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Slingshot homolog-1 mediates
the secretion of small
extracellular vesicles containing
misfolded proteins by regulating
autophagy cargo receptors and
actin dynamics
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Teresa R. Kee1,2, Jung-A. A. Woo1* and David E. Kang1,3*
1Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH,
United States, 2Department of Molecular Medicine, USF Health Morsani College of Medicine,
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Increasing evidence indicates that the accumulation misfolded proteins in

Alzheimer’s disease (AD) arises from clearance defects in the autophagy-

lysosome pathway. Misfolded proteins such as Aβ and tau are secreted in

small extracellular vesicles (i.e., exosomes) and are propagated from cell to

cell in part through secreted small extracellular vesicles (sEVs). Recent studies

suggest that autophagic activity and exosome secretion are coregulated

events, and multiple autophagy-related proteins are found in sEVs, including

the cargo receptors Sqstm1/p62 and optineurin. However, whether and how

autophagy cargo receptors per se regulate the secretion of sEVs is unknown.

Moreover, despite the prominent role of actin dynamics in secretory vesicle

release, its role in EV secretion is unknown. In this study, we leveraged the dual

axes of Slingshot Homolog-1 (SSH1), which inhibits Sqstm1/p62-mediated

autophagy and activates cofilin-mediated actin dynamics, to study the

regulation of sEV secretion. Here we show that cargo receptors Sqstm1/p62

and optineurin inhibit sEV secretion, an activity that requires their ability

to bind ubiquitinated cargo. Conversely, SSH1 increases sEV secretion by

dephosphorylating Sqstm1/p62 at pSer403, the phospho-residue that allows

Sqstm1/p62 to bind ubiquitinated cargo. In addition, increasing actin dynamics

through the SSH1-cofilin activation pathway also increases sEV secretion,

which is mimicked by latrunculin B treatment. Finally, Aβ42 oligomers and

mutant tau increase sEV secretion and are physically associated with secreted

sEVs. These findings suggest that increasing cargo receptor engagement

with autophagic cargo and reducing actin dynamics (i.e., SSH1 inhibition)

represents an attractive strategy to promote misfolded protein degradation

while reducing sEV-mediated cell to cell spread of pathology.
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Introduction

Emerging evidence indicates that the release and uptake
of extracellular vesicles (EVs) represents an important form
of intercellular communication that could transmit beneficial
or pathogenic signals across different cells (Rajendran et al.,
2014). Normal EVs have been shown to regulate neuronal
neurite outgrowth, survival, and synaptic activity (Wang
et al., 2011; Antonucci et al., 2012) as well as microglial
activation (Verderio et al., 2012; Prada et al., 2013). EVs
are secreted by all cell types and contain specific sets of
RNA and proteins (membrane and cytosolic) (Valadi et al.,
2007; Skog et al., 2008). Large microvesicles (MVs) (150–
1000 nm) are derived from evagination and excision of
the plasma membrane, whereas the smaller exosomes (30–
150 nm) are intraluminal vesicles (ILVs) formed by inward
budding of the limiting membrane of late endosomes or
multivesicular bodies (MVBs), and are secreted by fusion
with the plasma membrane (Raposo and Stoorvogel,
2013). Despite their ubiquitous presence in the brain, the
role of EVs in brain cells and their potential effects on
neurodegenerative processes are relatively unknown. In
pathological settings, proteins prone to aggregation (i.e., Aβ,
Tau, α-synuclein, and prion) are secreted in EVs, potentially
providing an avenue for spreading such misfolded proteins
to neighboring healthy cells (Rajendran et al., 2006; Vella
et al., 2007; Danzer et al., 2012; Saman et al., 2012). For
example, the spread of tau requires neighboring microglia
and exosomes (Asai et al., 2015), and tau overexpression
also abnormally recruits other proteins to exosomes
(Saman et al., 2014). Alzheimer’s disease (AD) brain-
derived exosomes contain tau and Aβ oligomers that can
seed and propagate pathology (Sardar Sinha et al., 2018;
Miyoshi et al., 2021). Other studies have shown beneficial
effects of certain exosomes in reducing amyloid load and
protecting against synaptic plasticity deficits (An et al., 2013;
Yuyama et al., 2014).

Recent studies suggest that EV secretion of pathological
proteins and autophagy pathways may be linked. For example,
autophagy activation with the mTOR inhibitor rapamycin
inhibits exosomal prion release, whereas inhibition of

Abbreviations: Aβ42o, Aβ42 oligomers; Arp2/3, actin related protein
2/3 complex; AD, Alzheimer’s disease; ALS, amyotrophic lateral
sclerosis; ALP, autophagy-lysosome pathway; CK2, casein kinase 2; EVs,
extracellular vesicles; sEVs, small EVs; F-actin, fIlamentous actin; FTDP-
17, frontotemporal dementia with parkinsonism-17; Hsc70, heat shock
cognate 70 kDa protein; FP, green fluorescent protein; ILVs, intraluminal
vesicles; LIR, LC3 interacting region; LC3, microtubule-associated
protein light chain 3; MVs, microvesicles; MVBs, multivesicular bodies;
mTOR, mammalian target of rapamycin; NTA, nanoparticle tracking
analysis; SSH1, slingshot homolog-1; sequestosome-1, Sqstm1/p62;
TBK1, tank binding kinase 1; TSG101, tumor susceptibility gene 101
protein; UBA, ubiquitin association; ULK1, Unc-51 like autophagy
activating kinase 1.

