkg

where jðŷ j � y
�

j Þjwj � ðŷ l � y
�

l Þjwlj � Q for all j and l. Thus, we can imply that

Pðjðŷ j � y
�

j Þ � ðŷ l � y
�

l Þj � Qa=2jwÞ⩾ 1 � a

Therefore, the simultaneous 100(1 − α)% BCI-M for θjl is

SBCIðMÞyjl
¼ y

�

jl;ðMÞ � q
ðMÞ
a ð18Þ

where qðMÞ
a

denotes (1 − α)th percentile of the distribution of

QðMÞ ¼ max
k
fy
�

jl;ðMÞg � mink fy
�

jl;ðMÞg.

Uniform prior. The uniform prior of ðmj; logsj; d
0

jÞ can be written as

Puðmj; logsj; d
0

jÞ / constant ð19Þ

Meanwhile, the likelihood for ðmj; logsj; d
0

jÞ is

Pðwjjmj; logsj; d
0

jÞ ¼ Pðwjjd
0

jÞPðwjjmj; logsjÞ

¼
nj
njð0Þ

 !

d
0njð1Þ
j ð1 � d

0

jÞ
njð0Þ ð

ffiffiffiffiffiffi
2p
p

logsjÞ
� njð1Þ

exp �
1

2s2
j

ðnjð1Þ � 1Þs2j þ njð1Þð�wj � mjÞ
2

h i
( )

ð20Þ

For deriving the first and second derivatives of P(wj|μj, logσj), we obtain

Iðmj; logsjÞ ¼
� njð1Þ=s2

j 0

0 � 2njð1Þ

2

4

3

5
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Using normal approximation, the posterior distribution of (μj, logσj) can be approximated as

mj;ðUÞjwj � Nðmjj�wj; s2j =njð1ÞÞ

logsj;ðUÞjwj � Nð logsjj log sj; ½2njð1Þ�
� 1
Þ

ð21Þ

To transform logσ to σ, Gelman et al. [33] used a Jacobian transformation to obtain

s2
j;ðUÞjwj � Nðs2

j j~s
2
j ; 2~s4

j ðnjð1Þ þ 2Þ
� 1
Þ, with ~s2

j ¼ njð1Þs
2
j =ðnjð1Þ þ 2Þ. Since (μj, logσj) and d

0

j are

independent. To focus on the posterior distribution of d
0

j, the uniform prior in Eq (19) can be

combined with its likelihood (20) to yield

Pðd0jÞ / d
0ðnjð1ÞþajÞ� 1

j ð1 � d
0
Þ
ðnjð0ÞþbjÞ� 1

j ð22Þ

which d
0

j;ðUÞjwj � betaðnjð1Þ þ aj; njð0Þ þ bjÞ; aj = bj = 1. From Eqs (21) and (22), the posterior of

θjl based on the uniform prior can be written as

y
�

jl;ðUÞ ¼ y
�

j;ðUÞ � y
�

l;ðUÞ ð23Þ

where y
�

j;ðUÞ ¼ d
0

j;ðUÞ exp ðmj;ðUÞ þ s
2
j;ðUÞ=2Þ and y

�

l;ðUÞ ¼ d
0

l;ðUÞ exp ðml;ðUÞ þ s
2
l;ðUÞ=2Þ. Hence, the

simultaneous 100(1 − α)% BCI-U for θjl is given by

SBCIðUÞyjl
¼ y

�

jl;ðUÞ � q
ðUÞ
a ð24Þ

where qðUÞ
a

denotes the (1 − α)th percentile of the distribution of

QðUÞ ¼ max
k
fy
�

jl;ðUÞg � mink fy
�

jl;ðUÞg.

Algorithm 4: SBCIs-based mixed and uniform priors
1 Mixed prior
1.1 Generate d

0

j;ðMÞjwj, s2
j;ðMÞjwj and mj;ðMÞjs

2
j ;wj, given in Eq (16) being the

marginal posterior distributions of d
0

j, s2
j and μj, respectively.

1.2 Compute y
�

jl;ðMÞ in Eq (17).
1.3 Repeat steps 1.1–1.2, a large number of times, m = 2500. The

empirical distribution of QðMÞ
a

is obtained to compute qðMÞ
a
.

