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Screening Cancer Immunotherapy: When Engineering
Approaches Meet Artificial Intelligence

Xingwu Zhou, Moyuan Qu, Peyton Tebon, Xing Jiang, Canran Wang, Yumeng Xue,
Jixiang Zhu, Shiming Zhang, Rahmi Oklu, Shiladitya Sengupta, Wujin Sun,*
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Immunotherapy is a class of promising anticancer treatments that has
recently gained attention due to surging numbers of FDA approvals and
extensive preclinical studies demonstrating efficacy. Nevertheless, further
clinical implementation has been limited by high variability in patient
response to different immunotherapeutic agents. These treatments currently
do not have reliable predictors of efficacy and may lead to side effects. The
future development of additional immunotherapy options and the prediction
of patient-specific response to treatment require advanced screening
platforms associated with accurate and rapid data interpretation. Advanced
engineering approaches ranging from sequencing and gene editing, to tumor
organoids engineering, bioprinted tissues, and organs-on-a-chip systems
facilitate the screening of cancer immunotherapies by recreating the intrinsic
and extrinsic features of a tumor and its microenvironment. High-throughput
platform development and progress in artificial intelligence can also improve
the efficiency and accuracy of screening methods. Here, these engineering
approaches in screening cancer immunotherapies are highlighted, and a
discussion of the future perspectives and challenges associated with these
emerging fields to further advance the clinical use of state-of-the-art cancer
immunotherapies are provided.
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1. Introduction

The development of immunotherapies
has revolutionized cancer management
beyond the traditional treatment modal-
ities including surgery, chemotherapy,
and radiotherapy.[1,2] It has also yielded
unprecedented clinical efficacy in treating
some aggressive cancer types such as ad-
vanced melanoma and nonsmall-cell lung
cancer (NSCLC).[3–5] Significant effort has
been devoted to developing immunothera-
pies that are capable of boosting anticancer
efficacy.[6] In this regard, screening and
identifying new targets that are related to
the development of resistance or sensiti-
zation of tumors to immune responses
could benefit the development of new
immunotherapeutic strategies.[7] From
another perspective, the efficacy of cancer
immunotherapy is largely dependent on
the physiology of individual patient; across
therapies and cancer types, ≈80% of pa-
tients are nonresponders or show severe
side effects.[8] Therefore, delivery of cancer
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immunotherapies has been identified as a key challenge in
broadening its applicability, improving its efficacy, and re-
ducing adverse effects; topics that have been recently re-
viewed from the perspective of biomaterials development[9] and
nanotechnology.[10,11] However, apart from challenging delivery,
different preclinical and clinical studies have also suggested
that the efficacy of immunotherapy could depend on patient-
specific mutagenesis, neoantigen load, and expression of certain
biomarkers within the immune microenvironment,[12–14] which
makes predictive screening of immunotherapy on an individual
patient basis essential as well. To achieve the goals of expand-
ing the resources accessible for immunotherapy discovery and
patient-specific screening, platforms for the assessment of can-
cer immunotherapies at all levels (in vitro, ex vivo, in vivo) are
indispensable.[15]

Advances in various engineering disciplines could help de-
velop alternative cancer immunotherapy strategies to compen-
sate for the unpredictable efficacy of current treatment. For
instance, surface proteins expressed by cancer cells, such as PD-
L1, that help evade immune surveillance have been targeted
with immunotherapeutic agents.[16] However, many more genes
that have similar functions may be alternative targets for devel-
opment of new immunotherapeutic agents with high potency
and efficiency. Another example is the engineering of tumor-
infiltrating lymphocytes (TILs) in which TCR genes can be intro-
duced to generate tumor-reactive T cells.[17] Even though some
genes shared by larger patient groups, such as NY-ESO-1, have
been targeted, they are only expressed in a limited set of can-
cer types.[18] Novel TCR gene screening shared by larger popu-
lations of patients with diverse malignancies could be of clini-
cal significance. The advancement of precision medicine in dis-
ease management will also drive the need for developing indi-
vidualized therapies with high precision to increase the number
of responders treated with cancer vaccines and patient-derived
cell-based immunotherapies.[19–22] Screening approaches using
sequencing can help analyze patient tumor biopsies and healthy
tissue to identify tumor-specific mutations. These abnormalities
can then be used to predict the binding affinity of mutated pro-
teins to MHC molecules through computational approaches, and
assist in the selection of optimal vaccine compositions for each
individual.[23] Time is also a primary concern when analyzing
samples as it is desirable to minimize the time between the acqui-
sition of the tumor biopsy and the administration of therapy. One
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study found that the median time from identifying appropriate
cancer vaccine targets to administering treatment was 18 weeks,
and patients suffering from advanced cancers may need expe-
dited approaches.[24] Therefore, it is expected that robust screen-
ing platforms enabled by a diverse set of engineering approaches
will have a significant role in accelerating this process and ad-
vancing the broader applicability of cancer immunotherapy.
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Figure 1. Engineering approaches with artificial intelligence for screening cancer immunotherapies. A) Cancer immunotherapies include cytokines,
checkpoint inhibitors, adoptive cell transfer (ACT), and cancer vaccines targeting either tumor cells or dendritic cells and T cells. B) Diverse players
involved in cancer immunotherapy include tumor cells, immune cells, stromal cells, and other tumor microenvironmental factors. C) Screening pipelines
facilitated by sequencing, gene editing, tumor organoids engineering, bioprinting, and organs-on-a-chip technologies can examine both intrinsic genetic
features and recapitulate extrinsic factors. D) Those approaches can be scaled up aiming for high-throughput screening and the resulting data can be
processed by AI for rapid and accurate interpretations. Screening cycle enabled by various engineering approaches and AI is expected to accelerate the
advancement of novel immunotherapy discovery and development.

While the development of the screening platforms poses one
challenge, clinically useful techniques must be scalable and fa-
cilitate processes that receive highly variable samples in order
to enhance data reliability and normalize trials of treatment
options.[25] More importantly, certain recurrent patterns can only
be identified and corroborated when sample diversity is sufficient
and sample size is large. Due to the need for enormous quantities
of data, analysis becomes a nontrivial issue that is too extensive
for manual processing. Technology such as artificial intelligence
(AI) could potentially be applied to analyze these large datasets
and produce meaningful outputs.[26] The overarching goal would
be to distinguish tumor types or individual patients that are likely
to yield responsive outcomes or show severe side effects with
high fidelity and accuracy. The aggregation of data across mul-
tiple screening methods into a singular dataset can serve as a
reference that catalogs the presence of biomarkers, outcomes of
clinical tests, sequencing results, and patient responses to admin-
istered immunotherapies. The creation of datasets incorporating
this information, expanding beyond the boundaries of current
databases like The Cancer Genome Atlas (TCGA), will be essen-
tial in creating tools to personalize immunotherapy in clinical
practices. Advanced screening models and data analytical tech-
niques have great potential to be used preclinically and clinically
to reduce treatment cost and improve patient response to cancer
immunotherapies.[27,28]

In this review, we first discuss the indispensable need for
screening four major classes of cancer immunotherapies (Fig-
ure 1A). We then highlight recent research efforts using state-of-
the-art engineering approaches to build screening models aim-
ing to improve the preclinical models used in drug development.
Our focus ranges from leveraging intrinsic genetic factors, reca-
pitulating extrinsic tumor microenvironment (TME) factors (Fig-
ure 1B), and reconfiguring data output for screening purposes

based on sequencing, gene editing, tumor organoids engineer-
ing, bioprinting, and organs-on-a-chip technologies (Figure 1C).
We also present combinatorial designs with consideration toward
establishing the next generation of screening platforms. As these
systems are scaled into high-throughput approaches, AI could fa-
cilitate the advancement in the applications of immunotherapies
(Figure 1D). Finally, we discuss perspectives and mounting chal-
lenges in applying screening technologies for novel cancer im-
munotherapies such as combination and personalized therapies.

2. Classes of Cancer Immunotherapies

In this section, we briefly discuss cancer immunotherapies in
the following categories: checkpoint inhibitors, cytokines, adop-
tive cell transfer (ACT), and cancer vaccines[3,29,30]—the most
commonly used in the literature discussed below (Table 1). The
mechanism, significance, and corresponding challenges and lim-
itations of each therapy are addressed in the context of their rel-
evance to advanced screening approaches.

2.1. Checkpoint Inhibitors

Checkpoint inhibitors are the most extensively studied class of
cancer immunotherapies with the most FDA approvals indicated
for treatment of a variety of cancers.[31] The existence of immune
checkpoints are physiologically necessary as they balance im-
mune activation and suppression to prevent the attack of healthy
tissues and the occurrence of inflammation.[32] Despite their es-
sential roles in mediating autoimmunity, tumors also take advan-
tage of these pathways to evade immune clearance. While several
checkpoints have been identified, the interaction of PD-1 with
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Table 1. Characteristics of different engineering approaches for cancer immunotherapies.