autophagy increases exosomal prion secretion (Abdulrahman
et al., 2018). In a similar vein, inhibition of lysosome function
by bafilomycin A1 increases TDP-43 and α-synuclein release
in EVs (Iguchi et al., 2016; Minakaki et al., 2018), suggesting
that failure of the autophagy-lysosome pathway (ALP) directs
autophagosomes containing misfolded proteins for secretion
in association with EVs. This secretory pathway has been
proposed to involve the fusion of autophagosomes with
MVBs to form amphisomes, which are then secreted by
fusion with the plasma membrane (Gordon et al., 1992;
Liou et al., 1997; Fader et al., 2008; Ganesan and Cai,
2021). Interestingly, autophagy cargo receptors, such as
Sqstm1/p62 and optineurin, are often found in secreted
exosomes (Gudbergsson and Johnsen, 2019), while they play
vital roles in the clearance of misfolded proteins such as
tau in AD (Xu et al., 2019; Woo et al., 2020; Fang et al.,
2021; Roca-Agujetas et al., 2021a,b). However, whether
prototypic autophagy cargo receptors regulate exosome
secretion is unknown. Moreover, despite the crucial role of
actin dynamics in secretory vesicle docking and secretion
(Li et al., 2018), how actin dynamics regulate exosome
secretion is also unknown. We and others previously
showed that the protein phosphatase Slingshot Homolog-
1 (SSH1) contains two major separable activities in the
control of actin dynamics through cofilin activation through
dephosphorylation at Ser3 (Niwa et al., 2002) and autophagy
inhibition through p62 dephosphorylation at pSer403
(Fang et al., 2021). In this study, using a combination
of DiI labeling of EVs and differential centrifugation,
we explored the role of autophagy cargo receptors and
actin dynamics regulated by SSH1 in small EV (sEV,
aka exosome) secretion. Our findings highlight the roles
of autophagy cargo receptors and actin dynamics in
regulating sEV secretion through mechanisms impacting
AD pathogenesis.

Materials and methods

Cell lines

Mouse hippocampus-derived neuroblastoma cells
HT22, mouse embryonic fibroblast-derived NIH3T3, and
tetracycline-inducible human embryonic kidney 293 cells
overexpressing tau P301L (iHEK P301L) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM 1X) (Gibco,
11965-092) supplemented with 10% fetal bovine serum
(FBS) (Sigma, 12306C) and 1% penicillin-streptomycin (P/S)
(Gibco, 15140-122), and BM cyclin (Roche, 10799050001).
iHEKP301L cells were induced with 1 µg/mL tetracycline
when seeded, and cells were grown for 48 h before performing
experimental assays. Cells were maintained at 37◦C with 5%
CO2 levels.
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Primary neurons

Cortical primary neurons were cultured from C57BL6 or
tauP301S P0 mouse pups as previously described (Woo et al.,
2015b; Fang et al., 2021). Briefly, the cortex was dissected in
ice-cold HBSS and digested with 0.25% Trypsin-EDTA (1X)
(Gibco, 25200-056), then plated in culture-treated plates with
neurobasal medium (Invitrogen, 21103049) supplemented with
2% GlutaMAX (Invitrogen, 35050061) and 2% B27 supplement
(Invitrogen, 17504044). Cells were maintained at 37◦C with 5%
CO2 levels.

DNA constructs

pMXs-puro GFP-p62 (Addgene, 38277) (Itakura and
Mizushima, 2011), pMXs-puro GFP-p621C (addgene, 38282)
(Itakura and Mizushima, 2011), ECFP-SSH11C (Kurita
et al., 2008), pEGFP-N1 human cofilin WT (addgene, 50859)
(Garvalov et al., 2007), pEGFP-N1 human cofilin S3A (addgene,
50860) (Garvalov et al., 2007), pEGFP-N1 human cofilin
S3E (addgene, 50861) (Garvalov et al., 2007), pOPTN-EGFP
(addgene, 27052) (Park et al., 2006), pOPTN E478G-EGFP
(addgene, 68848) (Turturro et al., 2014) were obtained from
corresponding sources. Plasmids p3xFlag-SSH1 and p3xFlag-
SSH11N, and GFP-p62 403E were generated in the Kang lab as
previously documented (Fang et al., 2021).

DNA transfections

DNA plasmids were transiently transfected using
Lipofectamine 2000 (Invitrogen, 11668-019) and reduced
serum media Opti-MEM I (Gibco, 31985-070). After 4–6 h
post-transfection, the media was replaced with new complete
medium. Cells were grown for 48 h after transfection.

Small extracellular vesicle (exosome)
isolation

Small extracellular vesicles within the size range of exosomes
were isolated by serial centrifugation as previously described
(Witas et al., 2017). Briefly, 48 h after transfection, cells were
washed twice with PBS (Gibco, 10010-023), and media was
replaced with DMEM 1X supplemented with 10% exosome-
depleted fetal bovine serum (FBS) (Gibco, A27208-03) and
1% P/S. Twenty-four hours later, media was collected for EV
isolation. Samples were centrifuged at 4◦C at 800 × g for
10 min to remove cells and large bodies, and supernatants were
centrifuged at 4◦C at 2,500× g for 15 min to remove cell debris.
Supernatants were then centrifuged at 4◦C at 10,000 × g for
30 min to separate pellet microvesicles. Finally, the resulting

supernatants were labeled with DiI and centrifuged 4◦C at
100,000 × g for 1 h to pellet small EVs. Small EV pellets were
washed with PBS and used for analysis.

