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Abstract

Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the
brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus
statistics have been documented before, no such measurements have been performed when higher-order moments of the
light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled
changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially
uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in
natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal
encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only
marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast.
By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without
large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal
summation within the receptive field averages away non-gaussian aspects of the light intensity distribution.
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Introduction

Adaptation is ubiquitous in the nervous system, from synaptic

depression [1,2] and single neuron spiking [3,4], to the activity of

neural modules (e.g. [5]). In sensory systems, it has been suggested

to be a key design principle of the neural code [6], which may

allow for optimal information coding by matching the neural

responses to stimulus statistics [7,8,9,10]. The retina is one of the

most studied highly adaptive neural circuits, in which the mapping

between stimuli and neural response changes to match the

statistics of the mean light intensity [11], temporal and spatial

contrast and spatial scale [12,13,14], pattern [15], relative motion

[16] and periodicity [17].

Since adaptation requires some form of memory and inference

of the stimulus statistics to which the system should adapt, the

mechanism and nature of adaptation have been studied exten-

sively. For example, the dynamic structure of the retinal ganglion

cell receptive fields [18], and contrast adaptation in the vertebrate

and fly visual systems [13,14,19,20,21,22] have been characterized

as gain-control mechanisms that serve to efficiently encode the

variation of the stimulus around the mean into a limited dynamic

range of firing rates at the output. It has been further shown that

neural systems adapt not only to various stationary stimuli, but also

to dynamic changes in stimulus distributions taking place across

multiple timescales [23,24,25].

Despite its ubiquitous presence, it is still not clear what are the

limits to adaptation, and in particular, which stimulus changes

should lead to adaptive responses and which should not. This is

because adaptation, by its very nature, comes with an inherent

caveat or cost: stimuli can no longer be read out from

instantaneous responses of an adapting system, but can also

involve responses potentially stretching far into the past [25]. Since

most studies of adaptation analyzed neural systems’ response to

first- and second-order spatio-temporal statistics in the stimulus,

we addressed here the nature of neural response to changes in

higher-order structure of visual stimuli; such higher-order struc-

ture is characteristic of natural scenes [26,27] and is perceptually

salient in humans [28,29,30].

Spatial textures were used previously to study the responses of

cat LGN neurons to stimuli containing higher-order statistical

structure [31]. The authors reported that contrast-gain control

responds to spatial root-mean-square contrast but not to the

higher moments in the pixel luminance distribution. These results

raised a number of important questions that we address here: (i)
are there any signatures of adaptation to higher-order statistics,

especially if spatially uniform stimuli that match the naturalistic

range of skew/kurtosis are used instead of the spatial textures (as

used by Ref [31]), which cannot accommodate the same effective

range of skewness/kurtosis values; (ii) do changes in higher-order

stimulus statistics affect the cells’ rate of information coding; and

finally, (iii) what would be theoretically expected changes for LN-

type neurons in response to changes in higher-order stimulus
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statistics if the neurons were maximizing the amount of

transmitted information.

To characterize adaptation to stimulus statistics beyond

luminance and contrast, we studied retinal responses to spatially

uniform stimuli where light intensities were drawn independently

from distributions with tunable amounts of skewness and kurtosis.

We organized our analysis as follows. First, we report in detail on

our choice of stimuli; next, we use 2D linear-nonlinear (LN)

models to characterize the cells’ responses, and analyze in detail

the changes in the linear (L) stage when higher-order statistics

change, followed by the analysis of nonlinear (N) stage changes. To

assess the functional significance of these changes, we compare

them to changes induced during contrast adaptation. We conclude

by examining theoretically optimal LN coding of higher-order

statistics stimuli, and compare these predictions to data.

Materials and Methods

Natural image statistics
To sample the range of naturally occurring values for contrast,

skewness and kurtosis, we took a sample of 501 calibrated

grayscale images from the Penn Natural Image Database (PNIDb)

[32]. From each image we selected 400 random patches 200|200
pixels in size, which corresponds in area to the angular size of

about 3 degrees, roughly the size of the center receptive field of a

salamander retinal ganglion cell. Averaging over each patch to get

the mean luminance in that patch, we computed the contrast,

skewness and kurtosis of the distribution of patch luminances in a

given image. Repeating the process over all images in our selection

(containing shots of Baboon habitat in Okavango delta in

Botswana, including landscape images, some with horizon,

closeups of the ground, and a small selection of man-made objects

in that habitat), we accumulated natural distributions of contrast,

skewness and kurtosis.