2 Uniform prior
2.1 Generate d

0

j;ðUÞjwj, s2
j;ðUÞjwj and mj;ðUÞjs

2
j ;wj being the marginal posterior

distributions of d
0

j, s2
j and μj, respectively.

2.2 Compute y
�

jl;ðUÞ in Eq (23).
2.3 Repeat steps 2.1–2.2, a large number of times, m = 2500. The

empirical distribution of QðUÞ
a

is obtained to compute qðUÞ
a
.

3 Compute 95%SBCIs-based mixed and uniform priors for θjl given in Eqs
(18) and (24), respectively.

Simulation studies

Monte Carlo simulations were conducted to examine the performances of the SCIs by consid-

ering their coverage probabilities (CPs), lower and upper error probabilities (LEP and UEP,

respectively), and relative average lengths (RALs; the ratio between the average lengths of each

proposed SCI and MOVER). Note that the average lengths of MOVER used in the comparison

were reported. According to the performance measures for SCIs used by Li et al. [13], the best-

performing method is where the CP is close to or greater than the nominal level (1 − α = 95%)

and the RAL is less than 1 and the smallest, while the required values of LEP and UEP are bal-

anced at 2.5%. The parameter combinations in the simulation studies were set as follows:
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• Sample cases: k = 3, 5

• Sample size: n = (n1, n2, . . ., nk)

• Population variance: σ2 ¼ ðs2
1
; s2

2
; . . . ; s2

kÞ

• Population mean: μ = μ1, . . ., = μk = 0

• Probability of having zero: δ = (δ1, δ2, . . ., δk)

These parameters were fixed and varied in different scenarios, as reported in Tables 1 and

2. Random samples were drawn from a delta-lognormal distribution for each parameter com-

bination. The simulation method for PB differed from the other methods in that repeated sam-

ples were drawn from the original random samples, as mentioned above. Algorithm 5 shows

the simulation procedure with the steps to compute the SCI performances.

Algorithm 5:
1 Generate a random sample Wj � Dðmj;s

2
j ; djÞ; j = 1, 2, . . ., k. Compute �wj,

s2j , and d̂ 0j ¼ 1 � d̂ j are the observed values of �Wj, S2
j and d̂ 0j

2 Compute the SCIs-based the following methods:
2.1 PB, FGCI and MOVER from Algorithms 1,2,3 and record whether or

not all the values of θjl are in their corresponding SCIðPBÞyjl
, SCIðMOVERÞyjl

and

SCIðFGCIÞyjl
, respectively.

2.2 BCI-M and BCI-U from Algorithm 4, and record whether or not all
the values of θjl are in their corresponding SCIðBCI� MÞyjl

and SCIðBCI� UÞyjl
,

respectively.
3 Repeat step 2 with a number of times M = 5000, so the time proportion
that all θjl are in their corresponding SCIs giving the estimated CP.

Results

Simulation results

R, version 4.0.4 was used for the computations of the simulations and the application. For sam-

ple case k = 3 (Table 1 and Fig 1), the numerical evaluations show that BCI-U provided the cor-

rect CP with the shortest interval for small-to-large differences in s2
j and δi and equal sample

sizes. For unequal sample sizes, PB obtained good performance criteria results when the differ-

ence in s2
i was large, while BCI-U and MOVER performed better for the rest of the cases. Like-

wise, the balance between LEP and UEP was maintained by MOVER. Both BCI-M and FGCI

attained good CPs but wider average lengths than the others. For k = 5 (Table 2 and Fig 2), the

simulation results reveal that MOVER provided good and stable performances for small differ-

ences in σ2 and δi, while importantly, also provided a good balance between LEP and UEP.

The performance of PB was satisfactory for all large differences in σ2 whereas BCI-M, BCI-U,

and FGCI performed poorly, with higher CPs and wider ALs than the others).

An example using real data

This provides an illustrative example of applying the proposed SCIs to analyze natural rainfall

datasets including extreme weather events in Thailand. There are five areas (northern, north-

eastern, central, eastern, and southern (east and west coasts)) and three seasons (summer,

rainy, and winter) in Thailand, for which we considered natural rainfall datasets for July 2018.

