
Tang et al. Trials          (2022) 23:762  
https://doi.org/10.1186/s13063-022-06708-9

METHODOLOGY
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Abstract 

Background:  The HEALing (Helping to End Addiction Long-termSM) Communities Study (HCS) is a multi-site paral-
lel group cluster randomized wait-list comparison trial designed to evaluate the effect of the Communities That Heal 
(CTH) intervention compared to usual care on opioid overdose deaths. Covariate-constrained randomization (CCR) 
was applied to balance the community-level baseline covariates in the HCS. The purpose of this paper is to evaluate 
the performance of model-based tests and permutation tests in the HCS setting. We conducted a simulation study 
to evaluate type I error rates and power for model-based and permutation tests for the multi-site HCS as well as for a 
subgroup analysis of a single state (Massachusetts). We also investigated whether the maximum degree of imbalance 
in the CCR design has an impact on the performance of the tests.

Methods:  The primary outcome, the number of opioid overdose deaths, is count data assessed at the community 
level that will be analyzed using a negative binomial regression model. We conducted a simulation study to evaluate 
the type I error rates and power for 3 tests: (1) Wald-type t-test with small-sample corrected empirical standard error 
estimates, (2) Wald-type z-test with model-based standard error estimates, and (3) permutation test with test statistics 
calculated by the difference in average residuals for the two groups.

Results:  Our simulation results demonstrated that Wald-type t-tests with small-sample corrected empirical standard 
error estimates from the negative binomial regression model maintained proper type I error. Wald-type z-tests with 
model-based standard error estimates were anti-conservative. Permutation tests preserved type I error rates if the 
constrained space was not too small. For all tests, the power was high to detect the hypothesized 40% reduction in 
opioid overdose deaths for the intervention vs. comparison group both for the overall HCS and the subgroup analysis 
of Massachusetts (MA).
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Background
Cluster randomized trials are widely used when research-
ers are aiming to study an intervention delivered at a 
group level (e.g., community, hospital, or school). How-
ever, techniques such as stratified randomization may not 
provide a sufficient balance of key baseline characteris-
tics given randomization at the cluster level [1]. Balance 
of baseline covariates is important not only to improve 
power and precision [2], but also for the validity and 
credibility of studies as an imbalance of key covariates 
may bias results [3]. Many techniques exist to address the 
problem of covariate imbalance in cluster randomized 
trials, such as matching [4], stratification [5], and minimi-
zation [6]. Moulton proposed the covariate-constrained 
randomization (CCR) method which can balance mul-
tiple covariates simultaneously without the risk of over-
stratification [7]. With CCR, all clusters are recruited 
prior to randomization and a set of key confounding vari-
ables is pre-specified along with the maximum degree of 
acceptable imbalance between randomized arms for each 
confounder. Among the set of group allocations that sat-
isfy the pre-specified criteria for imbalance, i.e., the con-
strained randomization space, one is randomly selected 
to generate all randomized assignments for the trial. 
Covariate-constrained randomization generally does not 
include all possible allocations since it constrains the ran-
domization space to those that meet the pre-specified 
degree of balance between randomized groups. Statistical 
analyses should match the study designs that generated 
the data, and thus, it is unclear whether test methods that 
do not account for the constrained space maintain proper 
type I and type II error rates.

Some cluster randomized trials may not have a suf-
ficient number of clusters to ensure that large sample 
model-based inference is appropriate [8]. The permuta-
tion test is a method that does not require distributional 
assumptions and can be performed based on different 
test statistics [9]. Hence, it may be more appropriate than 
the model-based test in some settings. Fu et al. compared 
the performance of model-based and permutation tests 
from a generalized linear mixed model in cluster ran-
domized trials that do not use CCR and found that the 
permutation test has the advantage of preserving nomi-
nal type I error for small studies and large intra-cluster 

correlation [10]. In terms of power, both methods had 
similar results. Murray demonstrated that if cluster ran-
domization provides balance on confounders at baseline, 
type I error rate and power are similar for permutation 
tests and mixed-model regression [11].