In our analyses, contrast is defined as C~sL=�LL, where �LL is the

mean luminance, sL~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(L{�LL)2T

q
is the std of the luminance

distribution P(L) and brackets denote averaging over this

distribution; skewness S~S(L{�LL)3T=s3
L; and kurtosis

K~S(L{�LL)4T=s4
L{3. Note that kurtosis is defined to be 0 for

Gaussian distributions.

Electrophysiology
Multi-electrode array recordings were performed on adult tiger

salamander (Ambystoma tigrinum) [33]. All experiments were

approved by the Ben-Gurion University of the Negev Institutional

Animal Care and Use Committee and were in accordance with

government regulations of the State of Israel. Prior to the

experiment the salamander was adapted to bright light for 30

minutes. Retinas were isolated from the eye and peeled from the

sclera together with the pigment epithelium. Retinas were placed

with the ganglion cell layer facing a multielectrode array with 252

electrodes (Ayanda Biosystems, Switzerland) and superfused with

oxygenated (95% O2, 5% CO2) Ringer medium which contained

110 mM NaCl, 22 mM NaHCO3, 2.5 mM KCl, 1 mM CaCl2,

1.6 mM MgCl2, and 18 mM glucose, at room temperature. The

electrode diameter was 10 mm and electrode spacing varied

between 40 and 80 mm. Recordings of 24–30 hours were achieved

consistently. Extracellularly recorded signals were amplified

(MultiChannel Systems, Germany), digitized at 10 kHz on four

personal computers and stored for off-line spike sorting and

analysis. Spike sorting was done by extracting from each potential

waveform the amplitude and width, followed by manual clustering

using an in-house program written in MATLAB (cf. [34]). The

quality of spike sorting was monitored by inspection of the inter

spike histogram for refractory period violations. In our data sets

the majority of the cells, *70%, had less than 1% refractory

period violations and *87% less than 2% violation.

Stimulation
The stimulus was projected onto the salamander retina from a

CRT video monitor (ViewSonic G90fB) at a frame rate of 60 Hz

such that each stimulus frame was presented twice in a row (for a

stimulus sampling rate of 30 Hz) using standard optics. This rate

was chosen because it has been shown previously that it is roughly

the slowest rate that is still sufficiently high for linear filter

estimation using full field flicker stimulus (i.e., the temporal

correlation in the stimulus is not longer than the scale at which the

linear filters of salamander retinal ganglion cells change) [35,36];

consequently this is the most correlated stimulus with a trivial

correlation structure (fully correlated in space, maximally slow

refresh rate with IID frames in time). The stimulus intensity was

presented in grayscale and was gamma corrected for the monitor.

All stimulus distributions have the same mean luminance of
�LL&225lux. Gaussian stimulus distributions with the desired

variance were generated using MATLAB random number

generator, with widths of sL~22 lux for C+ and sL~40 lux for

C++. We refer to all non-Gaussian stimuli as HOS (higher-order

statistics) stimuli, which we generated with the statistics given in

Table 1. All HOS stimuli were constructed as mixtures of two

Gaussian components, G1 and G2, whose parameters are specified

in Table 2.

We performed two experiments. In the first (23 cells), all 9

stimuli were displayed in long, non-repeated sequences (52202

frames of 33:33ms each for each of the 9 stimuli), allowing us to

infer LN models precisely; we used the Gaussian stimulus to fit LN

models using both the spike-triggered average/covariance and

maximally informative dimensions, to check how closely the two

inference methods agree. In the second experiment (40 cells), the

two Gaussian stimuli were absent, while for the 7 remaining HOS

stimuli each non-repeated sequence was followed by a repeated

sequence (30 repeats, 602 frames at 33:33ms for each repeat), used

to validate our models.