Engineering
approaches

Categories of cancer
immunotherapy

Advantages Limitations

Sequencing • Checkpoint inhibitors[67–69]

• ACT[70]

• Cancer vaccines[71]

• Compatible with diverse cell types and patient
samples

• Exhaustive characterization of genetic features
• High throughput

• Costly and time consuming
• Data interpretation required
• Limited external control
• Limited prognostic value

Gene editing • Checkpoint inhibitors[10]

• ACT[72–74]

• Genome-wide screening
• Controllable and designable
• Novel immunotherapy discovery
• High throughput

• Low transduction efficiency
• Off-target and false-positive interpretation
• Costly and time consuming

Tumor organoid
engineering

• Checkpoint inhibitors[75,76]

• Cytokines[75]

• ACT[77,78]

• Cancer vaccines[77]

• Functional 3D model
• Immune population presence
• Ex vivo patient-specific model buildup
• Capable of high throughput

• May be difficult to fabricate
• Sample sourcing
• Long timeline for clinical decisions
• Long-term TME diversity maintenance

Bioprinting • Cytokines[79,80] • 3D model with high spatial intricacy and resolution
• Recapture specific features and stages (such as

lymphatic vessels, vasculature, and metastasis)
• Lowered batch-to batch variability

• Complex printing processes needed to maximize
cell compatibility and fidelity

• Complexity of printing multiple cell types
• Mostly cell lines, not patient specific
• Difficult data collection
• Scalability challenges

Organs-on-a-chip • Checkpoint inhibitors,[81,82]

• Cytokines[81]

• ACT[83–85]

• Cancer vaccines[86]

• Microenvironmental control
• Physiological resemblance
• Built-in readouts
• Recreate different features and stages (such as

therapeutics transport)

• Cellular fidelity under cell manipulation
• Mostly cell lines, not patient specific
• Scalability challenges

PD-L1 and CD80/86 with CTLA4 are the most commonly tar-
geted with therapies.[33] Though expression by a variety of im-
mune cells, mature effector T cells expressing PD-1 can be de-
activated by interactions with PD-L1 expressed on the surface
of tumor cells.[34] CTLA4 operates in a similar fashion as it is a
co-inhibitory molecule that downregulates T cell activity through
interactions with CD80 or CD86.[35,36] Checkpoint inhibitors are
designed to block these pathways to prevent active T cells from
binding the inhibitory ligands, thus improving their recognition,
amplification, and killing capacity toward cancer cells. However,
responsiveness toward checkpoint inhibitors varies significantly
among cancer types, diseases stages, and patients,[37] which ne-
cessitates screening for the purpose of response prediction. For
instance, analysis of certain biomarker expression such as PD-
L1 on cancer cells was used to identify patient susceptibility to
PD-1 blockade therapies.[38] In addition, the loss of immuno-
genic mutations or reduced expression of genes relevant to can-
cer immunotherapy under strong immune selective pressure can
reshape the genetic landscape of cancers to limit sustained re-
sponse to checkpoint inhibitors.[39] Either tumor-intrinsic or mi-
croenvironmental factors that dynamically shape immune in-
teractions can be potentially recaptured by advanced screening
strategies.

2.2. Cytokines

Cytokines were the earliest approved cancer immunotherapies
and differ from checkpoint blockade in that they directly mod-
ulate and enhance the activity of immune cells.[40] IL-2, which

gained FDA approval for treating metastatic melanoma and re-
nal cell carcinoma in the 1990s,[41] is one of the most com-
mon treatments in this class. Cytokines can be classified as in-
terferons (such as INF-𝛼 and INF-𝛾), interleukins (such as IL-2
and IL-15), and colony-stimulating factors (such as granulocyte-
macrophage-CSF (GM-CSF)),[42] in which different subsets of
immune cells or immune pathways can be selectively activated.
Apart from extensively investigated cytokines, small molecules
that induce cytokine production are also being studied includ-
ing TGF-𝛽 receptor type 1 inhibitors,[43] TLR7/TLR8 agonists,[44]

and stimulator of interferon genes (STING) agonists.[45] Nev-
ertheless, cytokine-based therapies are often associated with
high doses and their action on regulatory T cells often causes
severe side effects such as cytokine release syndrome and
autoimmunity.[46] Currently, it is not clear which biomarkers or
genetic features are relevant for the identification of patients that
can benefit long-term from cytokine-based immunotherapies. To
address this issue, screening systems have been developed to
evaluate safety and efficacy of therapies through the analysis of
extrinsic factors such as T cell activation, survival, and prolifer-
ation or tumor cell death. Alternatively, intrinsic biomarkers as-
sociated with patient response could be identified through novel
screening approaches.

2.3. ACT

ACT represents a “living” treatment that utilizes modified im-
mune cells with direct anticancer activity harvested from the
cancer-bearing host.[47] From the first successful demonstration
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of administrating TILs to patients with metastatic melanoma
in 1988,[48] the capability to reproducibly culture TILs with spe-
cific antitumor efficacy appears to be limited in melanoma.[47]

To expand the application of ACT to more cancer types, T cells
can be genetically modified to enhance their specificity and ef-
ficacy against a tumor before being reinfused into the patient.
Chimeric antigen receptor T cells (CAR T) and T cell receptor
T cells (TCR T) are two major approaches in this category.[49,50]

CAR T was initially designed to recognize CD19, a marker
commonly expressed on B cell leukemias and lymphomas.[51]

Two of these genetically engineered cells (axicabtagene ciloleu-
cel and tisagenlecleucel for lymphoma) have received FDA ap-
proval and are in clinical use. The success of early cell therapies
has encouraged extensive efforts to design the next-generation
of CAR T with different targets.[52–54] TCR T cells recognize tu-
mor associated antigens presented by major histocompatibility
complexes (MHCs) to target patient-specific neoantigens orig-
inating from genetic mutations. The common challenges in-
hibiting the clinical use of engineered T cell therapies are the
rapid identification of functional targets,[55] the potential for cy-
tokine release syndrome,[56] and the low efficacy against solid
tumors.[57] Each of these challenges can benefit from advanced
screening approaches for selecting specific antigens, evaluat-
ing cytokine release thresholds, and predicting efficacy in solid
tumors.

2.4. Cancer Vaccines

Cancer vaccines are designed to elicit specific and potent im-
mune responses toward cancerous tissues and mainly consist
of four classes: tumor lysate, dendritic cells, nucleic acids, and
neoantigens.[58,59] Whole tumor lysate vaccines include a more
comprehensive array of immunogenic epitopes that can be used
by dendritic cells to further propagate an immune response;
however, clinical approval generally falters due to insufficient
efficacy.[60,61] Dendritic cells can be pulsed by exposure to spe-
cific antigens in vitro to present tumor-associated antigens that
directly activate T cells to attack tumors. One dendritic cell vac-
cine called Sipuleucel-T was approved by the FDA for the treat-
ment of prostate cancer in 2010.[62] In spite of excellent safety,
low efficacy in inducing a sufficient immune response hinders
its broader development and application. One proposed mecha-
nism of improving efficacy is to identify and screen dendritic cell
subtypes with high expression of targeted antigens.[63] DNA or
RNA-based cancer vaccines display promising results by induc-
ing antigen expression by antigen presenting cells (APCs) in vivo
with high potency and relatively low cost.[64] Apart from the deliv-
ery challenges, the selection and prediction of potent sequences
that can induce strong and prolonged antigen presentation can
be facilitated by screening strategies. Last, the immune system
only targets neoantigens coming from tumor-specific mutations
that are exclusively present on cancer cells and thus prevent off-
target side effects.[65] The identification of neoantigens for dif-
ferent cancer types or specific patients can be meaningful for
the development of treatments effective against both heteroge-
nous cancers and unique mutations.[23,66] Therefore, we mainly
discuss screening approaches that can facilitate effective antigen
selection and epitope prediction, as well as models showing how

tumor cells, immune cells, and cancer vaccines interact with each
other to elucidate treatment efficacy.