Table 3 provides data on the weekly natural rainfall amounts recorded by the Thai Meteoro-

logical Department: north (62 substations), northeast (210 substations), central (57 substa-

tions), east (29 substations), southeast (89 substations), and southwest (30 substations). There
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Fig 1. CP performances of 95%SCIs for θjl: 3 sample cases.

https://doi.org/10.1371/journal.pone.0253935.g001
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Fig 2. CP performances of 95%SCIs for θjl: 5 sample cases.

https://doi.org/10.1371/journal.pone.0253935.g002
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Table 3. Weekly natural rainfall records divided into five parts during July 2018.

Parts Week Weekly rainfall amounts (mm)

Northern 1 5 11.7 0 0 0 88.8 43 17.2 7.6 0 0 6.2 0 0 9.7 7.4

7.4 0 0 1.2 0 0 14.3 7.1 5.3 16.2 14.5 2.4 30 0 2.8 0

0 10 0 4.8 21 0 30 18.2 2.8 25.9 77 0 27.2 0 30.1 17.6

0 12.1 42.4 0 14.5 25.3 22.1 3.4 0 9.4 20.1 20.2 19.8 0

2 4.1 12.2 0 0 0 19.1 43.7 17.9 18.3 0 0 10.3 0 0 16.4 36.8

24.2 0 0 16.5 0 0 23 54.1 84.4 97.1 21.5 62.9 102.1 4.8 0 6

0 0 0 0 18.1 3.2 1.8 0 12 37.9 128.3 0.9 61.4 0 12.5 5.5

0 2.2 14 0 12.2 54 50.5 30.3 0 0.7 49.5 24.3 39.7 0

3 87.9 65.6 0 0 0 88.3 111.3 69.8 72.7 0 64.5 71.7 0 0 47.6 98.3

130.8 53.9 47.9 135.2 0 0 113 133.1 121.6 163.3 150.5 144 200.3 94.2 69.7 70

0 55.2 18 37.7 35.5 42.8 26.3 27.8 34.2 102 209.3 57 80.7 0 23.1 71.9

49.1 22.5 98.1 66.1 43.9 18.1 100.5 83 0 70.7 169.8 42.3 22.5 0

4 141.8 65 0 0 0 46.1 136.2 39.6 60.3 0 25.1 58.7 0 0 32 21.5

57.6 22.7 0 29.5 0 0 104.5 90 97.1 120.7 121.4 56.4 119 39.2 58.8 10.3

0 25 0 0 21.6 1.6 23.2 0 40.1 108.8 245.4 11.2 93.4 0 34.4 34

41.2 15.5 86.1 51.9 43.3 2 65.7 42.8 0 68.4 36.8 8.9 81.5 0

Central 1 14.3 7.2 67.5 0 0 17 4.7 8.9 3.5 0 0 0 0 0 0 0

0 0 0 0 0 19.3 0 49.4 9.3 38.5 0 0 11.6 21 17.2 20.6

0 0 23.8 2.3 4.1 4.2 27.6 16.4 0 0 11.3 6.5 0 27.1 0 0

0 18.6 40.6 0 21 37.2 55.2 30.3 23.3

2 51.1 39.3 49.1 16.5 31.5 97.6 15.4 18 8.8 0 0 0 0 0 0 0