Linear filters
In inferring LN encoding models, reverse correlation techniques

cannot directly be applied to non-Gaussian stimuli because they

lead to biased filter estimates. Instead, we used maximally

informative dimensions (MID) [37]. MID provides unbiased filter

estimates that are consistent with the maximum likelihood

inference [38]. Moreover, MID extracts the stimulus subspace

that is informative about the spike without the need to assume the

functional form of the nonlinearity, which is usually required for

tractable maximum likelihood estimation of linear filters. Briefly,

MID works as follows. To look for a single significant filter k1, one

performs the following maximization over possible linear filters k1,

constrained to unit norm (k1
:k1~1):

Ispike~maxk1
DKL P(k1

:sjspike)jjP(k1
:s)ð Þ: ð1Þ

Here DKL is the Kullback-Leibler divergence [56] between the

spike-triggered distribution and the prior distribution of stimulus

fragment projections onto k1, and s are stimulus fragments (those

preceding the spike for the spike-triggered distribution, and all

fragments for the prior distribution). To look for 2D models, we

repeated the same optimization with two filters f~kk1,~kk2g; the spike-
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triggered and prior distributions are two-dimensional in this case.

For all neurons, the single most informative filter k1 was contained

in the space of the 2 filters f~kk1,~kk2g; for further analysis, we rotated

the system of reference such that the first filter was the single most

informative filter k1 (which mostly corresponded to the spike-

triggered average for those cells that were exposed to Gaussian

stimulus), while the second filter k2 spanned the fk1,~kk2g subspace

together with k1, and formed an orthonormal basis, k1
:k2~0,

k2
:k2~1.

The filters extended over 600ms and were sampled on 36

equidistant points, with temporal resolution of 16:67ms. We

expressed the filters as a combination of 16 basis functions,

k1,2~
P16

m~1 am
1,2bm, where bm are unit-area Gaussian bumps with

40ms width, uniformly tiling the 600ms span of the filters, and a
are the expansion coefficients; we maximized Ispike in the space of

parameters a. This expansion made the filters smooth and very

slightly improved generalization performance, but the results were

stable even if we inferred directly in the space of k.

For performance reasons we estimated DKL during MID

optimization runs using kernel-smoothing estimation; for final

results we used the context-weighted-tree (CTW) estimator [39];

the two estimators agreed without bias and to within 4% for final

filters across all cells and stimuli. Optimization was done using

custom stochastic gradient descent code that can avoid local

maxima. We performed two optimization runs for each cell and

each stimulus, and the values of information per spike between the

two runs differed by 1% on average, 98:6% of the runs had a

difference smaller than 5%.

To quantitatively compare the shapes of the filters across stimuli

in experiment 1, we needed to ensure that each stimulus condition

had enough spikes for good filter inference. We required each cell

to have an average firing rate of at least 1:5Hz; 15 out of 23 cells

passed this cut. This threshold, as we explain below, provided us

with enough spikes such that an estimation of linear filters using

MID is very reliable for a synthetic LN benchmark model in which

true filters are known. In experiment 1 we displayed Gaussian

stimuli in addition to HOS stimuli, and we computed spike-

triggered average/covariance to extract STA and the next most

significant filter (orthogonal to the STA) from Gaussian segments.

To judge the significance of the eigenvectors in the STC analysis

we used bootstrapping with subsets of recorded spikes following

[40].

To estimate an error on our determination of linear filters, and

specifically on the balance index b, we performed two analyses.

First, we made two independent runs of MID for each cell and

condition to find the linear filters. The overlap (scalar product) of

the normalized filters across all cells and conditions was

0:986+0:014 (min 0:912, max 0:999) in the two MID runs.

Then we compared the spread between the values of b extracted

from these filters. On average the runs differ by db&0:03. These

errors are estimates due to stochastic optimization used to

implement MID inference (note that across the two independent

runs, the stimulus and spike trains are exactly the same). Second,

to ask about the error due to the limited number of spikes, we ran

our MID procedure on 20 spike trains independently generated by

a synthetic LN model for which the true filter was known; the

number of spikes generated corresponded to the number of spikes

in our cells that just passed the selection threshold. This error

amounted to db&0:015 (with an average filter overlap between

reconstructed linear filters always w0:995), which includes the

error due to stochastic optimization for the synthetic model. These

considerations suggest that stochastic optimization is likely the

dominant source of error for our inference, and that this error is

significantly below the variations in the balance index due to the

stimulus condition.