3. Engineering Approaches for Screening Cancer
Immunotherapy

Immunotherapy screening methods are fundamentally com-
plicated by the indirect action of the therapeutics. Unlike
chemotherapeutics that have a direct mechanism of action
against cancer cells, immunotherapies work to modify the pa-
tient’s immune response to combat malignant cells.[3] There-
fore, models of cancer immunotherapy must incorporate
additional components of the immune system in a physiologi-
cally relevant manner. Second, the diverse, heterogeneous phe-
notypes and genotypes of both cancer and immune cells dic-
tate the discovery of new treatment targets and responses to
treatment.[15,87] Developing models with a comprehensive repre-
sentation of these aspects of the cancer–immune relationship is
crucial for creating more effective screening protocols; however,
achieving these two features in a single model is not trivial.[88]

Progress in biotechnology can therefore broaden the availabil-
ity of treatment options, predict responses rates, and improve
efficacy in the field of cancer immunotherapy by establishing
screening models.[9,19,23] Intrinsically, expression of certain genes
or activation of specific pathways within cancer cells contribute
to large variations in the efficacy of cancer immunotherapies.[89]

For instance, immunotherapy targets PD-L1 and PD-1 expressed
on cancer cells and immune cells, and clinical responses of these
therapies largely depend on PD-L1 expression on TILs.[90] Engi-
neering approaches that can examine information at genomic
and transcriptomic levels can be essential to facilitate screen-
ing for effective treatment.[71,91] Development of clustered reg-
ularly interspaced short palindromic repeats (CRISPR) systems
will facilitate genome scale editing with a high level of versatil-
ity across a diverse group of cell types. Pooled screening mod-
els produced by CRISPR can be used for identification of targets
capable of either boosting sensitivity or reversing resistance to
immunotherapy.[10] Extrinsically, complexity in the TME includes
dynamic interactions among tumor cells, multiple subtypes of
immune cells, and administered immunotherapeutic agents,
all of which crucially regulate antitumor immune response.[91]

Technologies to develop tumor organoids recapitulating such
complexity in vitro could function as miniaturized predictive
screening models.[92] Furthermore, bioprinting and organs-on-
a-chip technology can artificially reproduce temporal and spa-
tial features of tumor–immune system and generate physiologi-
cally relevant models.[93–95] Their versatility in biochemical and
biophysical control can be advantageous for screening cancer
immunotherapy.

3.1. Sequencing

Heterogeneity among cancer cells and T cells, as well as their
interplay with the TME give rise to variable responses among
patients and cancer types toward immunotherapies. Both in-
tertumoral (among different patients) and intratumoral (within
the same tumor) heterogeneity contribute to challenges in
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predicting how certain immunotherapeutic will interfere with
a tumor.[96–98] The development of next-generation sequencing
(NGS) techniques has revolutionized patient characterization,
particularly in the context of patient screening. Cancer cells,
stromal cells, and immune cells within the TME can be se-
quenced to reveal the hallmarks for treatment efficacy.[99] The var-
ious methodologies of NGS have been comprehensively reviewed
elsewhere.[100] Advances in NGS have enabled exhaustive exam-
inations of the genome and transcriptome by producing valu-
able datasets, which can be used to elucidate drivers of response.
Whole genome sequencing (WGS) provides the most compre-
hensive information regarding a genome, however, cost is a limit-
ing factor at the resolution needed to study both intertumoral and
intratumoral heterogeneity essential for immunotherapy screen-
ing. In addition, a large proportion of information from WGS
may not provide insightful input.[101] Therefore, whole exome se-
quencing (WES) has been developed to only sequence genetic
materials encoding for proteins. Due to the narrowed focus of
the sequencing, more samples can be sequenced with higher ef-
ficiency to enhance both the breadth and depth of the intended
studies. Other techniques in the category of NGS on the DNA
level include Chip-seq for probing DNA that can interact with
proteins,[102] ATAC-seq for examining DNA unprotected by pro-
teins, and methyl-seq for capturing methylated DNA.[100] All of
which can be used to screen genes playing specific or unique
roles in immunotherapy response. However, resistance or re-
sponse prediction cannot be fully explained by genomic analy-
sis and some recurrent features within the transcriptome may
also contain useful information for predictive and prognostic
purposes.[103] Toward this goal, NGS enabled transcriptome pro-
filing by using RNA-sequencing (RNA-seq) to decipher mes-
senger RNA (mRNA) transcripts with high precision.[104] Fur-
thermore, combined assays sequencing both the genome and
transcriptome of tumor tissue aim to elucidate response rates
as a function of mechanism-based variations while also look-
ing to discover novel targets for additional therapies. Here, we
present some research studies leveraging NGS for immunother-
apy screening.

To better understand the mechanistic causes of variable re-
sponse to checkpoint inhibitors and identify certain biomark-
ers for prognostic purposes, Van Allen et al. aimed to correlate
individual response rate to anti-CTLA4 with tumor mutational
load, neoantigens, and cytolytic markers by performing both
WES and RNA-seq derived from 110 patients with metastatic
melanoma.[67] High correlation between mutational load and
clinical benefit was observed for both DNA and RNA sequenc-
ing. By leveraging granzyme A and perforin as indicators for cy-
tolytic activity of immune cells,[39] transcriptome data from the
TME correlated enrichment of these two genes in patients show-
ing clinical benefit. Analysis at both the genomic and transcrip-
tomic levels combined with clinical benefit correlation revealed
that mutational load and immune microenvironmental cytolytic
activity were predictive parameters for anti-CTLA4 treatment,
however, the limited number of patients in the study prevented
the identification of reliable specific neoantigens as predictors
of checkpoint inhibitor efficacy.[65] Apart from tumor mutational
burden (TMB) as a proven prognostic and predictive marker in
cancer immunotherapies,[97] there is also building evidence to
suggest an uncertain relationship between TMB and anticancer

response. For instance, one clinical trial tested first-line anti-PD1
in NSCLC and failed to prolong progression-free survival in pa-
tients with >5% PD-L1 expression.[105] Therefore, holistic assess-
ment of the TME, beyond neoantigen appearance and mutational
burden, is required for different types of cancer.

Aside from checkpoint inhibitors, NGS has also enabled the
development and screening of cancer vaccines and ACT thera-
pies. Certain somatic mutations can potentially evolve to be im-
munogenic if resulting mutant peptides are presented by MHC I
as “nonself” antigens; if identified, they could be potentially for-
mulated as cancer vaccines. Yadav et al. discovered immunogenic
mutant peptides by combining exome and transcriptome se-
quencing with mass spectrometry (Figure 2A). Integrated meth-
ods like this are powerful characterization tools for identifying
mutated peptides presented by MHC I to facilitate personalized
cancer vaccine development.[71] The authors demonstrated fea-
sibility of this approach in two murine tumor models, MC-38
and TRAMP-C1. After comprehensive combinatorial screening,
only 3 candidates from MC-38 had the ability to bind with MHC
I and 0 candidate resulted from the TRAMP-C1 tumor, which
reflected low MHC I expression on TRAMP-C1 cells.[106] The
identified mutant peptide vaccination successfully provided pro-
tective antitumor immunity to most animals after tumor chal-
lenge (Figure 2B). Beyond cancer cells, immune cells are the real
“army” in the treatment, and function as a predictive marker of
patient response. As shown in Figure 2C, over 5000 T cells de-
rived from blood and tissues of patients with liver cancer un-
derwent single-cell RNA sequencing by Zheng et al. This led to
the identification of 11 T cell subsets with corresponding signa-
ture genes.[70] The ability to examine TCR sequences by RNA-
seq on a single cell basis is particularly important since TCRs are
used to identify different T cell lineages, recognize the antigen
presented by MHC, and control T cell activation.[107] Identifica-
tion of distinct features of T cell populations can therefore give
insight and guidance into designing powerful ACT for cancer
immunotherapy.

In short, NGS is a powerful tool for characterizing the intrin-
sic features of the various cellular components involved in cancer
immunotherapy. Apart from its newly developed role in screen-
ing specific immunotherapies on certain patient populations, the
already established sequencing databases are also meaningful for
computer-based analysis to derive clinically useful conclusions.

3.2. Gene Editing

The CRISPR system exists as an innate immune defense mech-
anism in bacteria and archaea using RNA to direct degradation
of foreign DNA with high precision.[108] Further development of
this powerful tool has enabled site-specific human genome edit-
ing with enhanced efficiency and simplicity.[109,110] More recently,
it has been used to advance the systematic screening analysis of
genetic functions,[111] where large libraries of single guide RNAs
(sgRNAs) encoded by lentiviral particles can produce a screen-
ing pool using cell lines or primary cells for screening cancer
immunotherapies.[74] Before the development of CRISPR, ge-
netic diversity for screening was achieved either through random
DNA mutations by mutagens or transcriptome silencing by RNA
interference (RNAi), which were laborious and not exclusive to
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Figure 2. Sequencing for screening cancer immunotherapy. A) Schematic of combining sequencing and mass spectrometry to identify mutated peptides
capable of being presented by MHC I. B) Tumor growth rate of mice immunized with either identified mutated peptide with adjuvants (Adj + Pep)
or only adjuvant (Adj). Reproduced with permission.[70] Copyright 2014, Nature Publishing Group. C) Workflow of applying sequencing for cancer
immunotherapy screening from six treatment-naïve hepatocellular carcinoma (HCC) patients based on exome- and RNA-sequencing for identification
of subsets of T cells. Reproduced with permission.[71] Copyright 2017, Elsevier.

the genomic level.[112] Cancer cells undergo constant neoplastic
evolution with accumulated gene mutations[113] that can induce
either strong immune reactions due to the occurrence of neoanti-
gens or, on the other hand, resistance to immunotherapies.[114] In
this regard, large variations in clinical response to therapies may
result from diversified genetic profiles.[67,115–117] Benefiting from
genetically diversified screening models facilitated by CRISPR
technology, more targets can be identified for additional devel-
opment of new therapeutics[118] and the mechanisms leading to
limited patient response can be better understood.[10]

