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Abstract
Markov decision processes (MDPs), which involve a temporal sequence of actions condi-

tioned on the state of the managed system, are increasingly being applied in natural

resource management. This study focuses on the modification of a traditional MDP to

account for those cases in which an action must be chosen after a significant time lag in

observing system state, but just prior to a new observation. In order to calculate an optimal

decision policy under these conditions, possible actions must be conditioned on the previ-

ous observed system state and action taken. We show how to solve these problems when

the state transition structure is known and when it is uncertain. Our focus is on the latter

case, and we show how actions must be conditioned not only on the previous system state

and action, but on the probabilities associated with alternative models of system dynamics.

To demonstrate this framework, we calculated and simulated optimal, adaptive policies for

MDPs with lagged states for the problem of deciding annual harvest regulations for mallards

(Anas platyrhynchos) in the United States. In this particular example, changes in harvest

policy induced by the use of lagged information about system state were sufficient to main-

tain expected management performance (e.g. population size, harvest) even in the face of

an uncertain system state at the time of a decision.

Introduction
There is a growing literature concerned with the application of optimization methods [1–3] to
dynamic decision-making problems in conservation [4–12]. Dynamic decision problems are
common in natural resources applications, including the management of habitats, the control
of invasive species, and the stocking, transplanting, or harvesting of organisms. The growing
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number of applications of dynamic optimization methods is testament to their broad applica-
bility, and rapid increases in computing resources has made it feasible to analyze problems of
at least moderate complexity [13].

Dynamic optimization methods combine models of system change with objective functions
that calculate the value of alternative management actions over time [13]. A common approach
in resource management is to characterize a problem as a Markov decision process, which
involves a temporal sequence of decisions, with policies that identify actions at each decision
point depending on time and system state [1]. The goal of the manager is to develop a decision
rule (or management policy) that prescribes management actions for each time and system
state that maximizes (or minimizes) the temporal sum of objective values. A key advantage
when optimizing Markov decision processes is the ability to produce a feedback (or closed-
loop) policy specifying optimal decisions for possible future system states rather than expected
future states [2]. In practice this makes dynamic optimization appropriate for systems that
behave stochastically, absent any assumptions about the system remaining in a desired equilib-
rium or about the production of a constant stream of resource returns.

A key consideration in a dynamic framing of natural resource problems is the uncertainty
attendant to management outcomes. In addition to demographic and environmental variation,
uncertainty about resource changes may arise from errors in measurement and sampling of
ecological systems (partial system observability), incomplete control of management actions
(partial control), and incomplete knowledge of system behavior (structural uncertainty) [14].
A failure to recognize and account for these uncertainties can depress management perfor-
mance and lead to environmental and economic losses [15]. Thus, there is increasing emphasis
on methods that can account for uncertainty about the dynamics of ecological systems and
their uncertain responses to both controlled and uncontrolled factors [16–18].

Adaptive management is an approach for coping with structural uncertainty by explicitly
accounting for multiple, competing models of the system’s dynamics [16, 19–23]. We empha-
size that the term “adaptive management” as we use it here deals specifically with the issue of
structural uncertainty in a repeated decision context; we acknowledge that the term is often
used more broadly to encompass many other aspects of collaborative decision making under
uncertainty [24–31]. Structural uncertainty in system dynamics can often be expressed as alter-
native models, characterized by continuous or discrete probability distributions of model
parameters, or by alternative model forms that are hypothesized or estimated from historic
data. The notion of adaptation arises from the recognition that these probability distributions
are not static, but evolve over time as new observations of system behaviors are accumulated
from the management process. Indeed, the defining characteristic of adaptive management is
the attempt to account for the temporal dynamics of this uncertainty in making management
decisions [16, 17, 20–22, 32]. Stochastic control methods [3, 13], with their focus on dynamic
decisions and the uncertainties attendant to future outcomes, are particularly well suited for
formulating adaptive management policies. An increasing number of examples of passive and
active adaptive management policies can be found in the conservation literature [33–36]. Both
passive and active adaptive management treat probabilities of the alternative parameters or
models as part of the system state, but only active adaptive management explicitly incorporates
the potential for learning in assessing and selecting management actions [13].