DiI staining

Vesicles were stained with DiI as previously described
(Witas et al., 2017). Briefly, post-microvesicle supernatants were
rocked for 15 min in 5 µM DiI (Thermo Fisher, D3911)
solution at 37◦C. After EVs isolation and washing, pellets
were resuspended in 5 µl of fluorochrome mounting solution
(Thermo scientific, TA-030-FM), and the entire volume was
placed on a glass slide and covered with a glass coverslip for
imaging and analysis.

Nanoparticle tracking analysis

Isolated EVs were resuspended in 500 µl of PBS and ran
on NanoSightTM LM10 with nanoparticle tracking analysis
(Malvern). Using the NanoSight software, three videos of 60 s
each were taken and analyzed for particle size distribution.

Protein extraction

For cell protein extraction, cells were washed with 1×
PBS and then resuspended in RIPA lysis buffer (50 mM
Tris–HCl, pH 7.4, 150 mM NaCl, 2 mM EDTA, and
1% Triton X-100 [Amresco, 0694–1 L], 0.1% SDS) with
protease inhibitor (GeneDEPOT, P3100-010) and phosphatase
inhibitor (GeneDEPOT, P3200-005). Sample concentrations
were determined and equalized using Pierce BCA Protein
Assay Kit (Thermo Scientific, 23225), and then used for
immunoblotting. For EV protein extraction, EVs isolated from
the media of two 10 cm plates were resuspended in RIPA
buffer with protease and phosphatase inhibitors. The samples
were equalized based on corresponding protein concentrations
in cell lysates.

Western blotting

Equal protein amounts were loaded and ran in SDS-
PAGE gels, then transferred to nitrocellulose membranes
(GE Healthcare, 10600002). Blots were probed with primary
antibodies overnight at 4◦C (1:1000 dilution in TBS-T) and
with HRP-conjugated secondary antibodies overnight at 4◦C
(1:1000 dilution in TBS-T) before detection with ECL western
blot reagents (Pierce, 34578) and imaged with Fuji LAS-4000
imager (LAS-4000, Pittsburgh, PA, United States). All images
were quantified using NIH ImageJ software.
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Antibodies

Antibodies were purchased from the following commercial
sources: Aβ (Cell Signaling Technology, 8243S), Tau (Santa
Cruz Biotech, sc-390476), Hsc70 (Enzo Life Sciences, ADI-
SPA-815-F), TSG101 (Thermo Fisher, PA5-31260), GFP
(Cell Signaling Technology, 2956S), β-Actin (Santa Cruz
Biotech, sc-47778), p62 (Cell Signaling Technology, 5114),
Flag (Sigma Aldrich, F1804), SSH1 (ECM Biosciences, SP1711)
(Cell Signaling Technology, 13578), Cofilin (Cell Signaling
Technology, 5175s), Peroxidase-Conjugated AffiniPure Goat
anti-mouse IgG (Jackson ImmunoResearch, 115-035-033),
Peroxidase-conjugated AffiniPure Goat anti-rabbit IgG
(Jackson ImmunoResearch, 111-035-033), donkey anti-rat
IgG-HRP (Southern Biotech, 6430-05).

Drugs, reagents, and oligonucleotides

Amyloid-β 1-42 (GenicBio, A-42-T-1), Rapamycin
(Sigma Aldrich, R0395), Bafilomycin A1 (Sigma Aldrich,
B1793), Latrunculin B (Sigma Aldrich, L5288), Jasplakinolide
(AdipoGen Life Sciences, 102396-24-7), p62 siRNA (Cell
Signaling Technology, 6399S), SSH1 siRNA (Dharmacon GE
Healthcare, 5′-GAG GAG CUG UCC CGA UGA C-3′), Cofilin
siRNA (Dharmacon GE Healthcare, 5′-GGA GGA CCU GGU
GUU CAU C-3′).

Imaging and quantification

Confocal images were captured with the Olympus FV10i
confocal microscope (Tokyo, Japan). All images were quantified
using NIH ImageJ software.

Results

Rapamycin decreases and bafilomycin
increases small extracellular vesicle
secretion

To measure the secretion of exosomes, hereafter referred
to as small EVs (sEVs), we used medium containing exosome-
depleted (exo-free) FBS to collect conditioned medium from
cells. Post-microvesicle (10,000 × g) supernatant was labeled
with the fluorescent lipophilic dye DiI and ultracentrifuged at
100,000 × g to pellet sEVs (Figure 1A). We then visualized and
quantified isolated sEVs on microscopic slides by fluorescence
confocal microscopy. A similar method of DiI-labeling of
EVs has previously been documented (Lehmann et al., 2008;
Beer et al., 2015; Witas et al., 2017). As earlier studies
showed that the autophagy activator and mTOR inhibitor

rapamycin significantly inhibits sEV secretion (Fader et al.,
2008; Abdulrahman et al., 2018; Bhat et al., 2021), we first
tested the effects of rapamycin on sEV secretion in NIH3T3
cells. Indeed, rapamycin treatment for 24 h significantly reduced
sEV secretion by ∼30% (Figures 1B,C). Western blotting for
exosome markers Hsc70 and TSG101 showed corresponding
reductions of both proteins in isolated sEVs but not in whole-
cell lysates (Figure 1D). Nanoparticle tracking analysis (NTA)
showed that the isolated sEVs are within the expected size range,
the vast majority of which were under∼150 nm in diameter with
a minor proportion in the 150–250 nm range (Figure 1E). By
contrast, inhibition of lysosomes with bafilomycin A1 treatment
for 6 h significantly increased sEV release into the conditioned
medium by ∼45% (Figures 1F,G), in agreement with previous
studies (Iguchi et al., 2016; Minakaki et al., 2018).