CRISPR-created screening pools have been used in human
cell lines to reveal gene targets involved in T cell-based thera-
pies. Patel et al. utilized genome-scale editing to mimic loss-of-
function mutations for a melanoma cell line by implementing
CRISPR/Cas9 with ≈123 000 single-guide RNAs. As shown in
Figure 3, the authors developed a “two cell type” (2CT)-CRISPR
assay in which Mel624 cells were transduced with a CRISPR
knockout library and reacted with human T cells expressing a

specific T cell receptor (TCR) for the NY-ESO-1 antigen. The
screening assay was capable of studying how effector T cells re-
spond to genetically manipulated tumor cells and it was demon-
strated in vivo that multiple mutations in APLNR genes re-
lated to cellular signaling could sensitize the tumor toward ACT
immunotherapy.[72] In terms of checkpoint blockade therapies,
low response rates suggest the need for the discovery of novel tar-
gets. Manguso et al. used CRISPR/Cas9 to create a pool of loss-
of-function melanoma cell lines in vitro and then transplanted
the whole library in vivo to screen immunotherapy-related resis-
tance and sensitivity. The B16 melanoma cell line was engineered
to express Cas9 and was transduced with lentiviral vectors encod-
ing 9872 sgRNAs. They validated the widely targeted molecules
PD-L1 and CD47 as contributors to resistance to immunother-
apy and also identified multiple genes that can sensitize tumors
to immunotherapy if lost, such as protein tyrosine phosphatase
PTPN2.[10] The screening strategy, by Pan et al., was to trans-
duce genome-wide gRNAs within Cas9-expressing B16F10 cells,

Adv. Sci. 2020, 7, 2001447 © 2020 The Authors. Published by Wiley-VCH GmbH2001447 (7 of 21)



www.advancedsciencenews.com www.advancedscience.com

Figure 3. Gene editing for screening cancer immunotherapy. A) Workflow of genome-wide loss-of-function screening via CRISPR for identification of
genes causing resistance to T cell-mediated cytolysis. B) Schematic of screening engineered T cells by CRISPR/Cas9 mediation. C) In vivo screening
of ACT treatment on 𝛽-2-microglobilin (B2m) and apelin receptor (Aplnr) genes knockout tumor-bearing immunocompetent mice. D,E) Tumor area
growth with no treatment (n = 5) or treated by ACT of Pmel-1 T cells (melanoma antigen gp100-specific transgenic T cells). F) Overall survival of mice
treated with Pmel-1 T cells. (Red hollow triangle, orange triangle, and black circle in (D)–(F) indicate B2m-sg (n = 10), Aplnr-sg (n = 10), and control (n
= 9) groups, respectively; all values are mean ± s.e.m. **P < 0.01 and *P < 0.05.) Reproduced with permission.[72] Copyright 2017, Nature Publishing
Group.

followed by coculturing with cytotoxic T cells and subsequent Il-
lumina sequencing of gRNA representation. Through this pro-
cess, the authors identified intrinsic genes in tumor cells as ad-
ditional mechanisms that regulate killing activities of cytotoxic T
cells through CRISPR-Cas9 screens.[73]

Immortalized cell line-based CRISPR screens may not fully re-
semble the signaling pathways and functions in humans, which
could slow down the translational process of newly discovered
targets into clinics. To compensate for this disadvantage, Shifrut
et al. reported a CRISPR-Cas9 screening platform in primary hu-
man T cells to enable the discovery of more relevant targets. The
authors utilized pooled lentiviral sgRNA followed by electropora-
tion of Cas9 protein to overcome the traditionally low transduc-

tion rate in primary cells. The pooled loss-of-function screening
allowed the selection of T cells with enhanced in vitro anticancer
efficacy and targets that could evade immunosuppression.[74] Par-
nas et al. performed a genome-wide CRISPR screen for pri-
mary dendritic cells isolated from Cas9-expressing mice that
were utilized to identify regulatory networks.[119] Ex vivo or in
vitro screens still face challenges such as the limited viability
of primary cells and limited physiological relevance due to arti-
ficial manipulations. To overcome this challenge, LaFleur et al.
reported an immune editing platform that allows direct gene
perturbation in vivo while minimizing alterations to cell devel-
opment and function as a result of ex vivo manipulation. The
authors transduced bone marrow precursors with CRISPR-Cas9
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and enabled gene deletion in both innate and adaptive immune
cell populations without altering cell states. The capability to
edit additional subsets of immune cells, such as macrophages
and dendritic cells, may facilitate the discovery of alternative im-
munotherapeutic targets beyond T cells.[120]

Gene editing technologies enabled by CRISPR allow the artifi-
cial creation of screening models with unprecedented precision
and diversity. In tandem with NGS, these techniques can shed
light on mechanisms and targets associated with sensitivity and
resistance to immunotherapy.

3.3. Tumor Organoids

Advances in tumor organoid engineering have provided an alter-
native immunotherapy screening model that can recapitulate the
TME and preserve innate immune–tumor interactions ex vivo in
3D.[121] Additionally, many researchers are looking to overcome
the challenges associated with predicting individual responses
in terms of efficacy and safety by integrating patient-derived tu-
mor organoids (PDOs) into screening platforms.[122] Convention-
ally used human cancer models are still limited to cancer cell
lines, primary patient-derived tumor xenografts (PDTXs), or ge-
netically engineered mouse models (GEMMs) that often fail to
satisfy the requirements of novel immunotherapy screening.[123]

Cancer cell lines derived from patient materials need extensive
adaptation for in vitro culture. Clones capable of expanding lim-
itlessly are rare and normally subject to drastic genetic changes,
making them unrepresentative of the original tumor.[124] The
original genetic heterogeneity of the tumor is also lost, as mu-
tated variants compete to expand ex vivo. PDTXs are expensive
and time-consuming, while tumorigenesis may evolve in a host
species specific manner[122] which may be unsuitable to the short
timeframes needed for clinical scenarios. Facile strategies to pro-
duce organoids with the ability to recapitulate 3D interactions
among the tumor, immune cells, and immunotherapeutic agents
are candidates for screening.

Advances in the efficient culture of organoids derived from
adult human stem cells have laid the foundation for PDOs
culture and has been used in several studies focusing on
breast cancer,[125] prostate cancer,[126] colorectal cancer (CRC),[127]

NSCLC,[77] pancreatic cancer,[128] and liver cancer.[129] PDOs are
expanded from the tumor of an individual patient with high suc-
cess rates. Directly sourcing the cells from the patient tumor can
preserve both the genetic and morphological features found in
original tumors for establishment of a personalized screening
platform.[121] The inherent diversity within the tumor microen-
vironment including the stroma, vasculature, and immune cells
makes it challenging to recreate directly, thus coculture can be a
functional strategy to artificially combine different components.
Dijkstra et al. recreated cancer-T cell interactions by cocultur-
ing autologous tumor organoids and peripheral blood lympho-
cytes (PBLs) from the same patient in order to enrich tumor-
reactive T cells and assess corresponding killing. The authors
demonstrated that this strategy can be successfully applied to
epithelial cancer types, such as CRC and NSCLC, with T cell
response specific to the corresponding tumor organoids. The
tumor-reactive T cells were expanded by an established protocol
for ACT[130] and efficient killing was only observed in malignant,

not healthy, organoids. Furthermore, the presence of antibodies
blocking MHC I and MHC II can inhibit the killing of tumor
organoids. Minimally invasive acquisition of paired tumor and T
cells by needle biopsies and peripheral blood allows the patient-
specific study of resistance and sensitivity to immunotherapy.[77]