There has been growing attention to the problem of partial system observability, as it pres-
ents a common challenge in conservation because system state is almost never known with cer-
tainty [37–42]. Our concern here is with the adaptive management of resource harvesting,
subject to partial system observability. Partial observability often stems from sampling or mea-
surement error in monitoring programs, but here we focus on additional uncertainty associated
with estimation of system state prior to the time at which the action is to be taken, effectively

Time Lags in State-Dependent Decisions

PLOS ONE | DOI:10.1371/journal.pone.0157373 June 17, 2016 2 / 21



necessitating projection of system state from the time of monitoring to the time of action. This
particular perspective was motivated by a Supplemental Environmental Impact Statement
(SEIS) issued by the United States Fish and Wildlife Service, concerning the timing of the
annual process for regulating the harvests of migratory birds [43]. The modeling of the current
decision process is naturally based on a specific temporal sequence of process events (the moni-
toring, decision and action), and a change in this timing necessitates an examination of poten-
tial changes to the corresponding optimization. Specifically, the implementation of the SEIS
protocol increases the time lag between the monitoring on which the decision is based and the
time at which the action is to be taken. We can envision other such situations in which a deci-
sion must be made at a time that does not immediately follow the acquisition of monitoring
data, perhaps for administrative or legal reasons. To accommodate these cases there must be a
modification of the classic formulation of Markov decision processes in which decisions are
made immediately or soon after system state is assessed. This typically means that a new deci-
sion must be made prior to observing the effects of the last decision (and other uncontrollable
factors) on system state. In order to calculate an optimal policy under these conditions, the sys-
tem state must be augmented by a variable indicating the last decision made (i.e., the specific
action taken). Decisions are thus conditioned on a time-lagged assessment of system state.
Although this complicates the computation of optimal policies, it does not violate the Markov-
ian property of the decision process.

Although our analyses were motivated by a specific case dealing with proposed changes in
timing of decisions related to migratory bird harvest, such issues of decision timing have arisen
in other decision processes as well. An adaptive management program has been adopted by the
Atlantic States Marine Fishery Commission for the establishment of horseshoe crab harvest
quotas in Delaware Bay [44]. State variables relevant to harvest decisions include not only the
abundance of the harvested species, but also that of migratory shorebirds (red knots, Calidris
canutus) that depend on eggs of horseshoe crabs as a food source at key migration stopover
sites in Delaware Bay. Harvest quotas for the fishing season of June-December, year t+1, are
established in the fall (e.g., November) of year t. The decision is informed by estimates of sys-
tem-state variables obtained in May of year t (red knots) and October-November of year t-1
(horseshoe crabs). Debate has ensued about the feasibility of pushing the harvest decision for-
ward (e.g., January, year t+1) to make use of the previous fall’s crab survey data.

Our objectives here are to describe a dynamic-optimization framework that accounts for
lack of monitoring information on the current system state at the time of decision making,
while also accounting for structural uncertainty in system dynamics. We demonstrate the
framework using the regulation of mallard (Anas platyrhynchos) harvests in the United States
as a case study.

Methods

Markov decision processes
We begin by describing a standard discrete-time infinite-horizon Markov decision process
[45–47]. The resource system is characterized by a system state xt at each time t, which repre-
sents key resource elements, features, and attributes that evolve through time. Examples
include population size or density, structural features of habitats, or extant environmental con-
ditions. We assume for now that the state of the system can be observed at the time a decision
is made, and that structural components of the system that influence dynamics are known.

As described in detail elsewhere [13, 48, 49], the management process consists of actions at
chosen at each time t from a set of options that are available at that time. A policy A prescribes
actions to be taken at time t, so at = A(xt). System dynamics are assumed to be Markovian, in
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that the system state at time t+1 is determined stochastically by the state at time t and action
taken at time t. These transitions are specified by a transition function xt+1 = f(xt, at, zt), where
the random variable zt represents uncontrolled environmental variation that induces stochasti-
city in the transition function and implies a conditional probability distribution P(xt+1|xt, at)
for the transition from xt to xt+1 assuming action at is taken.