Currently, there is limited research comparing permu-
tation tests vs. model-based tests in the setting of clus-
ter randomized trials that use CCR. Li et  al. compared 
adjusted permutation tests and adjusted linear mixed 
effect model-based tests in the setting of CCR and con-
cluded that in analyses adjusting for group-level covari-
ates, both permutation tests and model-based tests can 
maintain the correct type I error rate as long as the num-
ber of possible allocations in the constrained randomiza-
tion space is not too small [12]. Li et  al. [13] compared 
permutation tests and model-based tests for randomized 
trials with binary outcomes in the setting of CCR. They 
found that when the prognostic group-level covariates are 
balanced by CCR at the design stage, both adjusted model-
based tests (linearization F-test, KC-corrected GEE t-test) 
and adjusted permutation tests gain power and preserve 
test size compared to unadjusted analyses [13]. In both of 
the studies by Li, randomization is at the cluster level while 
the unit of analysis is at the individual level.

The purpose of this paper is to evaluate the performance 
of model-based tests and permutation tests in the covariate-
constrained cluster randomized HEALing (Helping to End 
Addiction Long-termSM) Communities Study (HCS). The 
HCS is a multi-site parallel group cluster randomized wait-
list comparison trial of the Communities That Heal (CTH) 
intervention [14–16]. The HCS was designed to evaluate the 
impact of the CTH intervention compared to usual care on 
opioid overdose deaths among 67 communities. The pri-
mary hypothesis is that communities in the intervention 
group will have a reduction in opioid-related deaths com-
pared to those in the comparison group. This study was con-
ducted in 4 states: Massachusetts, Kentucky, New York, and 
Ohio. CCR was used to balance 3 community-level baseline 
covariates: (1) rural/urban status, (2) population size, and (3) 
baseline opioid death rate. In the HCS, all key variables (i.e., 
outcomes and covariates) are aggregate community-level 
data. The primary outcome, the number of opioid overdose 
deaths, is count data assessed at the community level and 
analyzed using a negative binomial regression model [17].

Conclusions:  Based on the results of our simulation study, the Wald-type t-test with small-sample corrected empiri-
cal standard error estimates from a negative binomial regression model is a valid and appropriate approach for analyz-
ing cluster-level count data from the HEALing Communities Study.

Trial registration:  ClinicalTrials.gov http://​www.​clini​caltr​ials.​gov; Identifier: NCT04111939

Keywords:  Covariate-constrained randomization, Model-based tests, Permutation tests, Cluster randomized trials, 
Negative binomial regression
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As previous research on CCR focused on settings with 
individual-level data and did not analyze group-level count 
outcomes, it is unclear whether the results hold in the HCS 
setting. To address this question, we conducted a series of 
simulation studies to evaluate the performance of model-
based tests and permutation tests in terms of type I error 
and power for the HCS setting. Our simulation studies are 
based on aggregate count data as the primary outcome of 
the HCS is the number of opioid overdose deaths at the 
community level. This setting is less common for cluster 
randomized trials, which often focus on individual-level 
data analyzed using models that control for within-cluster 
correlations [17]. The primary goal of this manuscript is to 
evaluate test performance for the HCS based on the pre-
specified CCR constraints. The secondary objective is to 
investigate whether the number of clusters impacts test 
performance by assessing test performance for both the 
overall 4-site study as well as for a single state (i.e., Mas-
sachusetts only). We also explore the impact of the maxi-
mum degree of covariate imbalance by assessing results 
using alternative constraints for the CCR.

In the “Methods” section, we present the specific model-
based and permutation tests we examined and describe 
our simulation methods. In the “Results” section, we pre-
sent the results of the simulation study, summarizing the 
performance of the model-based tests and permutation 
tests in a range of scenarios. In the “Discussion” section, 
we discuss the results and limitations of our study.

Methods
Setting
The HCS was designed to evaluate the impact of the 
CTH intervention on opioid overdose deaths in 67 highly 
affected communities in Massachusetts, Kentucky, New 
York, and Ohio. Massachusetts, Kentucky, and New 
York each enrolled 16 communities and Ohio recruited 
19 communities. The 67 communities were randomly 
assigned to either the intervention group during the first 
2 years or a wait-list comparison group (continuing usual 
care) during the first 2 years using CCR stratified by 
state. CCR was used to ensure balance between interven-

tion and comparison communities on three covariates at 
baseline. Specifically, the criteria were (1) less than a 0.2 
standard deviation difference in the mean baseline opioid 
overdose death rate between intervention and compari-
son communities, (2) less than a 0.2 standard deviation 
difference in the overall mean population size between 
intervention and comparison communities, and (3) an 
equal number of rural and urban communities when 