Direct strategies to maintain the innate TME within organoids
require novel methods of organoid fabrication. Neal et al. utilized
an air–liquid interface (ALI) method to successfully build PDOs
from 100 individual patient tumor biopsies generated from dif-
ferent organs (Figure 4A) that recapitulate the immune TME.
The ALI method is distinct in that it also maintains the stro-
mal component with the PDOs. Diverse types of immune cell
populations were detected within the PDOs including cytotoxic
T cells, helper T cells, B cells, natural killer (NK) cells and tumor-
associated macrophages (TAMs). It was also found that adminis-
tration of IL-2 preserved the viability of TILs (Figure 4B). Apart
from the platform itself, the authors also developed a down-
stream assay that determines the immune cell subsets conserved
between tumors and PDOs. Last, they utilized immunotherapy-
responsive tumors to generate 20 PDOs and followed with anti-
PD1 treatment. Activation of T cells was observed and tumor
killing activity was noticed in 6 PDOs by assessing interferon-
gamma (IFNG), granzyme B (GZMB), and perforin-1 (PRF1) of
CD3+TILs, data that is consistent with clinical trials for differ-
ent cancer types (Figure 4C). The developed PDOs may facili-
tate predictive evaluation of responses to clinically applied im-
munotherapies including cytokines and checkpoint inhibitors on
an individual basis.[75] Another strategy applied by Votanopoulos
et al. engineered immune-enhanced patient tumor organoids (iP-
TOs) by dissociating surgically obtained tumor and lymph node
biospecimens without sorting cells to preserve tumor hetero-
geneity. The incorporation of the lymph node better represented
populations of APCs and allowed activation of T cells for killing
activities. The authors also demonstrated high clinical correlation
(85%) with response to checkpoint inhibitors.[76] Organoids can
be adapted for engineered T cell screening as well. Jacob et al. re-
ported a strategy to biobank patient-derived glioblastoma (GBM)
organoids with high resemblance to parental tumors in terms
of histological, cellular, genetic, and mutational features. They
demonstrated the feasibility of screening personalized CAR T
therapies using the organoids in which antigen-specific recog-
nition and killing were observed (Figure 4D). This 3D model
can function as an effective platform to test and optimize CAR
T treatment for solid tumor in vitro before conducting in vivo
test or human trials.[78] However, it should be noted that success-
ful derivation of organoids depends on tissue acquisition, tissue
quality, and corresponding tumor compositions and growth fea-
tures. Low efficiency in establishing and propagating these cul-
tures may fail to meet the demands of clinical use. In addition,
even though preserved immune cells and microenvironmental
characteristics can be detected initially, they can be lost and di-
luted over time as in vitro culture conditions favor clones opti-
mized for tumor growth.

3.4. Bioprinting

Oversimplified in vitro tumor models with limited TME rel-
evance may be remedied by the progress in bioprinting. The

Adv. Sci. 2020, 7, 2001447 © 2020 The Authors. Published by Wiley-VCH GmbH2001447 (9 of 21)



www.advancedsciencenews.com www.advancedscience.com

Figure 4. Tumor organoids engineering for screening cancer immunotherapies. A) Patient-derived tumor organoid (PDO) fabrication via an air–liquid
interface (ALI) method from human surgical tumor biopsies. B) Representative immunofluorescence staining of CD3+ tumor infiltrating lymphocytes
(TILs) with or without IL-2 treatment, scale bar = 20 µm. C) qRT-PCR analysis of interferon-gamma (IFNG), granzyme B (GZMB), and perforin-1 (PRF1)
of CD3+TILs from NSCLC, RCC, and melanoma PDOs after anti-PD1 or control IgG4 treatment for 7 days. Reproduced with permission.[75] Copyright
2018, Elsevier. D) Confocal images of 1 day and 3 day coculture of CAR T (either CD19 or 2173 BBz CAR T cells, 2173BBz CAR T cells target specifically
EGFRvIII expressing cells) with glioblastoma organoids (GBOs) by immunostaining EGFR, EGFRvIII, Cleaved-caspase-3 (CC3), and CD3. Reproduced
with permission.[78] Copyright 2020, Elsevier.

technology can precisely distribute and organize multiple bio-
logical components with high spatial resolution and uniformity,
paving the way for high-content models with low batch-to-batch
variability (Figure 5A–D).[131–134] Multiple bioprinting strategies
exist and primarily vary in their mechanisms of bioink depo-
sition. Major types include droplet-based, extrusion-based, and
laser-based printing,[135] all of which have been used to facilitate
in vitro cancer modeling.[136,137] Droplet-based bioprinting uti-
lizes thermal or acoustic energy to generate ink droplets, while
extrusion-based is driven by mechanical or pneumatic force to
yield continuous fiber extrusion. In contrast, laser-assisted bio-
printing uses focused light to crosslink specific points within a
biomaterial solution to generate 3D structures in a layer-by-layer
fashion.[138] The characteristics of different fabrication strate-
gies could be tailored to fulfill different features of tumor, im-
mune, and TME interactions. This can be done by designing
bioink compositions with various compositions of extracellular
matrix (ECM) proteins, an important feature of complex TME
models. Diverse biomaterials, such as naturally derived or syn-
thetic bioinks, generally have tunable biochemical and biophys-

ical properties. For instance, matrix stiffness can be modulated
by altering the composition and concentration of bioinks and
postprinting processing. For the purposes of screening cancer
immunotherapy, screening requirements can be met by a vari-
ety of advances in bioprinting. Matrix stiffness is of importance
in tumor evolution[139] and the immune cell niche can be sig-
nificantly impacted by mechanical characteristics.[140] Addition-
ally, bioprinting is especially advantageous in creating intricately
entangled passageways that closely mimic the physiological net-
works of vasculature and lymphatic pathways.[141–144] These mi-
croscale channels created by bioprinting can facilitate drug trans-
port and nutrient exchange that are meaningful for screening
cancer immunotherapy.

To study the crosstalk between tumor and immune cells in
the presence of immunomodulatory drugs, Heinrich et al. 3D
bioprinted a miniaturized brain that recaptured the interactions
between GBM and TAMs in a biomimetic manner (Figure 5E–
J).[79] Transcriptomic analysis of the system showed that certain
overexpressed genes in 3D bioprinted minibrains correspond to
GBM patient clinical data. However, several discrepancies were
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Figure 5. 3D bioprinting for screening cancer immunotherapy. A,B) Photograph of a seven-channel printhead of a continuous multimaterial extrusion
bioprinter. C) Photograph of a printed microfiber with a seven-bioink composition. D) Magnified photograph (side view) of the printed microfiber.
Reproduced with permission.[79] Copyright 2016, Wiley-VCH Publications. E) Preparation of cell-laden GelMA-gelatin bioinks and the subsequent bio-
printing process to create a 3D glioblastoma screening model (minibrains). F) Magnified schematic representation of bioprinted minibrains. G) Mag-
nified cross-section image of bioprinted minibrains with glioblastoma area highlighted in red, scale bar = 5 mm. H) Crosstalk between macrophages
and glioblastoma cells. I) (Top) Schematic of immunomodulatory drugs AS1517499 and BLZ945 treatment targeting on macrophages for glioblastoma
cell behaviors modulation. (Bottom) Measurement of metabolic activity of glioblastoma cells treated by AS1517499 and BLZ945 on day 4 and day 6, *P
< 0.05. Reproduced with permission.[131] Copyright 2019, Wiley-VCH Publications.

found indicating further regulation by other TME components.
The macrophages embedded within the miniaturized brain are
recruited by glioblastoma cells and can be polarized into an M2
phenotype that favors tumor growth. They finally screened two
immunomodulatory drugs: colony stimulating factor 1 receptor
(CSF-1r) inhibitor, BLZ945, and STAT6 inhibitor, AS1517499.
Treatment with BLZ945 in the system yielded results in align-
ment with the reported in vivo study showing that BLZ945 can
directly affect GBM growth by downregulating markers of M2
phenotype.[145] 3D bioprinting is also suitable for generating spa-
tially complicated structure to better mimic physiological interac-
tions between different cell types. Kilian et al. utilized coextrusion
bioprinting to study paracrine crosstalk study between MDA-MB
231 breast cancer cells and macrophages.[80,146] Tumor cells were
embedded within an alginate solution as the shell of the fiber
and macrophages were loaded into a CaCl2 solution in the core
to crosslink the viscous alginate with Ca2+ ions. The authors
demonstrated a range of geometric shapes of microchannels can
be achieved via bioprinting, which created different diffusional
distances and spatial arrangement of cells mimicking normal
physiological processes. They recapitulated both macrophage mi-
gration and inhibition of migration through drug administration.
This method of extruding alginate fibers is compatible with high-

throughput screening for various drugs.[146] The in vivo TME
also relies on embedded microcirculation systems with perfu-
sion and drainage networks coming from both blood and lym-
phatic vessels, key components in the transport and delivery of
therapeutics, including cancer immunotherapeutic agents. Cao
et al. established a 3D tumor model with a dynamic microenvi-
ronment achieved by the inclusion of a pair of perfusable blood
vessels and one end-blinded lymphatic vessel. The permeabil-
ity of both vessels can be tuned to match their native proper-
ties by changing the composition of the bioinks to yield dif-
ferent diffusion profiles for biomolecules and small molecule
drugs. Physiologically relevant circulatory platforms facilitate the
study of drug kinetics and transportation, which undoubtedly
play a role in the efficacy of cancer immunotherapies.[147] How-
ever, this role is relatively undefined and is not mechanistically
characterized.