Assuming the transition structure is known, a value function V(xt|A) captures the value of
decisions made over time in terms of the model-based transition probabilities P(xt+1|xt, at) and
accumulated utilities U(xt, at). This notation suggests that utility is influenced by the action at
taken at time t as well as the system state xt at that time. Dynamic decision making typically is
based on an objective or value function that accumulates discounted expected utilities from the
current time forward:

VðxtjAÞ ¼ E
X1
h¼0

lhUðxtþh;AðxtþhÞÞjxt;AðxtÞ
" #

ð1Þ

where the value V(xt|A) corresponding to policy A is conditional on the resource state xt and
the expectation is with respect to environmental variation and other measures of uncertainty.
One way to characterize the relative importance of future vs. current values is to include a dis-
count factor λ� 1 for the time-specific utilities in Eq (1) that reduces future utility relative to
current utility. The goal is to find the policy A that maximizes overall system utility V. Solution
approaches typically make use of Bellman’s equation:

VðxtjAÞ ¼ Uðxt;AðxtÞÞ þ l
X

xtþ1
Pðxtþ1jxt;AðxtÞÞVðxtþ1jAÞ ð2Þ

which can be used in iterative routines such as function and policy iteration [46]. When λ = 1
the value function as stated may not converge and the Bellman equation must be modified.
This situation is generally associated with so-called ergodic control [46] that attempts to maxi-
mize the time-averaged utility rather than a temporal sum of utilities:

argmax
Aðxt Þ

lim
T!1

1

T

XT

t¼1

E½Uðxt;AðxtÞÞ�: ð3Þ

If there is uncertainty about the transition structure, several candidate models can be used
to describe state transitions, with fk and Pk(xt+1|xt, at) representing a particular model k 2 {1,
2,.., K}. Structural (or model) uncertainty can be characterized by a distribution qt consisting of
Kmodel likelihoods or weights, with elements qt(K) that sum to one. Here we refer to the dis-
tribution of model weights as the model state to distinguish it from the system state xt. The
transition probability for the system state x is now conditional on the current model state as
well as the current system state and action and is given by:

Pðxtþ1jxt; qt; atÞ ¼
XK

k¼1

qtðkÞPkðxtþ1jxt; atÞ: ð4Þ

The model state is updated once the next period’s state is observed using an updating rule
qt+1 = g(xt+1, xt, qt, at) that typically (but not necessarily) uses Bayes’ theorem, based on the rel-
ative likelihood of xt+1 under each of the alternative models.

When there is uncertainty about the transition structure, the utility function, value function
and strategy all become functions of the model state qt. When the utility function depends on
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the model, we can write the utility function as:

Uðxt; qt; atÞ ¼
XK

k¼1

qtðkÞUkðxt; atÞ ð5Þ

The value function can then be expressed as:

Vðxt; qtjAÞ ¼ E
X1
h¼0

lhUðxtþh; qtþh;Aðxtþh; qtþhÞÞjxt; qt;Aðxt; qtÞ
" #

ð6Þ

It is important to note that the strategy A is now a function of both system state x and
model state q. Although this adds complexity, the problem is essentially the same as a standard
Markov decision process when both x and q are included in the set of state variables. The opti-
mal strategy is again chosen by maximizing V with respect to A, with the associated Bellman
equation:

Vðxt; qtjAÞ ¼ Uðxt; qt;Aðxt; qtÞÞ þ l
X
xtþ1

XK
k¼1

qtðkÞPðxtþ1jxt;Aðxt; qtÞÞVðxtþ1; qtþ1jAÞ ð7Þ

A key issue in determining the way optimal decisions are identified concerns the updating of
the model state q in the decision process. In the adaptive management literature a distinction is
made between active and passive adaptive management [22]. In active adaptive management
the optimal policy is determined assuming that qt is updated optimally using Bayes Theorem.
We concentrate here on the passive form, in which the optimal policy is determined at each
decision point under the assumption that the model state is fixed at current values (qt+1 = qt).
Although the model state is assumed to be fixed in determining the policy, in practice it is
updated at each time period, and the problem is resolved given the new model state. Thus the
updating of the model state occurs outside the optimization algorithm, after a decision is imple-
mented and system response xt+1 is recorded. At that time a new model state qt+1 is derived
from xt+1, and another optimization is conducted based on the updated model state. With this
sequence it is clear that at any particular time the choice of an action is influenced by both the
current system state x and model state q. However, the choice is not influenced by the antici-
pated impacts of decisions on future model state (i.e., learning). In this sense, adaptive decision
making is held to be passive. We note, however, that Eq (7) is for the active form and could be
used if computational cost was not a concern. This is typically not true if there are more than a
few alternative models because model state has to be carried along with system state in the opti-
mization. Fortunately, we have found passive adaptive optimization to be a good approximation
of the active form, often providing only slightly lower objective values [50, 51].