there are an even number of communities and a differ-
ence of 1 otherwise. Based on these pre-specified con-
straints, the following were the number of acceptable 
allocations (total possible allocations): Massachusetts: 
644 (12,870); Kentucky: 216 (12,870); New York: 650 
(12,870); and Ohio: 6602 (92,378). The primary objec-
tive of the simulation study is to verify that the planned 
model-based test will maintain the proper type I error 
rate for the overall HCS and compare its performance 
to permutation tests that directly account for the CCR. 
Secondarily, we explore the performance of the model-
based and permutation tests for a single site (i.e., Massa-
chusetts) to assess whether a smaller number of clusters 
impacts test performance. In addition, we investigate the 
impact of the maximum degree of covariate imbalance 
on the performances of the tests for both the overall HCS 
and the single-site analysis of Massachusetts.

Planned HCS analysis: negative binomial regression 
with small‑sample correction
As noted above, the intervention group received the 
CTH intervention during the first 2 years of the study 
while the wait-list comparison group received usual care 
during the first 2 years of the study. The dependent varia-
ble Y is the number of opioid overdose deaths during year 
2 of the trial. Data for the HCS study will be measured 
at the community level, and the planned primary analysis 
for the HCS study will use negative binomial regression 
as the dependent variable Y is count data. Negative bino-
mial regression is a generalization of Poisson regression 
that does not require the assumption that the variance 
of the outcome count is equal to the mean. For the HCS, 
we expect over-dispersion in the data, i.e., E(Y) < Var(Y). 
As described by Walsh et al. and Westgate et al., the pro-
posed negative binomial model will utilize small-sample 
adjusted empirical standard error estimates and degrees 
of freedom of the t-statistic equal to the number of com-
munities minus the number of regression parameters [16, 
17]. The negative binomial regression model that will be 
used to analyze the number of opioid overdose deaths is:

where i indexes the individual community, baseline popula-
tion ni is the offset variable, β0 is the intercept, and βint, βurban, 
βdr, βNY, βKY, βMA  are corresponding regression coefficients 
for the intervention 

(
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)

 , rural/urban status 
(

Xiurban

)

 , 
baseline opioid death rate (Xideathrate), and state indicators for 
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 , and MA
(

XiMA

)
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As noted by Murray et al. and Simon, the model used 
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order to maintain an appropriate significance level [11, 
18]. Hence, baseline population, rural/urban status, 
opioid death rate, and states are included in the model 
to improve efficiency as they were considered prognos-
tic factors and included as covariates in the CCR. The 
dispersion parameter k satisfies var(Yi|Xi) = µi + kµ2

i .
The small-sample corrected empirical standard error 

estimate that will be used in the primary HCS analyses 
follows the suggestion from Ford and Westgate, which 
is the average of the small-sample corrected empiri-
cal estimators proposed by Mancl and DeRouen, and 
Kauermann and Carroll. The Mancl and DeRouen and 
Kauermann and Carroll covariance estimators were 
both derived based on Taylor-series approximations 
(although they differ based on the assumptions made) 
and utilize leverage values [19, 20]. The Mancl and DeR-
ouen estimator can be conservative, while the Kauer-
mann and Carroll estimator can be liberal [19–21]. Ford 
and Westgate therefore proposed using the average of 
the two [21]. We provide details on how to obtain the 
estimator proposed by Ford and Westgate using R soft-
ware in Supplementary Text 1.

Tests evaluated in the simulation study
Model‑based tests
We evaluated 2 model-based tests in our simulation study:

1)	 The first model-based test is from the planned primary 
analysis of the HCS described above, i.e., the Wald-
type t-statistic utilizing small-sample corrected empir-
ical standard errors (SEc) from the negative binomial 
regression model: β̂int

SEc β̂int
 . We assume that the t-statis-

tic under null hypothesis follows a t distribution with 
degrees of freedom equal to n − p − 1, where n is the 
number of communities and p is the number of covar-
iates. For HCS where n = 67 and p=6, the number of 
degrees of freedom is therefore 60.

2)	 The second model-based test is the Wald-type z-statis-
tic from a standard negative binomial regression using 
model-based standard errors (SE): i.e., β̂int

SE
β̂int

 . We assume 

that the Wald-type z-statistic under null hypothesis fol-
lows a standard normal distribution. We note that nei-
ther of the above model-based tests directly accounts 
for the constrained randomization space.