Bioprinting is advantageous in establishing spatially intricate
structures for screening that are physiologically essential and oth-
erwise challenging to achieve. Although in principle bioprinting
is capable of adding multiple cellular components with ease, in-
clusion of both spatial intricacy and cellular diversity simultane-
ously remains challenging and necessitates further development
of bioprinting technologies.
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3.5. Organs-on-a-chip

Bridging between 2D cell culture and in vivo systems, organs-
on-a-chip platforms have the potential to rebuild key structural
and functional components of organs with human cells as cell
sources for extended analysis, manipulation, and screening.[148]

Organs-on-a-chip platforms are developed around microfluidic
systems, which enable external biochemical and biophysical con-
trol used to recreate physiological features of the TME.[149] In ad-
dition, organs-on-a-chip platforms can be easily integrated with
add-ons such as sensing and imaging to facilitate facile data
collection for analysis. Furthermore, the use of patient-derived
cells facilitates standardized, economical, and personalized ex
vivo screening models that can be built to enable the investiga-
tion of basic biological processes and the preclinical validation
of drugs—essential tools for screening personalized and/or pre-
cision therapies.[148,150] Specific to cancer immunotherapies, the
immune system plays an important role in the occurrence, devel-
opment, and metastasis of cancers. Interactions between healthy
and malignant tissues and cells can be recaptured through organ-
on-a-chip systems with the ability to monitor key parameters
and cellular behaviors such as cytokine secretion, immune cell
infiltration, and tumor viability and migration. In this context,
cancer-on-chip systems with immune components have been es-
tablished for therapeutic screening and investigation of the inter-
actions between cancer cells and immune cells.[150,151] Here, we
summarize recent progress in the development of organs-on-a-
chip systems for immunotherapy screening.

Organs-on-a-chip systems can be fabricated with simple de-
signs to provide powerful biological relevance to facilitate rapid
screening on an individual patient basis. For screening the ther-
apeutic efficacy of adoptive T cell therapies, solid tumors cre-
ate a notoriously challenging environment for T cells function
because of their dense structure and immunosuppressive bio-
chemical cues. Park et al. reported a screening model based on
an injection-molded culture platform for 3D cytotoxicity assays
(CACI-IMPACT). The chip was designed to compartmentalize
different cell types and ECM gels. By adding the components of
ECM, which act as barriers to restrict the migration of cytotoxic
lymphocytes, the chip system mimics the native TME and can
be used to evaluate the killing capacity of engineered T cells.[83]

In addition to evaluating the killing ability, specificity is another
important parameter to be tested in screening effective treat-
ments. TCR T cells or CAR T cells are developed to recognize
specific antigens presented by cancer cells. Screening is a crucial
step in ensuring their specificity is selective for malignant tis-
sue to prevent off-target effects and autoimmunity. To satisfy this
requirement, Segaliny et al. developed a droplet microfluidic sys-
tem combined with tracking and sorting capabilities to screen
antigen specific T cells and monitor, in real time, single TCR
T cell activation by target tumor cells. The single cell screening
was achieved by coencapsulating TCR T cells and antigen-specific
cancer cells within one droplet. The activation process was visu-
alized by green fluorescent protein (GFP)-reporter T cells where
recognition of the tumor antigen induced GFP expression. Af-
ter identifying and isolating the activated T cells, these cells un-
derwent downstream sequencing and TCR chain screening was
used to identify TCR sequences specific to antigens on a single
cell level.[84] Advanced technologies are easily incorporated with

organs-on-a-chip platforms for more sophisticated purposes. Ke
et al. reported a chip equipped with titanium oxide phthalocya-
nine (TiOPc)-based optoelectronic tweezers (OET) for real-time
examination of the dynamic interactions between immune cells
and cancer cells. The chip can observe activity of NK cells and
apoptotic features indicating dying over time. Using this method,
the dynamic process of NK cell killing target cells was observed
because of spatial control of cell–cell contact from the OET.[85]

3.6. Hybrid Design

Each screening approach has unique advantages and disadvan-
tages when surveying the immune–cancer interactions in the
TME to aid novel immunotherapy discovery or efficacy and safety
evaluations. Thus far, none of the approaches has had abso-
lute success predicting efficacy and each is inadequate on its
own. Therefore, researchers are beginning to combine multi-
ple approaches synergistically to establish more powerful screen-
ing models. Though these studies are still nascent for im-
munotherapy applications, they do hold great potential. One
common hybrid design is the organoids-on-a-chip,[152] which
combines two distinguished approaches to increase the rele-
vance for cancer immunotherapy screening.[153] Patient-derived
tumor organoids recapture the functional and structural diver-
sities corresponding to individual patients and cancer types,
but still lack the microenvironmental controls and facile ana-
lytical methods. Organs-on-a-chip technologies can easily incor-
porate microfluidic channels and integrate with sensing com-
ponents to facilitate monitoring.[154,155] Varying the chip de-
sign to facilitate other unique features, such as cell separation,
can be used to supplement downstream analysis such as se-
quencing and functional response screening.[156] As displayed in
Figure 6, Jenkins et al. reported a 3D microfluidic device for
short-term culture of both murine and patient-derived organ-
otypic tumor spheroids (MDOTS/PDOTs) with preserved im-
mune cell populations. Combining the advantages of preserved
tumor–immune interactions and real-time monitoring, check-
point inhibitors and small molecule drugs can be delivered
through microfluidic channels and both live/dead screening and
cytokine profiling can be conducted in the device. They demon-
strated ex vivo sensitivity and resistance to PD-1 blockade ther-
apy within a short period (3–6 days), showing potential to quickly
evaluate immune checkpoint blockade (ICB)-based therapies in
a clinical setting. They also screened a small-molecule inhibitor
targeting the TBK1/IKK𝜖 interaction aimed at sensitizing the
organoids to checkpoint inhibitor treatment.[81]

Single cell or single cell type sequencing is of interest in
screening cancer immunotherapies as the immune microenvi-
ronment is complicated with different subsets of cell populations,
each with their own distinct functions.[70] Just as microfluidic
systems can be used to sort cells in preparation for sequenc-
ing, CRISPR-editing can complement organoids use. Since the
advent of the first CRISPR application in organoids for disease
modeling in 2013,[157] CRISPR has been applied for tumorige-
nesis modeling, genome-wide organoid screening, and devel-
opment of reporter organoids.[158,159] Gene-editing can generate
artificial organoids to exhibit distinct functions and properties
that naturally derived organoids may fail to replicate ex vivo.
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Figure 6. Organoids-on-a-chip for screening cancer immunotherapy. A) Schematic design of a microfluidic chip system and downstream analysis with
fluorescence imaging and cytokine secretion analysis for 3D cultured murine and patient-derived organotypic tumor spheroids (MDOTS/PDOTS).
B) Brightfield image of MC38 MDOTS on day 0, day 3, and day 6. C) Immunofluorescence staining of immune populations in MC38 MDOTS by anti-
CD45 and CD8 antibodies. D) Schematic of checkpoint inhibitor screening via chip system followed with live/dead imaging. E) Live (green)/dead (red)
fluorescence image of MC38 and B16F10 MDOTS treated with anti-PD1 or control IgG. F) Schematic of impact on cytokine secretion of tumor cells
and immune cells by a TBK1/IKK𝜖 inhibitor. G,H) Live (green)/dead (red) quantification and fluorescent image of CT26 MDOTs treated with or without
anti-PD1 and with or without TBK1/IKK𝜖 inhibitor (Cmpd1), ****P < 0.0001. Reproduced with permission.[81] Copyright 2017, American Association for
Cancer Research.

Furthermore, combinations of bioprinting and organs-on-a-chip
techniques are gaining popularity.[95,160] Meng et al. 3D printed
a metastatic model organ-on-a-chip combining primary tumor,
vasculature, and stromal elements with the ability to screen im-
munotoxins. The efficacy of the immunotoxins assessed with
the bioprinted organ-on-a-chip platform manifested more mean-
ingful cellular responses for tested drugs.[161] It is expected that
future screening models for cancer immunotherapy will be en-
hanced by combining two or more approaches with both intrinsic
and extrinsic features represented.

4. Artificial Intelligence in Screening Cancer
Immunotherapy

To better fulfill the purpose of screening models as predictive or
discovery platforms, clinically useful and commercially feasible
engineering approaches must be compatible with high-content
or high-throughput settings. Many of the platforms we have dis-
cussed are, in principle, amenable to scale up to enhance their

efficacy, efficiency, and accuracy. Data acquisition and interpreta-
tion is challenging, however, significant advancements in AI can
support the growing need for big data analytics. In this section,
we discuss strategies for scaling up each engineering approach
either alone or in combination and highlight research studies ap-
plying AI to complement high-throughput screening models.