The above formulation is for the case where the decision and action occur immediately or
soon after the response of the system to the previous decision has been observed via a monitor-
ing program; we will refer to the policy resulting from this process as a post-survey policy
(Fig 1). In the formulation of pre-survey policies, however, we must account for the fact that an
action must be chosen before the effects of the last decision on system state are observed
(Fig 2). The delay in observing system state until after the time when decisions are made has
important implications. Consider decision making at a particular time t. The simplifying
assumption that system state xt is observed at the time the decision is made and the time t
action taken allows the new model state qt to be computed via Bayes’ theorem, so that an action
can be determined with Eq (7). On the other hand, if recognition of system state xt is unavail-
able at the time when an action is to be identified and taken, neither xt nor the updated model
state qt, which depends on xt, is available. The implication is that direct estimates of both state
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variables in Eq (7) are unavailable for the determination of an action. An approach under these
circumstances is to base decision making on the most recent information that is available at
time t, namely xt−1, qt−1, and at−1. In particular, the model-specific utility Uk(xt, at) in Eq (7)
can be replaced by the utility:

Ukðxt�1; at�1;atÞ ¼
X
xt

Pkðxtjxt�1; at�1ÞUkðxt; atÞ; ð8Þ

which in turn can be averaged over the models to give:

Uðxt�1; qt�1; at�1;atÞ ¼
XK
k¼1

qt�1ðkÞUkðxt�1; at�1;atÞ: ð9Þ

Fig 1. Markov decision process for decisionsmade immediately after (A) and before (B) the observation of system state. System state at time t is
represented by xt, model state by qt, and actions by at. The top panel (A) represents the post-survey decision and the bottom panel (B) represents the pre-
survey decision. The solid arrows indicate the variables influencing the system and model states, while the dashed arrows indicate the variables influencing
the action taken. Note that only the dashed arrows change between the two panels as the true system does not depend on the information known to the
decision maker but only on the action the decision maker chooses.

doi:10.1371/journal.pone.0157373.g001
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This implies that the strategy A is now a function of the previous system and model states
and the previous action: at = A(xt−1, qt−1, at−1), such that the expected utility is:

Uðxt�1; qt�1; at�1; atÞ ¼
X
xt

XK
k¼1

qt�1ðkÞPkðxtjxt�1; at�1ÞUkðxt; atÞ ð10Þ

and the Bellman equation is:

Vðxt�1; qt�1; at�1jAÞ ¼ Uðxt�1; qt�1; at�1;Aðxt�1; qt�1; at�1ÞÞþ

l
X
xt

XK

k

qt�1ðkÞPkðxtjxt�1; at�1ÞVðxt; qt;Aðxt�1; qt�1; at�1ÞjAÞ:
ð11Þ

Note that an action is now conditioned on previous system and model states and also on the
previous action, all of which are needed to determine the probability associated with the cur-
rent system state, which is not known when the current decision is made and action taken.
Thus, in practice, the current action is conditioned on an expectation of an objective value at
the time the action must be chosen. Carrying the previous decision as a state variable preserves
the Markov property of the decision process when the choice of an action must occur before
the effects of the last decision are observed. Once again, this can be viewed as a traditional
MDP in which the states now include the previous system state, model state, and action.

Fig 2. Timing of post-survey (A) and pre-survey (B) harvest management actions for waterfowl in the United States.

doi:10.1371/journal.pone.0157373.g002
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Application to mallard harvest
The SEIS offered several alternatives concerning the timing of the regulatory process for setting
waterfowl hunting seasons in the United States. The no-change alternative involved a process
by which most proposals for hunting seasons are developed in response to monitoring infor-
mation that becomes available in early summer, such as breeding population size, habitat con-
ditions, and the previous season’s harvest. However, this leaves little flexibility in the timetable
for setting hunting regulations prior to the opening of seasons in September. The preferred
alternative of the SEIS is to advance this timetable by approximately three months, to allow
more time for public input, provide earlier notification of the season’s regulations, and save
time and money in administering the process (Fig 2). On the other hand, the regulatory deci-
sion must now be made in the absence of current-year monitoring information.

We here briefly describe the analytical framework used by the U.S. Fish and Wildlife Service
to manage the harvests of mallards that breed in central Canada and the north-central United
States ([33]). The data and analyses used by the U.S. Fish and Wildlife Service to develop this
framework are provided as supporting information (S1 and S2 Files). The focus is on mallard
abundance and the trajectory of population size through time. The state variable x consists of
the population level and the number of ponds available for breeding and the action a is the reg-
ulatory decision about the level of allowable harvest.