Permutation test
A permutation test is a statistical test in which the dis-
tribution of the test statistics under null hypothesis is 
obtained by calculating all possible values of the test 

statistic under all possible rearrangements of the study 
groups [22]. Permutation tests do not make assumptions 
about the sampling distribution of test statistics. We 
focused on the difference in the average residuals as the 
test statistic for our permutation test, an approach pro-
posed by Gail et al. [23]. The residuals, ri, were defined as 
ri = Yi − Ŷi . Yi is the observed number of opioid overdose 
deaths during year 2 of the trial for community i and Ŷi is 
the predicted follow-up number of opioid overdose deaths 
during year 2 of the trial for community i. To calculate 
the fitted value, Ŷi, for community i, we fitted the nega-
tive binomial regression on rural/urban, baseline opioid 
overdose death rate for community i, and log of popula-
tion size for community i as offset (note that intervention 
is not included in this model). We then obtained the aver-
age residual for the intervention group r1 = N−1

1

∑n1
j=1 rj 

where N1 is the sample size in the intervention group, 
and the average residual for the comparison group, i.e., 
r0 = N−1

0

∑n0
j=1 rj where N0is the sample size in the com-

parison group. Under the null hypothesis of no inter-
vention effect, these residuals are independent of the 
intervention assignments. The resulting difference in 
average residuals test statistic is defined as U=r1− r0 . We 
calculated the average residual test statistics for each per-
mutation of the treatment assignment in the permutation 
space to obtain the sampling distribution for the statistics. 
The space of the permutation test was determined based 
on the constrained randomization space of the HCS.

Simulation study
We conducted a series of simulations to evaluate both type 
I error and power for the model-based and permutation 
tests. For type I error, we assumed that the true interven-
tion effect is 0 and used a 2-sided p-value when evaluating 
type I error. For power, consistent with the design of the 
HCS, we assumed that the intervention group would expe-
rience a 40% reduction in opioid overdose deaths while the 
wait-list comparison group would experience no change. In 
addition to this scenario, we also assessed power for smaller 
effect sizes of 20% and 30%. For power, we report the prob-
ability of rejecting the null in the hypothesized direction 
when testing at the two-tailed 0.05 level. We ran 5000 itera-
tions for the simulation. We note that with 5000 iterations, 
the precision of the simulation study, in terms of the result-
ing width of the 95% CI for the type I error (alpha=0.05), is 
±1.96×

√

0.05(1−0.05)
5000 = ±0.006 . For each iteration, we 

obtained a p-value corresponding to each model-based test 
and permutation test. We compared these p-values to the 
nominal level of 0.05 to determine the type I error and 
power for each test. The type I error and power were calcu-
lated conditionally on the particular randomized group 
allocation that was observed for the HCS.
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Maximum degree of covariate imbalance in the CCR design
We investigated whether the maximum degree of covari-
ate imbalance in the CCR design influenced the perfor-
mance of tests by examining tighter constraints than 
those applied in the HCS, both for the overall HCS and 
within the single-site analysis of Massachusetts. We 
focused only on the constraints for continuous covariates, 
i.e., population size and opioid death rate, as the con-
straint for urban/rural status (i.e., equal for even numbers 
and differ by no more than 1 for odd numbers of commu-
nities) could not be further tightened. For population size 
and opioid death rate, we considered the following range 
of constraints: a difference between the 2 arms < 0.2 SD, 
0.1 SD, and 0.05 SD of the overall mean. The allowable 
degree of covariate imbalance is directly related to the 
size of the constrained randomization space (i.e., number 
of acceptable allocations). The constraints we evaluated 
correspond to the following number of acceptable alloca-
tions for the overall HCS: 5.74 × 1011(0.2 SD), 6.23 × 107 
(0.1 SD), and 921,984 (0.05 SD), out of 1.96 × 1017 alloca-
tions in the unconstrained sampling space. We note that 
for the constraint with 0.05 SD, there is no acceptable 
allocation for Kentucky. Hence, we evaluated only the 
constraints with 0.2 SD and 0.1 SD for the overall HCS 
but included 0.05 SD in the single-site analysis of Mas-
sachusetts. For Massachusetts, the number of acceptable 
allocations corresponding to each constraint is as follows: 
644 (.2 SD), 190 (.1 SD), and 44 (.05 SD), out of 12,870 
possible allocations in the unconstrained sampling space.