Table 2. Stimulus generating parameters for HOS stimuli.

stimulus
(std, weight)
of G1

(std, weight)
of G2

mean G2 -
mean G1

S22 (100, 0.25) (20, 0.75) 80

S2 (100, 0.25) (20, 0.75) 32

S+ (20, 0.75) (100, 0.25) 32

S++ (20,0.75) (100, 0.25) 80

K22 (8, 0.5) (8, 0.5) 80

K2 (8, 0.5) (8, 0.5) 40

K+ (20, 0.75) (100, 0.25) 0

HOS stimuli are a mixture of two Gaussian distributions G1 and G2, whose
parameters are given in the second and third columns, respectively. The
displacement of the mean of the second Gaussian vs the first Gaussian is given
in the last column. All units are in lux, and all distributions are matched in mean
and have a std of 40 lux. All distributions are 0 outside of the range ½13,426� lux,
which are the physical limits of the display device.
doi:10.1371/journal.pone.0085841.t002

Table 1. Stimuli S used in the experiment (see main text for the definition of the statistics C,S,K ).

stimulus S symbol contrast C skewness S kurtosis K

Gaussian C+ 0.097 0 0

C++ 0.177 0 0

Skewed S22 0.170 21.9 5.1

(HOS) S2 0.172 21.0 6.0

S+ 0.175 1.0 5.2

3 S++ 0.178 1.9 5.2

Kurtotic K22 0.177 0 21.8

(HOS) K2 0.176 0 20.9

K+ 0.173 0 5.3

The shorthand symbol for the stimulus starts with the C/S/K (for contrast, skew, kurtosis) and is followed by 2,22,+,++ (small magnitude and negative, large magnitude
and negative, small magnitude and positive, large magnitude and positive); therefore, S~fC+,C++,S22,S2,S+,S++,K22,K2,K+g. Parameters in the table denoted in
bold were varied in each of the three stimulus categories.
doi:10.1371/journal.pone.0085841.t001
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Nonlinearities and PSTH prediction
After having reconstructed the linear filters fk1,k2g, we

estimated the nonlinearities as follows: N (v1,v2)~�rr P(v1,v2j
spike)=P(v1,v2), where v1,2~k1,2

:s are the projections of the

stimulus onto the two linear filters, and �rr is the mean firing rate of

the neuron in a given stimulus condition. For 2D nonlinearities,

we binned fv1,v2g values on a 16|16 grid; for estimating 1D

projections of the full 2D nonlinearity, we binned into a number of

bins that was adaptively dependent on the number of spikes, and

used kernel smoothing to approximate the probability distribu-

tions. Prediction performance was only slightly changed when 2D

nonlinearities were sampled over 32|32 domain, and in general

dropped due to overfitting when 64|64 bins were used. We used

2D LN models fit on the nonrepeated segment of the stimulus to

predict the PSTH for the repeated segments, using the time

resolution of 16:67ms, half the stimulus refresh rate. The fit was

quantified by computing the Pearson cross-correlation between

the true and predicted PSTH.

Information captured by the models
In the framework of LN encoding models, one assumes that

only a small number K of linear projections fv1,v2, . . . ,vKg of a

high-dimensional stimulus s determine whether a neuron spikes or

not [41]. In other words, the neuron is viewed as implementing a

probabilistic dependency chain: s?fv1,v2, . . . ,vKg?N (v1,v2, . . . ,
vK )?spike, which implies a chain of information processing

inequalities: Ispike(s; spike)§Ispike(fv1,v2, . . . ,vKg; spike)§Ispike

(N (v1,v2, . . . ,vK ); spike). It is possible to estimate Ispike(s; spike)

from repeated presentations of the same stimulus. If r(t)~

S
PN(r)

m~1 d(t{tr
m)Trepeats is the time-dependent firing rate, where

r~1, . . . ,R indexes the repeats, tr
m is the time of m-th spike in

repeat r, N(r) is the total number of spikes in repeat r, and

t[½0,T � denotes time within the repeat of length T , the estimate for

true information per spike is given by [21]:

Iub
spike~

1

T

ðT

0

dt
r(t)

�rr
log2

r(t)

�rr
; ð2Þ

here �rr~1=T
Ð T

0
dt r(t) is the average firing rate across the

repeated stimulus segment. This quantity is an upper bound to

the information quantities defined above for LN models. The

fraction, e.g. Ispike(fv1,v2gjspike)=Iub
spike (between 0 and 1), tells us

how well the two stimulus projections capture the full dependence

of spiking on the stimulus. Similarly, Ispike(N (v1,v2)jspike)=Iub
spike

(which needs to be lower or equal to the information in the two

projections for the same neuron and stimulus) quantifies how

much information is further lost when compressing the description

of spike-dependence from two projections into a single nonlinear

combination.