Alternative models of population dynamics share a common form, which predicts changes
in breeding-population size as a function of annual survival and reproductive rates [52]:

Ntþ1 ¼ gSNtfmSt;AM þ ð1�mÞ½St;AF þ gRRtðSt;JF þ St;JM�
sum
F =�sum

M Þ�g � expðεNÞ ð12Þ

where N is breeding population size,m is the proportion of males in the breeding population,
SAM, SAF, SJF, and SJM are annual survival rates of adult males, adult females, juvenile females,
and juvenile males, respectively, R is reproductive rate, defined as the fall age ratio (young per
adult) of females, �sum

F =�sum
M is the ratio of female (F) to male (M) summer survival, γ denotes

estimated bias-correction factors for survival (S) and reproduction (R), respectively, and εN is a
normally distributed process error with mean 0 and variance 0.0184, and t is year. For optimi-
zation purposes we used five Gauss-Hermite quadrature nodes and weights to specify a discrete
probability distribution for this process error [53].

Two alternative hypotheses for the relationship between annual survival and harvest rates
are considered. For both models, survival in the absence of harvest is assumed to be the same
for adults and juveniles of the same sex. In the model where harvest mortality is additive to nat-
ural mortality:

St;sex;age ¼ sA0;sexð1� Kt;sex;ageÞ ð13Þ

and in the model where the mortality process is compensatory:

St;sex;age ¼
sC0;sex if Kt;sex;age � 1� sC0;sex

1� Kt;sex;age if Kt;sex;age > 1� sC0;sex

( )
ð14Þ

where s0 = survival in the absence of harvest under the additive (A) or compensatory (C)
model, and K is harvest rate adjusted for a crippling loss of 20% [54]. For the additive model, s0
= 0.7896 and 0.6886 for males and females, respectively. For the compensatory model,
s0 = 0.6467 and 0.5965 for males and females, respectively. These estimates may seem counter-
intuitive because survival in the absence of harvest should be the same regardless of the model
for annual survival under consideration. However, estimating a common s0 for both models
leads to alternative models that do not fit available band-recovery data equally well. More
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importantly, it suggests that the greatest uncertainty about survival rates is when harvest rate is
within the realm of experience. By allowing s0 to differ between additive and compensatory
models, managers acknowledge that the greatest uncertainty about survival rate is its value in
the absence of harvest.

Annual reproductive rates were estimated from the ratio of juvenile to adult females in the
harvest, corrected using a constant rate of differential vulnerability derived from band-recovery
data. Predictor variables are the number of ponds in May in Prairie Canada (P, in millions)
and the size of the breeding population in the survey area. The best-fitting linear model was
estimated with least-squares, and the 80% confidence ellipsoid for all model parameters was
calculated [55]. Two points on this ellipsoid with the smallest and largest values for the effect
of breeding-population size were used to generate a strongly density-dependent model:

RS
t ¼ maxð0:0; 1:1390þ 0:1376Pt � 0:1131NtÞ ð15Þ

and a weakly density-dependent model:

RW
t ¼ maxð0:0; 0:7166þ 0:1083Pt � 0:0373NtÞ ð16Þ

The two mortality and two reproductive models are combined into four alternative popula-
tion models, which capture key uncertainties regarding the effects of harvest and environmen-
tal conditions on mallard abundance. The mortality hypotheses express different views about
the effects of harvest on annual survivorship. The theoretical underpinning of the compensa-
tory hypothesis is density-dependent mortality, in which mortality due to hunting is offset by
declines in non-hunting mortality. The reproductive hypotheses represent alternative views
regarding the degree to which per-capita reproductive rate declines with increases in mallard
abundance and, thus, are also expressions of density-dependent population regulation. In
2015, model weights were 0.0011 for the compensatory survival / strong density-dependent
reproduction model (ScRs), 0.3024 for the compensatory / weak model (ScRw), 0.0104 for the
additive / strong model (SaRs), and 0.6861 for the additive / weak model (SaRw).

Finally, annual variation in pond numbers is modeled as a first-order autoregressive pro-
cess:

Ptþ1 ¼ maxð0:0; 2:2127þ 0:3420Pt þ εPÞ; ð17Þ

where ponds are in millions and εP is a normally distributed process error with mean 0 and
variance 1.257. Again we used five quadrature nodes and weights to discretize the process
error.