4.1. High-Throughput Screening

Broad scale commercial and clinical use of screening methods
requires high-throughput systems capable of rapid sample
testing and data analysis. Tumor organoids are naturally com-
patible with high-throughput setups, but samples derived from
patients vary in quantity and quality and pose challenges for this
purpose. Phan et al. utilized the geometry of the commercial
well plates to generate Matrigel-embedded PDOs within rings
along the rim of the well.[162] The adopted strategy was simple
in scalability and allowed the use of limited cell numbers from
patient samples to be capable of performing hundreds of parallel
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independent screenings. One crucial feature the authors
achieved was to gain screening results within one week after
surgery, which is compatible with the clinical decision-making
process. Organs-on-a-chip platforms or traditional well plate
platforms can be designed for high-throughput screening. Mo
et al. developed a high-throughput screening platform for small-
molecule immunomodulator discovery (HTiP) within a 384-well
plate. Tumor immune interactions were recapitulated by cocul-
turing PBMCs and cancer cells within each well; the 384-well
format allowed the coverage of a vast library of chemicals simul-
taneously. The platform could monitor the growth phenotypes
of cancer cells by imaging and biochemical readouts through
cell proliferation and viability assessment. The authors tested
over 2000 bioactive compounds on the HTiP and identified three
potential antagonists that enhanced immune activity.[163]

Immune cells can respond to immunotherapeutic agents
and biochemical cues in the TME with distinct functions, and
these phenomena are represented by multiplexed phenotypic
changes.[164] Therefore, high-throughput screening with a large
number of cells for identification of certain phenotypes is crucial.
The requirement for large sample sizes often increases opera-
tional and time costs that can be remedied by advanced screening
approaches. Mair et al. designed a microfluidic chip system capa-
ble of performing genome-wide loss-of-function screening of 108

cells within one hour.[82] Genome-wide screening was achieved
through CRISPR/Cas9 and cell sorting was achieved by immuno-
magnetically labeling the cells with magnetic particles coupled to
antibodies. Under the magnetic guidance, cells with altered lev-
els (low, medium, and high) of CD47 expression could fall into
different chambers. CD47 on tumor cells function as a “do not eat
me signal” that inhibits phagocytosis. The authors demonstrated
identification of several genetic regulators of CD47, which could
function as a prognostic biomarkers for checkpoint inhibitor
immunotherapy.[165] In order to reveal functional heterogeneity
of cellular immunity on a single cell level, Ma et al. designed a
microfluidic-based chip for high-content screening of the func-
tional heterogeneity of immune cells. The chip comprised 1034
microchambers, each with 3 nL volume, to hold single cells for
antibody-encoded barcoding of phenotypes.[86] Applicability of
the chip system was demonstrated to distinguish antigen-specific
T cells between tumor patients and healthy donors by detecting
perforin, interferon, and interleukin production. Polyfunctional
T cells with higher cytokine production capabilities are indicated
to be associated with successful vaccination,[166] which potentially
enables the platform as a predictor for the efficacy of a cancer
vaccination.

Based on natural recognition between antigen-specific T cells
and peptide-MHC complexes, efficient identification of antigen-
specific T cells can be achieved by high-throughput produc-
tion of peptide-MHC complexes (pMHCs) as well. Stability of
MHC molecules can be improved by introducing a disulfide
bond without sacrificing its peptide binding ability. Two stud-
ies by Saini et al. and Moritz et al. utilized disulfide-stabilized
(DS) MHC I molecules for the purpose of screening cancer
immunotherapy.[167,168] The DS approach and rapid one-step
loading of specific peptides enabled the production of vast li-
braries of peptides for pMHCs and facilitated the screening of
neoantigen-specific T cells while identifying off-target risks from
newly designed TCRs.[169] As a high-content format becomes a

necessity for clinical and commercial use, new screening and
engineering approaches should be developed with scalability in
mind. Methods involving sequencing and CRISPR have long
been used to generate enormous databases, while data regard-
ing organoids has lagged behind due to nonstandardized ana-
lytical methods and sample restrictions. Bioprinting can be op-
timized to generate screening samples, such as spheroids, in
parallel with low variability and high efficiency. Intricately de-
signed organs-on-a-chip systems may be challenging to adapt
for high-throughput screening because of fabrication and oper-
ation costs. However, microfluidic systems can facilitate single
cell sorting for high-throughput screening and drug administra-
tion combined with well-plate system.

4.2. Artificial Intelligence

The capability to run assays in high-content formats has con-
tributed to the enormous increase in the amount of data col-
lected from patients and biological samples. The enormous size
of datasets has made manual evaluation cumbersome and inef-
fective. Additionally, manually analyzing data to find specific cor-
relations is laborious and is likely to miss trends that are nonob-
vious or of interest. While the primary purpose of screening may
be to assist in new drug discovery and diagnosis/treatment of an
individual, the collective analysis of data from sets of patients
can have an even greater value. Observing the trends and cor-
relations found in these aggregate datasets can lead to a better
understanding of complex diseases and contribute to the pre-
vention and treatment of future occurrences.[170] Therefore, ma-
chine learning methods are being implemented to draw valuable
and actionable conclusions from otherwise impractical collec-
tions of data. These methods can be further segmented into su-
pervised machine learning, which relies upon labeled datasets to
make predictions based on past experience, unsupervised learn-
ing, which attempts to identify patterns and trends from previ-
ous occurrences, and reinforcement learning, which maximizes
reward through making a sequential set of decisions.[171] In each
case, these algorithms require a training dataset to inform an an-
alytical model.[172] Historically, the training datasets have been
from national initiatives such as TCGA; however, new training
datasets can come from the other screening approaches men-
tioned earlier. Armed with the unique data derived from an ar-
ray of screening approaches, AI can play an integral role in the
pipeline of screening cancer immunotherapies, including pre-
dicting targetable epitopes for cancer vaccinations, pairing appro-
priate immunotherapeutics to responsive patients, and identify-
ing adverse reactions prior to administration.

Recently, machine learning has been implemented in the iden-
tification of neoantigens presented by solid tumors. While the
unique proteins produced by cancer cells may contain hundreds
or thousands of amino acids, the MHC molecule only presents
a segment of 9–25 peptides.[173] Peptide presentation is further
complicated by the high allelic variation in the MHC molecules
presenting peptides due to polymorphism in the HLA genes re-
sponsible for MHC production.[174] Biologically, this modularity
and elevated degree of variation ensures that a larger variety of
peptide sequences can be presented; however, it poses a signifi-
cant challenge for those developing machine learning techniques
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to predict presentation. The ability to preemptively identify pep-
tide sequences that bind well to MHC molecules can be used to
accelerate the development of cancer vaccines and targeted ther-
apies focusing on the neoantigens created by a tumor. Two stud-
ies have been recently published regarding unique algorithms
for the prediction of these neoepitopes. While these papers
have been extensively discussed by Moore and Nishimura,[173]

we will briefly discuss their broader impact on the develop-
ment of immunotherapies. In both cases, studies trained their
machine learning models (MixMHC2pred[175] and MARIA,[176]

Racle et al. and Chen et al., respectively) on mass-spectrometry-
derived peptidome datasets. The peptidome dataset used to train
MixMHC2pred was roughly twice as large as MARIA (≈100 000
compared to ≈50 000 peptides) and encompassed a more diverse
set of samples. Given a peptide sequence and the HLA allele, the
MixMHC2pred program would present an MHC binding score
as a metric of peptide-MHC affinity. As a result, the prediction
method showed an increase in true positives (MHCII-presented
peptides correctly predicted by the algorithm) relative to previ-
ous methods like NetMHCIIpan. MARIA, however, differs in its
ability to factor in tissue-specific gene expression to not simply
predict the expression of a peptide, but its likelihood to elicit a
strong T-cell response. This supervised multimodal neural net-
work also showed improvement in predictive capacity relative to
models trained on isolated datasets of gene expression and mass
spectrometry. With algorithms that can successfully predict the
expression of specific peptide sequences by a tissue, cancer vac-
cines can be tailored to specific patients by better understanding
the molecules required to elicit an immune response.

Massive databases of genomic and transcriptomic features de-
rived from NGS have been compiled and algorithms can be
trained on datasets containing patient characteristics and clini-
cal outcomes. These analytical methods are highly diverse based
upon the biomarkers that are studied and the patient populations
from which the data has been drawn. As a National Cancer In-
stitute (NCI) initiative between 2006 and 2018, TCGA amassed
2.5 petabytes of data characterizing the molecular characteristics
of tumors. Using the established database, Choy et al. used an
unsupervised shallow neural network to identify 16 new novel
genes that were previously not believed to be related to the ex-
pression of immune checkpoint inhibitor molecules.[68] Further-
more, analysis of over 13 000 samples parameterized into a 50-
dimensional space allowed the unsupervised network to identify
an additional 18 genes that are correlated with the response of pa-
tients to immune checkpoint blockade.[177] Though these genes
are not yet reliable biomarkers indicative of patient response
to treatment, further validation of algorithms like these can lead
to new treatment paradigms and personalized medicine. An-
other study expanded the scope of the data collected within the
TCGA to develop a database related to the immune landscape
surrounding a tumor. The Cancer Immunome Atlas (TCIA) com-
prises characteristic information derived from the TCGA and im-
mune checkpoint blockade clinical trials regarding the immune
cells that have infiltrated 20 different types of solid tumors.[178]