The information was estimated from Eq (2) with rates computed

in 16:67ms bins (matching the time resolution of the temporal

filters and the sampling used to calculate DKL in Eq (1)), and was

corrected for small-sample bias by repeatedly estimating the

information on random subsets of stimulus repeats of varying sizes,

plotting the information estimates against 1=Nrepeats and extrap-

olating to infinite number of repeats; we also applied the

correction for the difference between mean firing rates in the

repeated and non-repeated stimulus segments [42]. The expected

extrapolation error is below 1%. To obtain an upper bound for the

systematic error due to short repeat length, we split the repeated

segment in half and estimated the information separately on each

half, which resulted in relative differences with a std of 8%; we

expect the true error to be smaller. Information rates were

estimated by computing the information per spike and multiplying

by the mean firing rate.

For all neurons recorded in experiment 2 (with non-repeated

and repeated stimuli), we computed several information-theoretic

quantities: (i+ii) Ispike(fv1,v2gjspike,S)=Iub
spike(S) is the information

fraction captured by 2 (and 1, respectively) linear filter(s), fit

separately to each stimulus condition S; (iii+iv) Ispike(N (v1,v2)j
spike,S)=Iub

spike(S) are the fractions captured by the nonlinear

combination of 2 (and 1, respectively) projection(s) fit separately to

each stimulus condition S; (v+vi) Ispike(fv1,v2gjspike,global)=

Iub
spike(S) and Ispike(N (v1,v2)jspike,global)=Iub

spike(S) are the frac-

tions captured by a single 2D model (by two projections and their

nonlinear combination, respectively) that has been fit globally to all

stimulus stimuli S. These quantities were all estimated using CTW

estimator for Kullback-Leibler divergence. When estimated on

spike trains that have been shuffled with respect to the stimulus,

the estimator yields negligible values below 10{3 bits.

Optimizing the filter shape for information transmission
The biphasic filter was parametrized by two parameters

fAf ,Asg in a raised cosine-bump basis, where the basis was given

by bi(t)~
1

2
cos (a log (~tt))z

1

2
, for ~tt such that a log (~tt)[½{p,p�,

and zero elsewhere; ~tt~wit{2=3, where t is the time measured in

10ms stimulus frames in the simulation. A similar basis has been

used before for modeling the temporal filters in the RGCs [43].

For our two filters we used a~1= log (1:5); ws~10 and wf ~5

specify the peak time and the width of the slow and fast filters,

respectively.

Predicted information rate of LN models
To computationally simulate the effect that the (lack of)

adaptation would have on the information rate when the stimulus

statistics changes, we used the LN models inferred at high contrast

C++ to predict the firing rate r(t) for stimuli with contrasts

CvC++ and ask how much information such neurons would

carry per spike in the absence of any adaptation. This information

in the predicted rate, Irate, was evaluated using Eq (2) and

expressed as a fraction of information captured by the two relevant

filters (which does not depend on contrast and only serves as a

normalization). We similarly asked how the same quantity would

behave when the global models (single LN models for all cells that

are fit across all stimuli, and therefore have no adaptation) were

used to encode information into the rate for each of the skewed

stimuli.

Results

To characterize how the retina encodes higher-order statistics

(HOS) of the luminance distribution, we presented it with a set of 9

synthetic spatially homogenous stimuli S, where the light intensity

of each stimulus frame was drawn independently from distribu-

tions PS(L) that were matched in mean �LL (see Materials and

Methods; Table 1). The stimuli differed systematically in contrast,

skewness, and kurtosis, as depicted in Fig. 1. To find the relevant

range over which to vary these parameters in our synthetic stimuli

(given that we could only make stable recordings with v10
different stimuli on a single retina), we analyzed a set of calibrated

natural images and extracted the histograms of contrast, skewness

and kurtosis of light intensity. Based on this analysis, we picked 4

different values for skewness, and 3 different values for kurtosis, in

addition to non-kurtotic non-skewed Gaussian distributions, as

Retinal Adaptation to Higher-Order Statistics
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shown in Fig. 2A–E. Note that the range of statistics selected in

this way is much broader, by a factor of up to 5, than what was

used previously in a related study of Ref [31]. To span these ranges

for skewness and kurtosis, contrast values C had to be chosen in

the low range, due to the hardware limitations of the stimulus

display. We generated HOS luminance distributions as mixtures of

Gaussians. Gaussian mixtures represent fast and easy-to-imple-

ment parametrizations for the stimulus distributions, which can

easily be reproduced with the parameters given in Table 2.