Autophagy cargo receptors,
Sqstm1/p62 and optineurin, suppress
secreted small extracellular vesicle
secretion through the ubiquitin
association domain

While previous studies have observed autophagy cargo
receptors such as Sqstm1/p62 and optineurin in isolated
sEVs (Gudbergsson and Johnsen, 2019), whether such cargo
receptors regulate sEV secretion is unknown. Hence, we tested
if overexpression of Sqstm1/p62 or optineurin alters sEV
secretion. Hereafter, we use p62 in reference to Sqstm1/p62.
The C-terminal region of p62 contains the UBA and LIR
domains essential for binding to ubiquitinated cargo and LC3,
respectively (Figure 2A; Katsuragi et al., 2015). The UBA
region of p62 is subject to phosphorylation at Ser403 by ULK1,
CK2, and/or TBK1, allowing p62 to bind ubiquitinated cargo
(Pilli et al., 2012; Katsuragi et al., 2015; Lim et al., 2015;
Matsumoto et al., 2015; Sanchez-Martin and Komatsu, 2018).
GFP-p62 transfection significantly decreased sEV secretion by
∼50% compared to control GFP transfection (Figures 2B–
D). However, transfection of p62 lacking the UBA and LIR
domains (p621C) failed to alter sEV secretion (Figures 2B–
D), suggesting that p62 engagement with ubiquitinated cargo
and/or LC3 binding are necessary to inhibit sEV release. Like
p62, transfection of optineurin also suppressed sEV secretion.
However, the ALS-linked optineurin E478G mutant, which
fails to bind ubiquitin (Nakazawa et al., 2016), also failed to
alter sEV secretion (Figures 2E–G), indicating that ubiquitin
binding is a necessary step in suppressing sEV secretion
by optineurin. To determine if endogenous p62 normally
inhibits sEV secretion, we transfected cells with p62 siRNA. As
expected, p62 knockdown significantly increased sEV secretion
by ∼40% (Figures 2H–J). Hence, these observations indicate
that autophagy cargo receptors, p62 and optineurin, inhibit sEV
secretion by engaging ubiquitinated cargo.
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FIGURE 1

Rapamycin decreases and bafilomycin A1 increases small EV secretion. (A) Schematic of small EV isolation method. (B) Representative images of
DiI-stained small EVs secreted from NIH3T3 cells with or without 200 nM rapamycin treatment for 24 h. (C) Quantification of secreted small EVs
for (B). Data are presented as means ± SEM. n = 3 independent experiments, t-test, #P < 0.0001. (D) Representative immunoblots for the
indicated proteins in secreted small EVs and cell lysates from NIH3T3 cells with or without 200 nM rapamycin treatment for 24 h.
(E) Representative NTA analysis of small EVs isolated from NIH3T3 cells. The black line indicates concentration and size of particles, and the red
line indicates standard error. (F) Representative images of DiI-stained small EVs secreted from NIH3T3 cells with or without 200 nM bafilomycin
A1 treatment for 6 h. (G) Quantification of secreted small EVs for (F). Data are presented as means ± SEM. n = 4 independent experiments,
t-test, *P = 0.02.

Slingshot homolog-1-mediated p62
inhibition at pSer403 increases
secreted small extracellular vesicle
secretion

We recently showed that SSH1 contains a modular activity
in inhibiting p62 autophagy flux by dephosphorylating p62
at pSer403, the phospho-residue that allows p62 binding to
ubiquitinated cargo (Fang et al., 2021). SSH1 siRNA significantly
decreased sEV secretion by nearly ∼40% (Figures 3A–C),
indicating that endogenous SSH1 promotes sEV secretion.
Conversely, forced expression of SSH1 significantly increased
sEV secretion (Figures 3D–F). In p62 depleted cells, which
exhibited significantly elevated sEV secretion (Figures 3G–
I), SSH1 failed to increase sEV secretion (Figures 3G–I),
indicating that SSH1-induced sEV secretion requires p62. To
determine if SSH1-induced sEV secretion is specifically through
p62 dephosphorylation at pSer403, we co-transfected cells
with or without SSH1 and GFP control, GFP-p62, or GFP-
p62-S403E, the latter mutant which mimics constitutive p62
phosphorylation at Ser403 (Fang et al., 2021). As expected,
SSH1 overexpression significantly increased sEV secretion in
the setting of GFP transfection and significantly reversed the
decline in sEV secretion induced by GFP-p62 (Figures 3J–L).
However, SSH1 failed to change the reduction in sEV secretion
caused by GFP-p62-S403E (Figures 3J–L), indicating that SSH1
increases sEV secretion by dephosphorylating p62 at pSer403, a
step that renders p62 inactive for binding to ubiquitinated cargo.

Hence, these results indicate that the ability of p62 to engage
ubiquitinated cargo is critical to SSH1-regulated sEV secretion.
We did not investigate SSH1-mediated effects on optineurin-
induced inhibition of sEV secretion, as SSH1 does not alter
optineurin-mediated autophagy (Fang et al., 2021).