Additional exploratory simulations
In order to explore the impact of the number of covari-
ates and choice of allocations on the performance of 
different tests, we varied the number of covariates 
included in the regression models (i.e., we fit an unad-
justed model, an adjusted model excluding urban/rural 
status, and an adjusted model excluding baseline death 
rate) as well as 3 new allocations randomly selected 
from the constrained space.

Data generation
To evaluate type I error and power, we simulated the pri-
mary outcome number of opioid overdose deaths using 
the following steps:

(1)	 We first obtained the observed baseline number of 
opioid overdose deaths by averaging the number 
of deaths for the 2 years prior to the start of the 
study (2016 and 2017).

(2)	 We then fitted a negative binomial regression model 
with the observed baseline number of opioid deaths 
from step 1 as the dependent variable, rural/urban 
status and state indicators as covariates, and the 

natural logarithm of population size for each com-
munity as the offset. After running the regression, 
we obtained the fitted value of the intercept β0 , the 
coefficient for rural/urban status βurban, coefficients 
for state indicators βNY, βKY, βMA, and the dispersion 
parameter k.

(3)	 We simulated our outcome variable Yi from a neg-
ative binomial distribution with mean calculated 
as E

(
Yi|Xi

)
= μi = exp

(
log

(
ni

)
+ �0 + Xiintervention

∗ log (1 − risk reduction) + �urbanXiurban
+ �NYXiNY

+

�KYXiKY
+ �MAXiMA

 and dispersion parameter k. 

When we evaluated the type I error rate, we 
assumed the true treatment effect is under the null 
hypothesis and thus the risk reduction is 0%. 
When we evaluated the power, the risk reduction 
was set at potential values under the alternative 
hypothesis: 20%, 30%, and 40%.

(4)	 We used the random number generator in the 
R Software v3.6.2 (R Development Core Team, 
Vienna, Austria) to simulate 67 values from this dis-
tribution, one for each HCS community.

For analyses of the overall HCS, there are 67 communi-
ties across 4 states, resulting in a large number of possible 
allocations for permutation tests. To reduce the compu-
tational burden, within each of the 5000 iterations of the 
simulation, we randomly selected 3000 allocations from 
the constrained randomization space to estimate the 
sampling distribution for the permutation statistic.

For the subgroup analysis of Massachusetts, we simu-
lated 16 values (one for each MA community) from the 
negative binomial distribution using the method above 
without state indicators. Because the actual observed 
HCS allocation in HCS satisfies the two constraints of 
0.2 SD and 0.1 SD, we used the observed HCS alloca-
tion as the basis for testing for both of these constraints 
in order to control the effect of a random choice of allo-
cation from the constrained space. For the tighter con-
straint (0.05 SD), which the observed MA allocation did 
not satisfy, we randomly selected an allocation from the 
constrained space. For the single-site analysis of Massa-
chusetts, we estimated the sampling distribution for the 
permutation statistic using the all possible allocations 
from the constrained space.

Results
In the following, we present the type I error rate 
(Table 1) and power (Table 2) for the two model-based 
tests and the permutation test for the overall HCS and 
the single-site analysis of the Massachusetts subgroup, 
based on the CCR constraints used by the HCS (i.e., 0.2 
SD difference for the continuous covariates population 
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size and baseline opioid death rate). These results are 
also illustrated in Figs. 1 and 2.

Both the Wald-type t-test using small-sample cor-
rected empirical standard error estimates and the permu-
tation test based on the difference in residuals appear to 
preserve the type I error for both overall HCS and MA. 
However, the Wald-type t-test had higher power than the 
permutation test. The Wald-type z-test with model-based 
standard error estimates generally had the highest power; 
however, it appeared anti-conservative, with type I errors 
above 0.05 for both the overall HCS and MA subgroup 
analysis. Power for all three tests was high (i.e., >0.80), to 
detect differences of at least 30% between randomized 
groups in the overall HCS study and to detect a 40% dif-
ference for the MA analyses.