To quantify how retinal neurons change their code when

contrast, skewness, or kurtosis of the stimulus change, we

constructed accurate encoding models for the recorded neurons,

and compared their properties under the different stimuli. We thus

followed Ref [42], who have shown that for spatially uniform

Gaussian stimuli in the salamander retina, linear-nonlinear (LN)

models with one or two linear filters often suffice to describe the

cells’ encoding scheme with high accuracy. Moreover, Ref [40]

also provided an interpretation of the filtering operations as

dimensionality reduction on the stimulus space, the success of

which can be quantified with information theory. Here we

extended their framework to non-Gaussian stimuli and analyzed

how information is encoded beyond the linear filtering stage, in

the nonlinear response, and finally in the spiking rate. We could

then characterize adaptation quantitatively, and compare the

behavior of real neurons with computational models that either

have or lack adaptation.

Linear filters of retinal ganglion cells responding to HOS
stimuli

We recorded from 23 retinal ganglion cells that were presented

with 9 types of non-repeated stimuli S (2 Gaussian + 7 higher-

order statistics, Fig. 1) in experiment 1, and from 40 cells presented

with non-repeated and repeated stimuli of 7 types with higher-

order statistics in experiment 2 (see Materials and Methods).

Figure 1. Synthetic stimuli used to probe salamander retinal ganglion cells. The stimuli are spatially uniform with light intensity L drawn
independently on each stimulus frame from PS(L). The probability densities, log PS(L), for all 9 stimuli S used, grouped into 3 categories (cyan =
Gaussian, magenta = skewed, and yellow = kurtotic). All stimuli are matched in mean (225 lux), and all except for C+ have the same contrast; for
details, see Table 1.
doi:10.1371/journal.pone.0085841.g001

Figure 2. Higher-order statistics in natural scenes. A,B) Two example images from the Penn Natural Image Database [32]. The grayscale
images are calibrated into units of cd/m2. The yellow circle represents the typical size of the salamander retinal ganglion cell center. Luminance was
averaged in patches of this size, and contrast (C), skewness (S) and kurtosis (K ) were computed for the distribution over many patches from each
image. The distributions P(L) for the two example images are shown as insets, and the corresponding values for C,S,K are displayed in the two
image panels. C,D,E) The distribution of contrast, skewness and kurtosis, respectively, over 501 natural images. Colored squares represent the values
of the three parameters used in synthetic stimuli (color coded as in Fig 1). 2 cyan stimuli differ in contrast C but have constant S and K ; 4 magenta
stimuli differ in skew S but have constant values of C and K ; and 3 yellow stimuli differ in kurtosis K but have constant C and S (see Table 1).
doi:10.1371/journal.pone.0085841.g002
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Figure 3A shows the estimated information rate of the neurons as a

function of their firing rate. Consistent with previous reports [44],

the information rate I scaled weakly sub-linearly with the mean

firing rate �rr (I!�rr0:76). There were no other large systematic

dependencies in transmitted information across cells and stimulus

classes.

Next, we inferred the best linear filters for each cell, and each of

the stimulus conditions S, separately. We used maximally

informative dimensions (MID) for learning the filters for all stimuli

[37], and for the Gaussian stimuli we additionally used spike-

triggered average and spike-triggered covariance. We also inferred

a global model for each cell, where a single set of filters was fit

across all stimulus conditions (see Materials and Methods). In

cross-validation on test data, the prediction performance of the

models of essentially all cells (97% of cell/stimulus combinations)

increased when using two filters (2D LN models), compared to

one-dimensional LN models, but in some cases the contribution of

the second filter was very small. The linear filters inferred using

MID for one of these cells are shown in Fig. 3B for 9 stimulus

conditions; overlaid is the leading eigenvector of the spike-

triggered covariance matrix computed for the C++ stimulus, and

the best global filter learned by MID. All filters are scaled to unit

norm. The filters show very strong overlap, indicating that their

shape does not adapt substantially to the stimulus distribution. We

emphasize that computing the naive spike-triggered average (STA)

estimates gives a systematic change in filter shape with the stimulus

skew, as shown in Fig. 3C, but this is simply an artifact of the STA

estimation on non-spherically-symmetric stimuli [38,45,46], and is

not indicative of any adaptation process.