Slingshot homolog-1 increases
secreted small extracellular vesicle
secretion partially through cofilin
activation and F-actin disruption

Slingshot homolog-1 was initially discovered as the
major phosphatase that activates the actin severing and
depolymerizing protein cofilin by its dephosphorylation at
pSer3, increasing actin dynamics (Niwa et al., 2002; Kurita
et al., 2007, 2008). SSH1-mediated dephosphorylation of cofilin
and p62 are separable activities, as SSH11N lacking the
cofilin binding site dephosphorylates p62 but not cofilin, while
the SSH11C lacking the p62 binding site dephosphorylates
cofilin but not p62 (Fang et al., 2021; Figure 4A). Hence,
we tested if SSH11N and SSH11C increase sEV secretion
compared to vector control and full-length SSH1. Surprisingly,
SSH11N or SSH11C overexpression significantly increased
sEV secretion compared to vector control, albeit less effectively
than full-length SSH1 (Figures 4B–D). Given that SSH11C
increases cofilin activation, we next tested whether cofilin per
se increases sEV secretion. Indeed, cofilin overexpression alone
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FIGURE 2

Autophagy cargo receptors, p62 and optineurin, inhibit small EV secretion through the ubiquitin association domain. (A) Schematic of p62 full
length and p621C proteins with their respective domains. (B) Representative images of DiI-stained small EVs secreted from NIH3T3 cells
expressing GFP, GFP-p62, or GFP-p621C. (C) Quantification of secreted small EVs for (B). Data are presented as means ± SEM. n = 3
independent experiments, 1-way ANOVA, followed by Dunnett’s post-hoc, #P < 0.0001. (D) Representative immunoblots of GFP-p62,
GFP-p621C, GFP, and β-Actin protein levels in lysates from cells for (B). (E) Representative images of DiI-stained small EVs secreted from
NIH3T3 cells expressing GFP, GFP-OPTN, or GFP-OPTN E478G. (F) Quantification of secreted small EVs for (E). Data are presented as
means ± SEM. n = 3 independent experiments, 1-way ANOVA, followed by Dunnett’s post-hoc, #P < 0.0001. n.s. = not significant.
(G) Representative immunoblots for GFP, GFP-OPTN, and β-Actin protein levels in cell lysates for (E). (H) Representative images of DiI-stained
small EVs secreted from NIH3T3 cells transfected with control siRNA or p62 siRNA. (I) Quantification of secreted small EVs for (H). Data are
presented as means ± SEM. n = 4 independent experiments, t-test, #P < 0.0001. (J) Representative immunoblots for p62 and β-Actin protein
levels in cell lysates for (H).

significantly increased sEV secretion by ∼30% (Figures 4E–
G). The constitutively active cofilin-S3A similarly increased
sEV secretion, whereas the inactive and dominant-negative
cofilin-S3E (Liu et al., 2017; Shaw and Bamburg, 2017;
Woo et al., 2019), which mimics the phosphorylated state,
significantly decreased sEV secretion by ∼40% (Figures 4H–
J). Moreover, cofilin siRNA significantly reduced sEV secretion
by ∼35% (Figures 4K–M), indicating that endogenous cofilin
promotes sEV secretion.

As actin filament severing and depolymerization activity
of cofilin promoted sEV secretion, we tested if latrunculin B
and jasplakinolide, drugs known to inhibit actin polymerization
(Wakatsuki et al., 2001) and nucleate actin (Bubb et al.,
2000), respectively, alter sEV secretion. Compared to the
vehicle control, preventing actin polymerization by latrunculin
B significantly increased sEV secretion by ∼50%, whereas

promoting actin nucleation by jasplakinolide had no significant
effect on sEV secretion (Figures 4N,O). These results are
consistent with the observation that activated cofilin, which
severs and depolymerizes F-actin, increases sEV release.

Aβ42 oligomers and misfolded tau
increase secreted small extracellular
vesicle secretion and are associated
with secreted small extracellular
vesicles

Aβ42 oligomers (Aβ42o) increase cofilin activation via
SSH1, disrupt F-actin (Woo et al., 2015b) and enhance
mTOR signaling (Caccamo et al., 2010). Moreover, misfolded
mutant tau inhibits p62-mediated autophagy flux (Fang et al.,
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FIGURE 3

Slingshot homolog-1 (SSH1)-mediated p62 inhibition at pSer403 increases small EV secretion. (A) Representative images of DiI-stained small
EVs secreted from NIH3T3 cells transfected with control siRNA or SSH1 siRNA. (B) Quantification of secreted small EVs for (A). Data are
presented as means ± SEM. n = 3 independent experiments, t-test, ***P = 0.0005. (C) Representative immunoblots for SSH1 and β-Actin
protein levels in cell lysates for (A). (D) Representative images of DiI-stained small EVs secreted from NIH3T3 cells expressing VC or Flag-SSH1
(E) Quantification of secreted small EVs for (D). Data are presented as means ± SEM. n = 3 independent experiments, t-test, #P < 0.0001
(F) Representative immunoblots for Flag and β-Actin protein levels in cell lysates for (D). (G) Representative images of DiI-stained small EVs
secreted from NIH3T3 cells co-transfected with VC or Flag-SSH1 and control siRNA or p62 siRNA. (H) Quantification of secreted small EVs for
(G). Data are presented as means ± SEM. n = 3 independent experiments, 2-way ANOVA, followed by Sidak’s post-hoc, ***P = 0.0004. n.s. = not
significant. (I) Representative immunoblots showing SSH1, p62, and β-Actin protein levels in cell lysates for (G). (J) Representative images of
DiI-stained small EVs secreted from NIH3T3 cells co-transfected with VC or Flag-SSH1 and GFP, GFP-p62, or GFP-p62 S403E. (K) Quantification
of secreted small EVs for (J). Data are presented as means ± SEM. n = 3 independent experiments, 2-way ANOVA, followed by Sidak’s post-hoc,
***P = 0.0007, **P = 0.001. n.s. = not significant. (L) Representative immunoblots for SSH1, p62, and β-Actin protein levels in cell lysates for (J).
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FIGURE 4