0 0 0 0 0 29.8 0 19.2 14.3 11.2 0 0 25.8 5.6 0 7.6

0 0 13.2 2 40.7 16 12.5 45.6 0 0 41.7 3 0 34.4 0 0

0 5.9 92 0 8.6 38.3 54.4 46.3 39

3 69.1 44.8 73.6 47.1 28 39.7 29.5 19.1 8.9 0 0 0 0 0 0 0

0 0 0 0 0 25.9 0 12.8 7.1 12.8 0 0 8.5 18.5 7 15.6

0 0 20.9 14 6.8 1.9 35.1 111 0 0 5.1 5.3 0 11.7 0 0

0 8.3 94.5 2.8 3.9 23.2 22 18.5 15

4 1.9 5.1 1 3.8 7 3.9 9 3.1 2.7 0 0 0 0 0 0 0

0 0 0 0 0 0 0 35.6 4.1 23.6 0 0 0 11 0 6.3

0 0 10.3 0.4 0.8 0.1 4.1 22.3 0 0 3.6 0 0 3.7 0 0

0 0 229.2 0 1.1 42.7 50.3 54.6 16.4

East 1 23.4 36.1 13.4 1.5 12.6 19.2 10 4.8 15.8 36 6.5 22.4 47.1 36.8 13.6 61

26.3 7.5 102.5 20.4 24.9 14.6 87.5 306.9 72.8 168.3 89.5 78.6 26.5

2 106 49.4 118.9 117.4 110.4 9.3 13.2 1.5 33.7 33.2 4.1 23.1 48.7 81.5 24.3 70.7

30.1 34.4 154.1 45.6 119.1 42 92.9 193.6 198.9 204.9 58.1 114.5 16.8

3 33.5 32.9 34 70 45.3 4.9 8 3.3 14.8 4.3 8.4 5.5 45.7 189.5 10.8 78.9

153.9 92.5 100.5 12.5 50 23.9 316.9 585.5 248.8 113.5 79.6 253 131.9

4 59.1 21.8 196.4 174.6 74.5 0.3 0 0 0 0 0.1 0.3 8.7 2.7 0 10

2 0 246.1 49.9 31.2 2.6 23 19.8 5 434.9 0 20.6 0.5

(Continued)
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are four weeks in July 2018: week 1 (2–8), week 2 (9–15), week 3 (16–22), and week 4 (23–29).

There were zero observations (i.e., no rainfall) at all of the substations. Histogram plots (Fig 3)

and normal Q-Q plots (Fig 4) show that the datasets from almost all areas were consistent with

the assumptions of delta-lognormality (the northeast area was omitted as it did not fill the

requirements). Furthermore, AIC can be used to check the fit of a particular distribution [34].

It is defined as

AIC ¼ � 2 lnLþ 2p ð25Þ

where L is the likelihood function and p is the number of parameters in the model. To judge a

suitable distribution for the data, it is considered from one that has minimum AIC. From the

AIC results (Table 4), it indicates that the positive rainfall observations fit the lognormal

Table 3. (Continued)

Parts Week Weekly rainfall amounts (mm)

Southeast 1 19.6 0 9.8 22.6 4.6 50.6 53 27.5 37.5 129.6 6 34.2 52.7 65.3 59.8 47.5