The United States Fish and Wildlife Service each year considers four regulatory alternatives,
which encompass permissible season dates, season lengths, and daily bag limits. The expected
harvest rates of mallards under each of the regulatory alternatives (closed, restrictive, moderate,
and liberal) are updated annually using band-recovery information. Estimated harvest rates on
adult male mallards in 2015 were 0.0088 (SD = 0.0020), 0.0552 (SD = 0.0129), 0.0977
(SD = 0.0215) and 0.1139 (SD = 0.0179) for closed, restrictive, moderate, and liberal hunting
seasons, respectively. Normal distributions for these rates are assumed, and we again used five
quadrature nodes and weights to discretize these harvest-rate distributions to account for a
lack of perfect control over harvest. Predictions of harvest rates for the other age and sex
cohorts are based on historic ratios of cohort-specific harvest rates to adult-male rates. These
ratios were considered fixed at their long-term averages of 1.5407, 0.7191, and 1.1175 for
young males, adult females, and young females, respectively.

The objective of mallard harvest management is to maximize the undiscounted, average
annual harvest over an infinite time horizon, subject to a penalty if the expected population
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size falls below a target. Specifically,

argmax
ðat jxt ;qt Þ

Uðxt; qt; atÞ ¼ E½aðNtþ1ÞHtjxt; qt; at� ð18Þ

and

aðNÞ ¼ 1:0 if N � 8:5

N=8:5 if N < 8:5

( )
; ð19Þ

where total harvest H and population size N are in millions of mallards. Thus, the objective
function proportionally devalues harvest actions that are expected to produce a population size
less than 8.5 million in the subsequent year. In addition, there is a constraint in which closed
seasons are not considered as long as the mallard population at the time of the decision satisfies
Nt � 4.75 million. In contrast to the post-survey decision problem, in the pre-survey decision
problem the expectation in the utility is conditioned on xt−1, qt−1, at−1 and at. Furthermore, the
closed-season constraint in the pre-survey decision problem must be imposed based on pro-
jected population size, E[Nt|xt−1, qt−1, at−1], because the current population size is not observed
at the time of the decision. To avoid any confusion, we note that the objective function and
closed-season constraint described here have only recently been adopted by the U.S. Fish and
Wildlife Service and differ slightly from those it used for setting the 2016 hunting season
(http://www.fws.gov/migratorybirds/pdf/management/AHM/SEIS&AHMReportFinal.pdf).

We used stochastic dynamic programming [56] and the set of software tools MDPSolve
(https://sites.google.com/site/mdpsolve/) to compute optimal policies for the post- and pre-
survey scenarios. MDPSolve was written in the Matlab programming language (http://www.
mathworks.com/products/matlab/) and is freely available. In all cases, we specified an infinite
time horizon, a discount factor λ = 1 (consistent with long-term sustainability), and value-
function iteration and the average-reward criteria to calculate stationary, state-dependent poli-
cies [46, 56]. To solve for the optimal policy the state variables were discretized using incre-
ments of 0.125 over the interval 0.5 to 18 for population size and 0.5 to 8 for pond numbers (a
total of 144 and 64 discrete values for these variables). The model state was discretized in incre-
ments of 0.1 (11 points for each model for a total of 286 model states).

We investigated differences between post- and pre-survey policies and expected perfor-
mance for the two additive-harvest models (SaRs and SaRw) and for model weights in 2015.
The two models with compensatory harvest mortality lead to the most liberal harvest regula-
tion for all system states in both the post- and pre-survey scenarios. This is because all regula-
tion-specific harvest rates are below the threshold of additivity mortality in these models. We
used Monte Carlo simulations to derive expected performance characteristics of the passively
adaptive policy under each of the four alternative models, assuming that each model in turn
was the “correct”model. We ran 10 thousand replications of each simulation of 50 years. In
each year of the simulation, model weights were updated based on a comparison of model pre-
dictions and the model-specific projection of population size. Then the appropriate action for
the updated model state was imposed at the next decision. We calculated the mean annual pop-
ulation size and harvest, the annual probability of selecting each alternative action, and the
mean model state (i.e., probabilities of each of the alternative models). The MDPsolve function
“xpomdpsim” was use to perform simulations. This function simulates the discretized system
model but uses the Bayesian updating rule to update the beliefs, with the action determined
using the optimal action for the nearest discrete belief value. This prevents the simulated beliefs
from prematurely reaching perfect certainty concerning which of the alternative models is
correct.
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Results and Discussion
Several patterns are noteworthy in the post- and pre-survey policies for the additive-mortality
models (SaRs and SaRw in Figs 3 and 4, respectively). The most obvious is that the policies
associated with the SaRs model are considerably more liberal than those for SaRw, regardless
of whether one uses the post- or pre-survey policies. All else being equal, models with strong
density dependence will lead to more liberal harvest policies than those with weak density
dependence. Given uncertainty about the most appropriate model, these differences are a
strong motivation for applying adaptive management to this population. Second, the pre-sur-
vey regulatory prescriptions generally become more liberal as the previous regulation becomes
more conservative. This result occurs because a more restrictive season in the previous year
would mean a relatively higher population in the following year when a new regulatory alterna-
tive must be chosen (at least under these additive-mortality models).