Figures 3D–E show a typical cell for which a model with two

linear filters is needed. We again observe a high overlap between

the filters inferred using MID in 9 stimulus conditions, the filter

pair computed using spike-triggered covariance (STC) in the

Gaussian condition, and the single global best pair of filters

inferred across all conditions using MID. 15 of the 23 cells in

experiment 1 have an average firing rate above 1:5Hz for every

stimulus, permitting reliable filter estimation. Out of those, a

single-filter model in the Gaussian condition suffices for 8 cells, i.e.,

the single-filter model accounts for more than 90% of the

information per spike of the two-filter model. For 7 cells two

filters are needed. To measure the agreement between inferred

filters across conditions for each cell, we compute the overlap

Figure 3. Linear filters and higher-order statistics stimuli in retinal ganglion cells. A) Estimated information rate (see Methods) as a
function of the mean firing rate. Each dot represents one of the 40 cells in experiment 2 exposed to one of the 7 HOS conditions (skewed stimuli in
magenta, kurtotic in yellow). The growth in information is slightly sublinear, with no obvious systematic dependence on the stimulus type. B) A cell
whose behavior is captured well by a single linear filter. Shown in light blue are the filters for all 9 (2 Gaussian, 7 HOS) stimuli reconstructed using
maximally informative dimensions; in black the spike-triggered average computed on the Gaussian stimulus C++; in red, a single global filter inferred
using MID across all stimulus conditions simultaneously. C) Biased STA filter estimates for 5 skewed stimuli (thicker lines mean increasing skewness)
for the same cell as in B (note the difference in the time axis). D,E) A cell whose behavior is described well by two linear filters (light blue = the most
informative dimension; dark blue = the second most-informative dimension). Other symbols the same as in B). F) Information captured by two filters
(across stimuli, horizontal axis), as a fraction of the total information per spike; mean (bars) and interquantile range error bars across 40 cells in
experiment 2. The average performance of global models (the same pair of filters across all stimuli for each cell) is plotted as red squares.
doi:10.1371/journal.pone.0085841.g003
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(scalar product; the filters are unit Euclidean norm) between the

STC derived filter(s) in the Gaussian condition, and the filters

derived using MID for each stimulus condition S. The average

overlap across the group of cells with a single linear filter is

97%+2%, while the average overlap across the group of cells with

2 filters is 87%+10% (error bar = std across cells). The decrease

in the latter case is most likely attributable to the difficulty of

inferring jointly 2 filters using MID with a limited number of

spikes; we observe a systematic decrease in correlation for smaller

numbers of spikes, and the estimates of the second filter are

noticeably more noisy than the estimates of a single (first) filter.

We quantified the effects of changing the higher-order statistics

on the shape of the linear filters by computing the balance index b.

b~0 indicates a balanced filter that yields zero output on a

temporally constant signal, thus behaving as a differentiator, while

b~+1 indicates a completely unbalanced filter that behaves as an

integrator. More precisely, b is defined as the ratio between the

total (signed) area under the filter and the absolute area:

b~
P

m km=
P

m jkmj, where m indexes the temporal components

of the filter. The balance index across the recorded population was
�bb~{0:0350+0:13 (n = 40 cells from experiment 2), where the

mean and error bar (std) are taken across all cells and all

conditions. Broken down across conditions, there is a small

systematic modulation of b with the stimulus (Fig. 4 and inset),

with a std of about 0.09 (see Methods for an error estimate for our

determination of b; we use a conservative estimate of db~0:04
due to stochastic optimization and finite number of spikes). This

variation in median value of b, while fractionally small, is

statistically significant at pv0:01 between 16 out of 21 pairs of

conditions, amongst others, between S22, S2, and all other

conditions, and between K+ and every other condition but S++,

between some other pairs. Significance was assessed using

bootstrap resampling to estimate the distribution of the median

difference between pairs of conditions, assuming IID gaussian

errors of magnitude db for every cell, and testing against the null

hypothesis that the difference is consistent with zero; significance

test was Bonferroni corrected for multiple comparisons. We have

also clustered the neurons into two major classes, fast-OFF and

slow-OFF (along with a few unclassified cells; in salamander retina,

OFF-type cells account for 80% of all retinal ganglion cells as

reported in Ref [47]); for two left-most skewed stimuli, S22 and

S2, cells in the two classes have significantly different mean

balance index (pv3:10{4, two-sided t-test), while for the other

stimuli the differences are not significant. We provide further

examples of the most significant linear filter in each condition for 4

more cells in Fig. 5.