Slingshot homolog-1 (SSH1) increases small EV secretion partially through cofilin activation and F-actin disruption. (A) Schematic of SSH1 full
length, SSH11C, and SSH11N proteins. (B) Representative images of DiI-stained small EVs secreted from NIH3T3 cells expressing VC,
Flag-SSH1, Flag-SSH11N, or CFP-SSH11C. (C) Quantification of secreted small EVs for (B). Data are presented as means ± SEM. n = 3
independent experiments, 1-way ANOVA, followed by Dunnett’s post-hoc, #P < 0.0001, ***P = 0.001, **P = 0.0069. (D) Representative
immunoblots for Flag, GFP, and β-Actin protein levels in cell lysates for (B). (E) Representative images of DiI-stained small EVs secreted from
NIH3T3 cells expressing GFP or GFP-Cofilin. (F) Quantification of secreted small EVs for (E). Data are presented as means ± SEM. n = 3
independent experiments, t-test, #P < 0.0001. (G) Representative immunoblots for cofilin and β-Actin protein levels in cell lysates for (E).
(H) Representative images of DiI-stained small EVs secreted from NIH3T3 cells expressing GFP, GFP-cofilin-S3A, or GFP-cofilin-S3E.
(I) Quantification of secreted small EVs for (H). Data are presented as means ± SEM. n = 3 independent experiments, 1-way ANOVA, followed by
Dunnett’s post-hoc, #P < 0.0001. (J) Representative immunoblots for GFP and β-Actin protein levels in cell lysates for (H). (K) Representative
images of DiI-stained small EVs secreted from NIH3T3 cells transfected with control siRNA or cofilin siRNA. (L) Quantification of secreted small
EVs for (K). Data are presented as means ± SEM. n = 3 independent experiments, t-test, #P < 0.0001. (M) Representative immunoblots for
cofilin and β-Actin protein levels in cell lysates for (K). (N) Representative images of DiI-stained small EVs secreted from NIH3T3 cells with or
without 100 nM Latrunculin B (LatB) or 100 nM Jasplakinolide (Jasp) treatment for 8 h. (O) Quantification of secreted small EVs for (N). Data are
presented as means ± SEM. n = 3 independent experiments, 1-way ANOVA, followed by Dunnett’s post-hoc, #P < 0.0001. n.s. = not significant.

2021) and promotes F-actin bundling (Fulga et al., 2007;
Cabrales Fontela et al., 2017). We tested if these AD signature
pathologies alter sEV secretion and are in turn associated with
sEVs. For treatment with Aβ42o, we used mouse hippocampus-
derived HT22 neuroblastoma cells, as HT22 cells are responsive
to Aβ42o-induced cofilin activation (Woo et al., 2015b). Aβ42o
were prepared as previously described (Woo et al., 2015b).
Aβ42o (250 nM) treatment to HT22 cells for 24 h significantly
increased sEV secretion by nearly ∼3-fold (Figures 5A,B).
Likewise, Western blotting for Hsc70 and TSG101 also
demonstrated significant increases in these exosome markers
by Aβ42o treatment in isolated sEVs but not in cell lysates

(Figures 5C,D). The treated Aβ42o were readily detected in
isolated sEVs (Figure 5C). Like in NIH3T3 cells, isolation
of DiI-labeled sEVs in HT22 cells yielded the vast majority
of nanovesicles <150 nm in diameter by NTA (Figure 5E),
consistent with the range for exosomes. To determine whether
misfolded tau alters sEV secretion, we utilized Frontotemporal
dementia with Parkinsonism-17 (FTDP-17) tauP301S mutant
and littermate WT neurons from P0 pups grown for 9 days
in vitro (DIV9). On DIV9, the media was replaced with
fresh media and collected after 24 h. TauP301S neurons
exhibited significantly increased sEV secretion compared to
littermate WT neurons (Figures 5F,G). To confirm this
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FIGURE 5

Aβ42 oligomers (Aβ42) oligomers and misfolded tau increase small EV secretion and are associated with secreted small EVs. (A) Representative
images of DiI-stained small EVs secreted from HT22 cells with or without 250 nM Aβ treatment for 24 h. (B) Quantification of secreted small EVs
for (A). Data are presented as means ± SEM. n = 3 independent experiments, t-test, **P < 0.005. (C) Representative immunoblots for the
indicated proteins in secreted small EVs and cell lysates from HT22 cells with or without 250 nM Aβ treatment for 24 h. (D) Quantification of
Hsc70 and TSG101 (small EV markers) for (C). Data are presented as means ± SEM. n = 4 independent experiments, t-test, ***P = 0.0007,
**P < 0.004. (E) Representative NTA analysis of vesicle size distribution of small EVs isolated from HT22 cells. The black line indicates
concentration and size of particles, and the red line indicates standard error. (F) Representative images of DiI-stained small EVs secreted by
DIV10 cortical primary neurons derived from C57BL6 (WT) or tauP301S (P301S) mice. (G) Quantification of secreted small EVs for (F). Data are
presented as means ± SEM. n = 3 independent experiments, t-test, **P = 0.002. (H) Representative immunoblots for the indicated proteins in
secreted small EVs and cell lysates from tet-inducible iHEK-P301L cells expressing tauP301L, with or without tetracycline. (I) Quantification of
Hsc70 and TSG101 (small EV markers) for (H). Data are presented as means ± SEM. n = 4 independent experiments, t-test, ***P < 0.0003.

finding in a different way using another FTDP-17-linked tau
mutation, we utilized tetracycline-inducible HEK293 expressing
the tauP301L mutation. Tetracycline-inducible expression of
tauP301L significantly increased exosome markers Hsc70 and
TSG101 in isolated sEVs but not in cell lysates (Figures 5H,I),
indicating that misfolded tau increases sEV secretion in neurons
and HEK293 cells. TauP301L was also readily detected in
association with isolated sEVs (Figure 5H), indicating that
misfolded tau not only drives sEV release but is also a
content of sEVs.