45.5 50 69 34.9 7.3 5 33.4 17.9 4 13 21 0 20.2 6.8 0 32.9

20 45.8 16.1 20.7 0 31.2 71.5 13.4 2.5 0 12.4 39.8 27.6 21.8 18 1

0.5 0 8 20 1 10 12.8 0 4.7 0 0 70.9 26.5 12.6 35 6.8

3.9 30.9 0.5 15.1 35 0 8 9.3 26.5 0 23.5 0 46.1 25.6 61.3 13.4

52 86.5 21.6 3.2 25.5 19.5 15.2 0 68.6

2 23.5 0 34.7 2.9 12.3 115.3 116.8 182.5 92.6 319.9 155 123 240 52.3 40.3 10

24.7 0.9 98.5 10.9 12.1 4.8 21.3 5 0 14 4 19.5 54.2 22.8 0 11.6

72 27.4 18.2 20.5 0.5 47.2 30.4 6.2 3.3 0 13.7 0.4 13.6 4.8 0 0

0 16 0 0 0 0 0 0 0 5.2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0

6.9 3.3 0 0 0 0 0 0 0

3 21.8 0 60.8 33.7 34 67.2 88.2 53.2 75 233.4 76.1 50.4 132 25.8 24.9 12.8

74 0 20 22.2 12.3 40.2 29.9 6.2 9 16.2 0 25.5 63.5 22.9 2 30.4

30 37.2 29.8 31.6 18.7 50.9 43.9 10.2 24.3 0 26.8 15.1 25.8 17.8 5.3 0

9 40.7 9 0 0 8 22.1 25 5 0 0 7 12.1 7.5 11.3 7.5

5.1 4.7 6.4 0.5 1.5 3.1 0 0 6.2 6.4 0 0 14.4 0 2.7 1.5

0 17.7 0 0 4.5 0 7.1 0 0

4 3.4 0 13 0.5 1.6 26.2 22 59.8 11 232.4 18.3 27.1 82.5 7.1 0.2 1.9

34.6 0 88 1.7 1.7 0.5 21 18.5 0 0 0 0 30 3.5 0 0

25 55.5 9.3 23 0 66.7 40.2 6.9 5.5 0 0.3 15.4 3.4 30.8 0 6

62.3 21.2 0 0 0 0 3.9 3 0 0 0 31 146.5 45.4 25.5 67.3

34.6 65.7 107.6 11 89.6 32.6 0 116.3 104.2 59.4 0 0 47.7 85.2 250.7 112.4

67.6 198.8 85.2 83.4 117.6 46.5 120.9 0 111.9

Southwest 1 234.5 0 0 0 154.7 0 0 0 0 45 57.1 18.6 0 17.5 0 0

83.5 0 0 0 0 0 0 0 0 0 0 78.6 0 29.5

2 334.3 0 0 0 94.8 0 0 0 0 26 52.5 34 0 27.7 0 0

95.5 0 0 0 0 0 0 0 0 0 0 102.8 0 74

3 147.7 0 0 0 139.9 0 0 0 0 44.8 26.5 0 0 34.6 0 0

103 0 0 0 0 0 0 0 0 0 0 65.8 26.3 45.9

4 262.9 0 0 0 43 0 0 0 0 12.6 6.3 0 0 56.2 0 0

37.5 0 0 0 0 0 0 0 0 0 0 131.9 0 53.7

Source: Thailand Meteorological Department. URL: https://www.tmd.go.th/services/weekly_report.php

https://doi.org/10.1371/journal.pone.0253935.t003
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distribution for all of the study areas. Likewise, these datasets also contained zero observations,

so we conclude that the data for five areas follow the assumptions of delta-lognormal distribu-

tions. The data summary is reported in Table 5.

The 95% SCIs for θj; j = 1, 2, 3, 4, 5, were computed to estimate pairwise differences in the

means of the weekly rainfall datasets for the five areas in Thailand (Table 6). For sample case

k = 5, it can be seen that MOVER had more efficient (narrower) intervals than the other meth-

ods for small differences in variance s2
j and proportion of zero δj and large unequal sample

sizes, which is in line with the simulation results in the previous section.

Discussion

We conducted simultaneous pairwise comparisons of the means of delta-lognormal distribu-

tions in a simulation study and five datasets containing zero observations and where the

Fig 3. Histogram plots of weekly rainfall records in five parts. (A) Northern (B) Central (C) Eastern (D) Southeastern (E) Southwestern.

https://doi.org/10.1371/journal.pone.0253935.g003
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positive observations were right-skewed using SCIs based on PB, FGCI, MOVER, and Bayes-

ian credible intervals (BCI-M and BCI-U).

The simulation results provided insight into the analytical behavior of the SCIs. For small

sample cases (k = 3), it was found that BCI-U is an appropriate method for small-to-large

Fig 4. Normal Q-Q plots of log-transformation of non-zero records in five parts. (A) Northern (B) Central (C) Eastern (D) Southeastern (E)

Southwestern.

https://doi.org/10.1371/journal.pone.0253935.g004

Table 4. AIC results for nonzero rainfall amounts in five parts.

Distribution AIC values

Northern Central Eastern Southeastern Southwestern

Cauchy 1859.046 1131.425 1233.443 2568.220 393.113

Logistic 1831.410 1144.392 1266.594 2636.477 397.227

Lognormal 1753.656 1057.969 1151.703 2401.707 374.674

Normal 1844.458 1195.499 1300.466 2724.489 403.431

T-distribution 1830.311 1121.858 1234.366 2559.868 393.281

https://doi.org/10.1371/journal.pone.0253935.t004
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differences in s2
j and δi together with equal sample sizes due to the posterior distribution of s2

j

based on the uniform prior being closer to the real s2
j than the mixed prior. When the differ-

ences in s2
j were small, MOVER was the next best method, the reason being that the CI of s2

j is

limited for cases of large differences of s2
j . On the other hand, PB could handle this problem

because it uses data resampling with replacement, which is a different approach from the other

methods. For large sample cases (k = 5), PB performance was stable and similar to the small

sample case. For small differences in s2
j , MOVER was good for small differences in δi because

it is affected by the CI for d
0

i based on variance stabilized transformation in Eq 11, whereas PB

is suitable for large differences in δi. This means that the bootstrap resampling could solve the

limitation of applying MOVER.