To identify biomarkers of tumor immunity, the group imple-
mented a random forest machine learning architecture that con-
sidered 127 different parameters and identified 26 features hav-
ing a high impact on response to therapy. Based on the selected
features associated with antigen presentation, checkpoint activa-

tion, and the presence of effector and suppressor cells, an im-
munophenoscore could be assigned. Further study demonstrated
that the immunophenoscore could be used to reliably stratify pa-
tient groups into responders and nonresponders to immunother-
apy while dramatically outperforming other singular biomarkers
including PD1 expression and cytosolic activity. Facilitated by ma-
chine learning enabled data mining, Jia et al. utilized a random
forest algorithm to generate an “immune map” of tumor loci
based on multidimensional variables, such as neoantigen load,
T-cell repertoire, and crucial genes in regulating immune reac-
tions and antigen presentation from WES, RNA-seq, and T cell
repertoire sequencing (Figure 7). They examined spatial hetero-
geneity of the TME from different locations of tumor biopsies
from one patient with NSCLC. By Gaussian maximum fitting,
an “immune map” was represented as 2D with density contours
indicating immunologically “hot” and “cold” regions. It was dis-
covered that the TME is diverse within tumors and immunosup-
pressive mechanisms are heterogeneously presented. Because of
this, single locus screening approaches may be insufficient for
accurate response prediction and tumor characterization.[69]

Although well-developed traditional approaches, such as flow
cytometry, and various imaging techniques have already demon-
strated their feasibility in tandem with machine learning, the
advanced screening platforms discussed in this article can im-
prove the accuracy, efficiency, and comprehensiveness of prog-
nostic predictions. Developed algorithms can be readily applied
to more advanced screening platforms. One machine learning
approach, called FAUST, was developed to assist in the identifi-
cation of unique cell populations in blood based on labeled cells
observed with flow cytometry.[179] The algorithm builds annota-
tion trees by generating gating criteria for cells being observed; if
the gating criteria that the algorithm sets produce a single popu-
lation of cells, that gating strategy is no longer used. The result of
this is the isolation of important features that differentiate cells
from one another. While this study did not specifically tie fea-
tures to response to immunotherapy, other work has shown that
the presence, absence, and number of particular cell types de-
rived from patient blood can be used to predict immunotherapeu-
tic outcomes.[180] Studies by Trebeschi et al. have already shown
promise by analyzing the location, size, and morphology of tu-
mors. Their random forest was able to select a singular radiomic
biomarker based on a training set of 133 patient scans and was
validated using an additional 70.[181] While the success of the al-
gorithm was highly dependent on the type of tumor being treated,
the accuracy of the prediction can be greatly improved by expand-
ing the dataset. Sun et al. took a similar radiomic approach in
another study to train an algorithm to identify the extent of im-
mune cell infiltration by creating 84 parameters to describe com-
puted tomography (CT) scans.[182] After identifying 8 essential
radiomic features indicative of CD8 cell infiltration, a radiomic
score was determined. This score was then validated against two
additional datasets. When validated, it was determined that high
radiomic scores correlated with improved overall patient survival.
Though radiomics-based approaches are minimally invasive and
the imaging modalities are already essential components of the
current standard of care, the generation of standardized datasets
and the failure to directly assay cellular behavior in tumors may
limit the broad scale adoption of these techniques.[183] The AI
algorithms developed for medical imaging analysis are expected
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Figure 7. Machine learning for screening cancer immunotherapy. A) Schematic of applying machine learning on sequencing data gained from surgical
biopsies of NSCLC patients. B) 2D visualization of an “immune map” showing immunologically “hot” (right) and “cold” (left) area from machine learning
of multidimensional matrix of the input variables from NSCLC patients. Color indicates cytolytic activity. C) TMB was represented in the “immune map.”
D) Location in the “immune map” of samples from different NSCLC patients represented as different colors. E) Pie chart (upper) displays proportion
of immunologically “hot” and “cold” samples from all analyzed samples. Pie chart (lower) displays proportion of patients with different immunological
status (heterogenous) and with one immunological status (homogenous). F) Immunological status, TMB, and PD-L1 expression is categorized for each
patient from top to bottom panel. The color in the middle and lower panel represent each individual patient. Reproduced with permission.[69] Copyright
2018, Nature Publishing Group.

to be adapted to the advanced screening models as well. Organ-
on-a-chip and bioprinting have different specialties in recreating
complex cancer–immune crosstalk as mentioned earlier. Mas-
sive databases of analytical images and/or videos could be gen-
erated from these platforms to monitor cell systems in new
ways to determine efficacy and drug–microscale tissue interac-
tions. When scaling up sample diversity (for instance, patient
samples and long-term analysis), AI is expected to derive con-
clusions via algorithms similar to what is used in medical im-
ages analysis. Furthermore, artificial intelligence can be used to
validate in vitro screening solutions by comparing the results
from engineered screening models with in vivo or human trial
data.

In short, machine learning and AI have the potential to revo-
lutionize the clinical decision-making processes surrounding the
administration of immunotherapies. If the diversity of data input
can be further enhanced with advanced screening approaches,
patients can greatly benefit from the data-driven approaches to
cancer treatment.

5. Conclusions and Future Perspectives

In summary, the screening of cancer immunotherapies holds
promise to surmount the many existing challenges prevent-
ing broad-scale use in larger patient populations, especially in
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the identification of novel targets/mechanisms and predicting
patient-specific response. Various innovations across engineer-
ing disciplines have contributed to the creation of models with
different focuses and specialties aiming to understand or reca-
pitulate aspects of the tumor–immune interactions. To further
expand the use of these platforms, they must be readily scaled
up to rapid, high-content modalities to meet the sample vol-
umes and time constraints imposed by clinical use. Furthermore,
screening model establishment and downstream data analysis
should take cost, operational complexity, and physiological rele-
vance into consideration. The implementation of AI in data anal-
ysis, specifically for cancer immunotherapies, shows promise to
expedite screening pipelines by complementing engineering ap-
proaches. With surging numbers of clinical trials applying AI al-
gorithms, high prediction accuracy and faithful alignment with
clinical results is the one crucial golden standard in justifying its
applicability and functionality.

However, future work is needed to address various challenges
for screening cancer immunotherapies. The primary challenge
involves the complexity of the tumor–immune-therapeutic rela-
tionship and extraordinary heterogeneity in patient tumors. Most
screening approaches try to emulate or characterize this complex-
ity and heterogeneity but each has its own limitations. For exam-
ple, even though loss-of-function screening via CRISPR/Cas plat-
forms provides a large library of cellular models with unprece-
dented genetic heterogeneity, the mutational landscape of cancer
cells cannot be exactly replicated through gene deletion alone. Ad-
ditional modification with CRISPR can create gain-of-function
models to enhance the relevance of the cell lines created for
genomic[184] and transcriptional regulation screening.[185] Fur-
thermore, different subsets of immune cells play distinct, cru-
cial functions in determining the final treatment efficacy, but
most in vitro platforms relying on organoids, bioprinting, and
organs-on-a-chip technologies have few, if any of these cell types.
Novel derivation and fabrication strategies for tumor organoid
engineering are promising as they provide a better representa-
tive sample of the immune population, while bioprinting and
organs-on-a-chip technologies more readily provide macroscopic
spatiotemporal recapitulation of these interactions. The appli-
cation of AI in immunotherapy development and screening
is rapidly advancing, yet is still nascent for the screening ap-
proaches discussed due to the lack of standardized datasets. How-
ever, the various algorithms that have been developed can be
meaningful references to reduce false-positive and false-negative
interpretations.[173] Some arguments have also been raised re-
garding bias in training sets and irreproducibility of certain algo-
rithms for predicting response.[186] The generalization of these
algorithms to larger patient populations and the incorporation of
patient outcomes with existing datasets will be crucial in advanc-
ing the power of these analytical methods.

Furthermore, engineering approaches designed for screening
also need to be more compatible with the trend of clinical ap-
plications. Clinical results have indicated that an initial response
to therapy does not guarantee sustained efficacy. Acquired resis-
tance to certain treatment strategies, especially those acquired
over time, is another challenge to be addressed in the screening
methods.[91,187] Recent studies also suggest that the therapeutic
efficacy of immunotherapies could be enhanced if used in tan-
dem with the right combinations of adjuvant treatments.[188–191]

Sparked by the FDA approval of nivolumab and ipilimumab
as a combination therapy for metastatic melanoma, a surging
number of trials are ongoing to test a variety of combination
therapies.[192] However, improved survival rates may also be ac-
companied by severe toxicity and extremely high cost.[193] Clinical
efficacy must justify the necessity for combination therapies and
screening models can be an essential preclinical tool to maximize
the number of combinations evaluated with holistic assessment
of efficacy and safety. In addition, person-to-person variability is
dramatic and identification of biomarkers for prediction is even
more indispensable for combination immunotherapies due to
their side effects and higher cost.[194] In short, various challenges
and clinically unmet needs in cancer immunotherapy are already
being addressed by a variety of engineering approaches. In the fu-
ture, not only will these systems become more refined to better
model tumor behavior, but specific data analysis workflows facil-
itated by AI will improve our understanding of tumor–immune
interactions and help improve the treatment of cancer.
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