Discussion

Multiple studies have implicated the involvement of the
SSH1-cofilin pathway in Aβ-induced dendritic spine shrinkage
and F-actin loss (Zhao et al., 2006; Shankar et al., 2007) as well
as the accumulation of multiple pathologies, including cofilin-
actin pathology (Minamide et al., 2000; Rahman et al., 2014), Aβ

pathology (Liu et al., 2019), and tau pathology (Woo et al., 2019).
Cofilin activity is increased in the brains of AD patients (Zhao
et al., 2006; Kim et al., 2013) and the APP/PS1 mouse model
(Woo et al., 2015b). At the same time, the autophagy-lysosome
pathway is overwhelmed and impaired in AD (Lin et al., 2003;
Nixon et al., 2005; Salminen et al., 2012; Hebron et al., 2014;
Rea et al., 2014; Tanji et al., 2014; Feng et al., 2019; Roca-
Agujetas et al., 2021a,b), which contributes to the accumulation
of misfolded proteins and dysfunctional mitochondria (Ramesh
Babu et al., 2008; Xu et al., 2019; Woo et al., 2020; Fang
et al., 2021; Roca-Agujetas et al., 2021a,b). Meanwhile, AD
pathological proteins Aβ and tau are secreted in exosomes and
are propagated from cell to cell in part via exosomes (Asai
et al., 2015; Sardar Sinha et al., 2018; Miyoshi et al., 2021). Yet,
the pathobiological relationship between these drivers of AD
pathogenesis and sEV secretion are unknown. In this study,
we took advantage of the dual axes of SSH1 signaling in the
inhibition of autophagy (Fang et al., 2021) and the promotion
of actin dynamics (Niwa et al., 2002; Kurita et al., 2007, 2008)
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FIGURE 6

Proposed model depicting the regulation of small EV secretion by p62-mediated autophagy and cofilin-mediated actin dynamics through the
SSH1 pathway. Note that blue lines/arrows favor lysosomal degradation, whereas red lines/arrows favor secretory clearance. (A) Accumulation
of misfolded proteins or dysfunctional mitochondria activates autophagy through ULK1 and TBK1, which phosphorylate p62 at Ser403, resulting
in p62 binding to ubiquitinated cargo and activation of LC3 to drive autophagosome maturation. This promotes autophagy flux and fusion of
autophagosomes and amphisomes with lysosomes, resulting in the degradation of ubiquitinated cargo together with intraluminal vesicles from
amphisomes, thereby reducing small EV secretion. (B) Oxidative stress (ROS) or calcium elevation induced by Aβ oligomers or otherwise
activates SSH1, which dephosphorylates p62 at pSer403 and inhibits p62 autophagy flux. Dephosphorylated p62 is less able to bind
ubiquitinated cargo and activate LC3, which slows autophagy flux and fusion of autophagosomes and amphisomes with lysosomes. This
process diverts amphisomes toward the secretory fusion pathway and increases small EV secretion. Like SSH1, inhibition of p62 autophagy flux
by misfolded tau (Fang et al., 2021) also likely contributes to increased small EV secretion. (C) Actin filaments serve to recruit vesicles and create
a diffusion barrier for vesicles to gain access to the plasma membrane. SSH1 activation by ROS or calcium also activates cofilin, which severs
and depolymerizes the F-actin network near the plasma membrane. This process allows large secretory amphisomes to access membrane
docking sites, facilitating small EV secretion. This illustration was generated at Biorender.com.

to study the corresponding pathways in sEV secretion. We
used the neutral term sEVs to place no bias on the origin
of the EVs; however, sEVs are largely equivalent to exosomes
based on their predominant size range. Here we showed for the
first time that autophagy cargo receptors, p62 and optineurin,
inhibit sEV secretion, an activity that requires their ability to
engage ubiquitinated cargo. SSH1, which inhibits p62 binding
to cargo (Fang et al., 2021), increased sEV secretion, but not in
p62-depleted cells or cells expressing the p62-S403E mutation.
However, the N-terminal domain of SSH1 (SSH11C), which
activates cofilin but does not inhibit p62 (Fang et al., 2021),
increased sEV secretion through the cofilin activation pathway.
Accordingly, latrunculin B, which prevents actin polymerization
and indirectly promotes F-actin depolymerization (Wakatsuki
et al., 2001), mimicked the effect of cofilin in enhancing sEV
secretion. Finally, we showed that AD pathological proteins,
Aβ oligomers and mutant tau, both of which impact autophagy
and F-actin dynamics pathways (Fulga et al., 2007; Caccamo
et al., 2010; Woo et al., 2015b; Cabrales Fontela et al., 2017;

Fang et al., 2021), increased sEV secretion and are also
contents of secreted sEVs. These findings, therefore, implicate
autophagy cargo receptor-cargo interactions and actin dynamics
in regulating sEV secretion through mechanisms contributing to
AD pathogenesis.