Another observation is that closed seasons are prescribed differently in the post- and pre-
survey policies. For example in Fig 4, if the last observation of ponds was relatively low, then
closed seasons can be prescribed even for (the last) observed population N� 4.75 million. This
is because low observed population and pond abundance in the previous year can result in an
expectation of population size E[N]< 4.75 million at the time of the decision. Conversely, rela-
tively high numbers of mallards and ponds observed in the previous year can result in an
expectation E[N]� 4.75 million and thus negate the prescription for a closed season.

A final pattern that is apparent in comparing post- and pre-survey policies is that the
observed level of ponds tends to have more of an effect on regulatory prescriptions in the pre-

Fig 3. Pre- and post-survey harvest policies for the mallard model with additive hunting mortality and strong density-dependent reproduction
(model SaRs).

doi:10.1371/journal.pone.0157373.g003
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survey policies, especially at the extremes. Pond numbers influence the mallard population
through their effect on reproductive success. Hence, current pond numbers influence both the
size of the current harvest and the level of next year’s population. When the current population
level and pond numbers are unknown, the previous year’s pond numbers are predictive for the
current population level and pond numbers. This additional source of influence on both cur-
rent harvest and future population leads to a greater sensitivity of the optimal policy to the
pond numbers.

The passive adaptive policy (Fig 5) can be seen as intermediate among the four model-spe-
cific policies, but is heavily influenced by the SaRw model, which had a relatively high weight
(0.6861) in 2015. Otherwise, patterns are very similar to those in the SaRw and SaRs models.

Interestingly, the post and pre-survey policies lead to small differences in expected perfor-
mance. Model-specific expectations of mean population size were similar between post and
pre-survey policies, with marginally more variation under the pre-survey policy, but only for
the models with additive hunting mortality (recall that under the compensatory models, har-
vest has no effect on population size) (Fig 6; note that the small difference in population varia-
tion is not readily apparent in the figure). Model-specific expectations of long-term mean
harvest are also very similar between post and pre-survey policies, but there is some indication
of less harvest under the pre-survey policy in the early years of the timeframe (Fig 7). Accord-
ingly, it’s in the early part of the timeframe that we see differences between the post and pre-
survey policies in the regulatory actions chosen (Fig 8). The simulations were initialized with
the first period having a population of 6 and pond numbers of 4 for the post-survey case and

Fig 4. Pre- and post-survey harvest policies for the mallard model with additive hunting mortality and weak density-dependent reproduction
(model SaRw).

doi:10.1371/journal.pone.0157373.g004
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lagged population, pond numbers and action of 6, 4 and liberal for the pre-survey. The differ-
ences in then initial conditions led to the early differences between the two cases. The simula-
tions were also initialized so the model state was equal to [0.10.50.10.3]. These values are close
to current model weights but are chosen to be exactly at one of the values used to discretize the
model state. From this initial point the passive adaptive policy was able to learn which model
was “correct” within about 20 years, regardless of whether the post or pre-survey policy was
used (Fig 9). Again, the difference in performance between policies occurred in the early years
of the timeframe.

Conclusions
Our pre-survey decision-making framework is applicable to any number of situations where
for administrative or logistical reasons decisions must be based on monitoring information
that is not current. For mallards, we found rather intuitive patterns in the optimal harvest poli-
cies when shifting from a post- to a pre-survey decision-making framework. However, we were
surprised that there were not larger differences in the expected performance of the two frame-
works. In the case of mallards, we speculate that the small differences are due to the (modeled)
resilience of the population, the lack of strong transient population behavior, and possibly the
relatively narrow range of harvest rates resulting from the current regulatory alternatives. And,
in our case, decisions are made with a time lag measured only in months. But in some situa-
tions, monitoring may be done less frequently than the time step of decision making (a simple
extension of our framework could account for this). In these cases we should expect an

Fig 5. Pre- and post-survey policies for the four alternative mallard models using passive adaptive optimization andmodel weights from 2015
(0.0104, 0.6861, 0.0011 and 0.3024 for the SaRs, SaRw, ScRs and ScRwmodels, respectively).

doi:10.1371/journal.pone.0157373.g005
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increasing erosion of performance as the status of the system at the time of decision and action
becomes more uncertain.