We also examined the impact of tighter constraints for 
covariate imbalance on both type I error (Table  3) and 
power (Table 4). For the overall HCS, we evaluated a 0.1 

Table 1  Type I error rate for the model-based and permutation 
tests for the HEALing Communities Study Design, overall (4 
states) and for the subgroup analysis of Massachusetts

The constraint used in the CCR is 0.2 SD for population size and baseline opioid 
death rate
a Small-sample corrected empirical standard error estimates
b Model-based standard error estimates

Type I error

Test type Overall HCS MA only

Model-based tests
  Wald-type t-testa 0.050 0.041

  Wald-type z-testb 0.072 0.111

Permutation test
  Difference in residuals 0.056 0.050

Table 2  Power for the model-based and permutation tests to detect various differences between groups in number of opioid 
overdose deaths

The constraint used in the CCR is 0.2 SD for population size and baseline opioid death rate
a Small-sample corrected empirical standard error estimates
b Model-based standard error estimates

Power

20% difference 30% difference 40% difference

Test type Overall HCS MA only Overall HCS MA only Overall HCS MA only

Model-based tests
  Wald-type t-testa 0.792 0.397 0.989 0.774 1.000 0.880

  Wald-type z-testb 0.822 0.595 0.995 0.902 1.000 0.960

Permutation test
  Difference in residuals 0.738 0.353 0.980 0.712 1.000 0.847

Fig. 1  Type I error rate and power with varying maximum degrees of covariate imbalance for different tests for overall HCS
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SD difference in population size and opioid death rate, 
and for the MA analysis, we evaluated constraints of 0.1 
SD and 0.05 SD for both covariates. As before, Wald-type 
t-tests with small-sample corrected empirical standard 
error estimates preserved the type I error rates while the 
Wald-type z-tests with model-based standard error esti-
mates were anti-conservative in terms of type I error rate. 
For the permutation tests, type I error rates appear to be 
preserved if the constraints used by the CCR are not too 
tight; otherwise, the number of possible allocations in the 
constrained space may be inadequate. This was observed 
for the scenario in the MA-only analyses with the degree 
of imbalance set at 0.05 SD, resulting in only 44 possible 
allocations. For a given effect size, the estimated power 
for each test did not change substantially with tighter 
constraints for either the overall HCS or the subgroup 
analysis of MA. The Wald-type t-tests had higher power 
than the permutation tests in nearly all scenarios.

Fig. 2  Type I error rate and power with varying maximum degrees of covariate imbalance for different tests for MA only

Table 3  Type I error rates based on maximum degree of 
covariate imbalance

a Max imbalance on the constraints for population size and opioid death rate
b Small-sample corrected empirical standard error estimates
c Model-based standard error estimates

Type I error

Overall HCS MA only MA only

Max imbalancea 0.1SD 0.1SD 0.05SD
Model-based tests
  Wald-type t-testb 0.046 0.041 0.041

  Wald-type z-testc 0.065 0.111 0.101

Permutation test
  Difference in residuals 0.047 0.050 0.087

Table 4  Power based on the maximum degree of covariate imbalance

a Max imbalance on the constraints for population size and opioid death rate
b Small-sample corrected empirical standard error estimates
c Model-based standard error estimates

20% difference 30% difference 40% difference

Overall HCS MA only MA only Overall HCS MA only MA only Overall HCS MA only MA only

Max imbalancea 0.1SD 0.1SD 0.05SD 0.1SD 0.1SD 0.05SD 0.1SD 0.1SD 0.05SD
Model-based tests
  Wald-type t-testb 0.706 0.397 0.447 0.973 0.774 0.720 0.999 0.880 0.874

  Wald-type z-testc 0.754 0.595 0.606 0.981 0.902 0.908 0.999 0.960 0.952

Permutation test
  Difference in residuals 0.657 0.353 0.335 0.941 0.712 0.721 0.996 0.847 0.813
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We report the distribution of the number of opioid over-
dose deaths from the various simulation scenarios in Sup-
plementary Table 1. In additional exploratory analyses, we 
found that for the overall HCS, the type I error rates and 
the power did not have substantial changes across differ-
ent scenarios, especially for the larger magnitudes of effect 
(Supplementary Tables 2, 3, 4, 5, 6 and 7). For the subgroup 
analysis of Massachusetts, when we decreased the number 
of covariates in the model, we observed that the type I error 
rates increased and the power decreased in nearly all the 
scenarios (Supplementary Tables 2, 3, 4, 5, 6 and 7). In addi-
tion, we found that the choice of allocation does not appear 
to influence our results (Supplementary Tables 8 and 9).