Multiple studies have shown that autophagosomes
accumulate in AD brains (Lin et al., 2003; Nixon et al., 2005;
Hebron et al., 2014; Feng et al., 2019), indicative of impairment
in the autophagy-lysosome pathway. Autophagosomes can fuse
with multivesicular bodies (MVBs) containing intraluminal
vesicles to form amphisomes or fuse directly with lysosomes
for degradation (Ganesan and Cai, 2021; Figure 6). Our
observations that the ability of p62 and optineurin to inhibit
sEV secretion depends on their ability to engage ubiquitinated
cargo are intriguing in light of the significantly reduced p62
Ser403 phosphorylation in AD brains (Tanji et al., 2014),
a phospho-residue required for p62 to bind ubiquitinated
cargo (Pilli et al., 2012; Katsuragi et al., 2015; Lim et al., 2015;
Matsumoto et al., 2015; Sanchez-Martin and Komatsu, 2018).
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We interpret this to indicate that the binding of autophagy
cargo receptors to ubiquitinated cargo promotes autophagy flux
and fusion of autophagosomes and amphisomes with lysosomes
(Fang et al., 2021), which diverts amphisomes away from
fusing with the plasma membrane and are instead degraded by
lysosomes (Figure 6A). Indeed, cargo binding to p62 promotes
autophagosome maturation by enhancing the synthesis of
LC3 and its conversion to LC3-II (Cha-Molstad et al., 2017;
Figure 6A). In support of this notion, SSH1 increased sEV
secretion through its ability to dephosphorylate p62 at pSer403,
which reduces cargo binding and inhibits p62 autophagy flux
(Fang et al., 2021; Figure 6B). Interestingly, calcium elevation
or reactive oxygen species (ROS) induced by Aβ oligomers
or other stressors activate SSH1 (Davis et al., 2011; Woo
et al., 2015a,b) through calcineurin activation (Wang et al.,
2005; Tu et al., 2014) and/or 14-3-3 oxidation (Wang et al.,
2005), respectively, the latter which releases SSH1 from 14-3-3
inhibitory control (Figure 6B). Such calcium and reactive
oxygen species (ROS)-mediated control of SSH1 activation
is consistent with our observation that Aβ42 oligomers also
increase sEV secretion (Figure 6B). Like SSH1, inhibition of
p62-mediated autophagy flux by misfolded tau (Fang et al.,
2021) is also consistent with increased sEV secretion by mutant
tau in this study, likely by diverting autophagosomes away from
lysosomes toward secretory amphisomes (Figure 6B).

Control of actin dynamics is critical to maintaining cell
morphology and other cellular processes, including membrane
protein trafficking, endocytosis, phagocytosis, and exocytosis
(Carlsson, 2018; Li et al., 2018; Liu et al., 2019). However, the
role of actin dynamics in sEV secretion is essentially unknown.
The actin-binding protein cortactin positively regulates sEV
secretion by binding to F-actin and Arp2/3, stabilizing docking
sites at the plasma membrane (Sinha et al., 2016). Like exocytosis
of secretory vesicles, sEV secretion is increased by calcium
elevation (Savina et al., 2003). At the microscale level, the
actin-based cytoskeleton serves to both recruit vesicles and
function as a diffusion barrier that prevents vesicles from
gaining access to docking sites on the plasma membrane (Li
et al., 2018). Hence, a dense network of actin filaments would
serve as a far more significant barrier to the much larger
MVBs or amphisomes. As SSH1-mediated cofilin activation
is increased by calcium elevation (Wang et al., 2005), the
F-actin severing and depolymerizing cofilin activities would be
expected to trim the dense F-actin network, allowing MVBs and
amphisomes to gain access to plasma membrane docking sites
(Figure 6C). However, excessive depolymerization of F-actin
could also hinder sEV secretion by failing to recruit MVBs or
amphisomes to the F-actin mesh close to the plasma membrane.
Studies on secretory vesicles have shown that it is the oscillation
of calcium signals and actin dynamics (depolymerization and
polymerization) that coordinately control vesicle access to
docking sites and exocytosis (Li et al., 2018). Indeed, cofilin-S3A,
which is far more active than wild-type (WT) cofilin, was slightly

less effective than WT cofilin in increasing sEV secretion, which
may be due to the excessive actin disruptive activity of this
mutant. On the other hand, the inactive and dominant-negative
cofilin-S3E significantly decreased sEV secretion, likely due to
the inhibition of endogenous SSH1 (Liu et al., 2017; Shaw
and Bamburg, 2017; Woo et al., 2019). Like cofilin, 100 nM
latrunculin B treatment for 8 h, a dose that partially disrupts
F-actin (Wakatsuki et al., 2001), had a net positive effect
on sEV secretion.

Our studies showed that Aβ oligomers and misfolded
tau not only increase sEV secretion but are also secreted in
association with sEVs. This coupling appears to be a way for
cells to efficiently expel misfolded proteins, which otherwise
would impede and congest the autophagy machinery. Excessive
secretion of misfolded proteins by “secretory autophagy” in
association with sEVs or otherwise could then serve as seeds
for the propagation of pathology from cell to cell (Rajendran
et al., 2006; Vella et al., 2007; Danzer et al., 2012; Saman
et al., 2012, 2014; Asai et al., 2015; Sardar Sinha et al., 2018;
Miyoshi et al., 2021).

Conclusion

Our data suggest that increasing cargo receptor engagement
with autophagic cargo and reducing actin dynamics (i.e.,
SSH1 inhibition) represents an attractive strategy to promote
misfolded protein degradation while reducing sEV-mediated
cell to cell spread of pathology.
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