When using a finite set of models in a decision-making context an important assumption is
that the model set contains the “correct”model (i.e., a model that closely approximates the
dynamics of the system). The simulation results concerning the revisions of model weights (Fig
9) suggest that the “correct”model should be known with near certainty within about 20 years.
Given that the adaptive management program has been conducted since the mid-1990s, the
“correct”model should now be known. The fact that one model has not emerged as dominant
suggests that the model set may not be rich enough and that none of the models provides a
close approximation of system dynamics [57]. Managers are currently developing a richer set
of alternative models for this system. There are also novel solution methods that can account
for many models so that the probability is high that the model set contains the “correct”model
[58], as well as methods that can account for the fact that the “correct”model might change
over time [59].

Fig 6. Simulated, model-specific expectations of population size for post (1st row) and pre-survey (2nd row) passively adaptive policies, assuming
the “correctness” of four alternative models of mallard population dynamics (SaRs = additive mortality and strong density-dependent
reproduction; SaRw = additive mortality and weak density-dependent reproduction; ScRs = compensatory survival and strong density-dependent
reproduction model; and ScRw = compensatory survival and weak density-dependent reproduction). The dotted lines represent the mean +/- one
standard deviation.

doi:10.1371/journal.pone.0157373.g006
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It is worth comparing our approach with the Partially Observable Markov Decision Process
(POMDP) approach that has been used to address problems in which state variables are imper-
fectly observed [60]. The POMDP approach maintains a belief distribution for the unobserved
state variables and updates it based on the state transition probabilities and any other available
relevant information. In the current case, however, all relevant information concerning the cur-
rent (unobserved) state is contained in the values of the previous state and action variables and
the system model(s). It is therefore not necessary to maintain a belief distribution. It should be
noted, however, that a POMDP framework could be used to address both observational and
structural uncertainty in an adaptive management framework, especially if an active adaptive
management strategy is desired [58, 59, 61–65] The framework used here obviates the need for
a POMDP approach because the conditional probability distribution for the current year is
assumed to be known given the previous states and actions. This would no longer be true, how-
ever, if additional information, such as harvest levels of mallards or information about the
weather influencing pond numbers, was used to condition probabilities about the current states

Fig 7. Simulated, model-specific expectations of harvest under for post (1st row) and pre-survey (2nd row) passively adaptive policies, assuming
the “correctness” of four alternative models of mallard population dynamics (SaRs = additive mortality and strong density-dependent
reproduction; SaRw = additive mortality and weak density-dependent reproduction; ScRs = compensatory survival and strong density-dependent
reproduction model; and ScRw = compensatory survival and weak density-dependent reproduction). The dotted lines represent the mean +/- one
standard deviation.

doi:10.1371/journal.pone.0157373.g007
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[62]. A POMDP would also be needed if there was an explicit accounting for sampling varia-
tion in population and pond surveys.

Finally, while we believe our approach for coping with lagged information about system
states has utility, there are some important caveats. Augmenting the state space with the deci-
sion made in the previous time step introduces additional complexity and computational cost,
particularly in the case of partial controllability (i.e., those cases where there is stochasticity in
control variables, such as the relationship between mallard hunting regulations and harvest
rate) [14]. More critically, the interpretation and communication of patterns in a pre-survey
policy can be difficult because the number of state variables has to increase by one to accom-
modate the previous decision made. However, this difficulty is true of any policy in which the
number of state variables� 3 because of the difficulty in depicting the policies graphically. We
suggest that the use of classification trees [66] might be useful in such cases to graph an approx-
imate, but more easily interpreted, policy.

Fig 8. Simulated, model-specific expectations of regulatory actions (C = closed, R = restrictive, M =moderate, and L = liberal) for post (1st row) and
pre-survey (2nd row) passively adaptive policies, assuming the “correctness” of four alternative models of mallard population dynamics
(SaRs = additive mortality and strong density-dependent reproduction; SaRw = additive mortality and weak density-dependent reproduction;
ScRs = compensatory survival and strong density-dependent reproduction model; and ScRw = compensatory survival and weak density-
dependent reproduction).

doi:10.1371/journal.pone.0157373.g008
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