Discussion
We examined the performance of model-based and permu-
tation tests in terms of type I error rate and power under 
covariate-constrained randomization for the HEALing 
Communities Study (HCS). The HCS is a multi-site paral-
lel group cluster randomized wait-list comparison trial of 
the Communities That Heal (CTH) intervention evaluat-
ing aggregate count outcomes at the community level (i.e., 
number of opioid overdose deaths). We assessed the perfor-
mance of these tests for the primary analyses of the multi-
site HCS as well as for a subgroup analysis of a single site, 
Massachusetts. Additionally, we explored the impact of 
implementing tighter covariate constraints for the CCR. We 
found that for both the overall HCS as well as the subgroup 
of MA, the primary analytic approach using Wald-type 
t-tests with small-sample corrected empirical standard error 
estimates from a negative binomial regression model main-
tained the proper type I error rate. The Wald-type z-tests 
with model-based standard error estimates, however, were 
anti-conservative. The permutation test based on the differ-
ence of average residuals preserved type I error rates when 
the degree of constraints was not too tight. Power was high 
for all tests to detect the hypothesized intervention effect of 
a 40% reduction in opioid deaths, both for the overall HCS 
and for the subgroup analysis of Massachusetts.

The key feature of the HCS study that differs from those 
included in previous research evaluating the performance 
of statistical tests in cluster randomized trials using CCR 
is the focus on an aggregate count outcome analyzed using 
a negative binomial regression model. Li et  al. compared 
F-tests and permutation tests under CCR using linear 
mixed models [12] and Li et  al. compared four model-
based tests and two permutation tests [13] with binary 
outcomes. Consistent with both of these previous stud-
ies, we found that corrected model-based and permuta-
tion tests maintain the correct type I error rate and have 
similar power when the available allocations in the con-
strained randomization space are not too small. In the 
previous research by Li et  al. noted above, F-tests with a 

linear mixed model, and linearization F-test and KC-cor-
rected GEE t-test with binary outcomes preserved the type 
I error rates. In our analysis, the Wald-type t-tests with 
small-sample corrected empirical standard error estimates 
preserved the type I error rates but Wald-type z-tests with 
model-based standard error estimates did not, emphasiz-
ing the importance of the small-sample corrected empiri-
cal estimators when using model-based tests in cluster 
randomized trials with a small number of clusters. The 
correction factor we used was proposed by Ford and West-
gate [21]. They found that by using the average of small-
sample corrected empirical estimators proposed by Mancl 
and DeRouen, and Kauermann and Carroll [19–21, 24], 
nominal type I error rates can be consistently maintained, 
as confirmed by our simulation study. For permutation 
tests, Li et al. (2016), and Carter and Hood show that if the 
constrained randomization space contains larger than 100 
possible allocations, permutation tests could maintain the 
desired type I errors and high power. Our findings show 
similar results in that when the constrained space con-
tained >100 acceptable allocations, the type I error rates 
were preserved and sufficient power was achieved for the 
hypothesized 30% and 40% reductions in opioid deaths for 
the overall HCS, and for a 40% reduction in opioid deaths 
in the subgroup analysis of Massachusetts.

Our work has some limitations. First, our goal was to 
investigate the performance of permutation and model-
based tests in the setting of HCS and the results may 
not be generalizable to other settings as we used com-
munity-level outcome data and HCS-specific baseline 
covariates. In addition, we used an empirical strategy 
to choose values for the impact of covariates, but did 
not examine the implications of varying the strength of 
those covariate relationships.

Conclusions
Based on the results of our simulation study, the Wald-
type t-test with small-sample corrected empirical stand-
ard error estimates from the negative binomial regression 
model is a valid and appropriate analytic approach for 
the HEALing Communities Study. It preserved the type 
I error rate and maintained high power for the hypoth-
esized 40% reduction in opioid deaths for the overall 
multi-site analyses as well as for a subgroup analysis of 
a single site. In contrast, Wald-type z-tests with model-
based standard error estimates resulted in inflated type I 
error rates. The permutation test based on the difference 
of average residuals appeared to maintain type I error in 
this setting. However, it had lower power compared to 
the Wald-type t-test with small-sample corrected empiri-
cal standard error estimates along with the added disad-
vantage of being computationally more complex.
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