Importantly, the practical application of these methods was demonstrated by estimating the

pairwise differences between the mean of the natural rainfall datasets for the five areas in Thai-

land. Comparisons between the areas indicate that the weekly rainfall mean in the eastern area

was greater than the others. The reason for this could be that the eastern area coastline is on

the Gulf of Thailand where there are frequent heavy rainstorms. Importantly, the occurrences

Table 5. Estimated parameters for five parts in Thailand.

Estimates Thailand parts

Northern Central Eastern Southeastern Southwestern

n 248 228 116 356 120

ŵ 3.40 2.61 3.38 2.89 4.03

s2 1.37 1.46 2.56 1.91 0.76

d̂ 0.29 0.45 0.06 0.27 0.71

ŷ 41.81 15.35 96.71 33.67 23.60

https://doi.org/10.1371/journal.pone.0253935.t005

Table 6. 95%SCIs for all differences of weekly rainfall means.

Comparison Mean

difference

PB FGCI MOVER BCI-M BCI-U

L U Length L U Length L U Length L U Length L U Length

Northern/

Central

26.46 10.82 42.09 31.27 9.12 43.80 34.68 16.10 39.44 23.35 -38.97 91.88 130.85 -41.68 90.22 131.90

Northern/

Eastern

-54.90 -120.48 10.67 131.15 -127.62 17.82 145.44 -126.13 -21.34 104.80 -120.33 10.52 130.85 -120.85 11.04 131.90

Northern/

Southeastern

8.14 -10.20 26.48 36.68 -12.20 28.48 40.68 -5.12 22.30 27.42 -57.29 73.56 130.85 -57.81 74.09 131.90

Northern/

Southwestern

18.21 -2.32 38.73 41.05 -4.55 40.97 45.52 1.24 33.12 31.88 -47.22 83.63 130.85 -47.74 84.16 131.90

Central/Eastern -81.36 -145.73 -16.99 128.74 -152.74 -9.98 142.76 -152.20 -49.58 102.62 -146.79 -15.94 130.85 -147.31 -15.41 131.90

Central/

Southeastern

-18.32 -31.72 -4.92 26.80 -33.18 -3.46 29.72 -29.28 -9.18 20.11 -83.74 47.11 130.85 -84.27 47.63 131.90

Central/

Southwestern

-8.25 -24.51 8.02 32.53 -26.28 9.79 36.07 -23.49 2.02 25.51 -73.67 57.18 130.85 -74.20 57.70 131.90

Eastern/

Southeastern

63.04 -2.04 128.12 130.16 -9.13 135.21 144.34 30.20 134.11 103.90 -2.38 128.47 130.85 -2.91 128.99 131.90

Eastern/

Southwestern

73.11 7.38 138.84 131.46 0.22 146.00 145.78 38.61 144.33 105.72 7.69 138.54 130.85 7.16 139.06 131.90

Southeastern/

Southwestern

10.07 -8.81 28.95 37.76 -10.86 31.01 41.87 -6.19 23.26 29.44 -55.35 75.50 130.85 -55.88 76.02 131.90

https://doi.org/10.1371/journal.pone.0253935.t006
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of extreme rainfall in the northern area can be used to generate warning signals of imminent

natural disasters (flooding and landslides) for notifying people and preparing them in advance.

The results of this empirical application were similar to the simulation study results in that

MOVER was appropriate for small differences in s2
j and δj together with large unequal sample

sizes due to the lower and upper limits covering all pairwise differences in the delta-lognormal

means of the datasets together with having the narrowest lengths.

Conclusion

The objective of this study was to use SCIs to analyze the pairwise differences between the

means of multiple delta-lognormal distributions. Derivations of the proposed methods for

constructing the SCIs: PB, FGCI, MOVER, BCI-M, and BCI-U were provided. Their perfor-

mances were evaluated via simulation studies and an empirical application. From the results,

BCI-U and PB are the recommended methods for equal and unequal sample sizes, respectively,

with large differences in s2
j . The next best method was MOVER for small differences in s2

j . For

large sample cases (k = 5), MOVER is also recommended for small differences in s2
j and δi. PB

can also be recommended for large differences in s2
j . Meanwhile, both BCI-U and FGCI are

good alternatives for k = 5.
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