To ask whether these slight variations in filter shape across

stimuli matter for encoding, we compared the performance of

global filters, constant for each cell across all the stimuli, with filters

inferred separately for each stimulus. We estimated the informa-

tion captured by the single-filter model, by a two-filter model, and

by a two-filter global model, where a single pair of two filters is

inferred for all stimuli for each cell. Single-filter models (fit to each

stimulus separately) captured 69%+12% (+15% interquartile-

range, or IQR, which measures the spread around the median that

contains 50% of the data) of the information per spike (averaged

across cells and stimuli). Two-filter models (fit to each stimulus

separately) captured 81%+12% (+16% IQR) of information per

spike, as shown in Fig. 3F; for some cells, two filters capture

essentially all of the information. Our observations were quanti-

tatively consistent with the results reported previously [42].

We compared this information capture with the performance of

global models, where the filters for each cell do not change with

the stimulus condition. Averaged across conditions, the global

models captured 77%+13% (+15% IQR) of the information per

spike. Information captured by separate models must be higher or

equal to the information captured by the joint model, by

construction; we next asked about the significance and magnitude

of this difference. In all skewed conditions (S22, S2, S+, S++),

the median differences were small (v1:2%), while for K22, K2,

and K+, the differences were larger, 4.9%, 3.9%, and 13%,

respectively. For all skewed conditions, the information captured

by separately inferred filters was not significantly different from the

information captured by the global filters, while it was different for

kurtotic conditions (pw0:01; significance was assessed using

bootstrap resampling to estimate the distribution of the median

difference between separate and joint capture, and comparing to

null hypothesis of zero difference; we assumed conservative IID

gaussian errors of 2% on information capture for every cell; see

Methods).

Our results show fractionally small changes in the shape of the

linear filters for salamander retinal ganglion cells in response to

changes in skewness and kurtosis. For changes in skewness, these

observed changes in the filter shape change the amount of

information per spike captured by an amount that is close to the

resolution of our inference method; for changes in kurtosis, the

changes are larger.

Nonlinearities of retinal ganglion cells responding to HOS
stimuli

Completing the LN description of the ganglion cells is the

mapping from the linear projection(s) of the stimulus into the cell’s

firing rate. We estimated these 2D nonlinear functions from the

data by binning P(v1,v2jspike), where vi~ki
:s are the projections

of the stimulus onto the two filters, k1,k2, as explained in Materials

and Methods. This was done for each neuron and each condition

separately, or for all conditions jointly using the global pair of filters,

to yield a single 2D global LN model for every cell. Figure 6A

shows a global nonlinear function for an example neuron. In

Fig. 6B we explicitly show, for that same neuron, the prior

ensembles for all 7 higher-order statistics stimuli (gray), with

overlaid spike-triggered ensembles for skewed (magenta) and

kurtotic (yellow) stimuli, along with the marginal projections of

Figure 4. The dependence of the balance index on the stimulus
type. The balance index b is a ratio between the total (signed) area
under the most significant linear filter of each cell, normalized by the
absolute area of the filter; balanced filters have b~0, fully unbalanced
b~+1. Individual dots represent 40 individual cells from experiment 2,
which have been grouped into fast-OFF and slow-OFF classes (blue and
red, respectively), and a small group of unclassified cells (green). Black
symbols show the averages (+1 std error bars across the recorded
population). Inset shows the dependence of the balance index b as a
function of skewness S drawn to scale; the best linear fit (red) is
b&{0:05Sz0:01.
doi:10.1371/journal.pone.0085841.g004
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these distributions. We first estimated how much information is

lost in compressing the 2D projections fv1,v2g into the nonlinear

combination, N (v1,v2), on average. As shown in Fig. 6D, the

nonlinearity captured 80–85% of the information per spike (fit for

each condition separately), essentially the same amount as the two

linear filters (c.f. Fig. 3F); mathematically, this means that

Ispike(fv1; v2g; spike)&Ispike(N (v1,v2); spike) (see Methods). This

finding establishes that the nonlinear mapping itself does not

discard the information per spike, and that analyzing the changes

in point-wise nonlinearities is warranted.

Does the nonlinearity change with the stimulus condition? The

number of spikes is in general insufficient to reliably sample and

then systematically compare the 2D nonlinear functions across

cells and stimuli. We thus decided to base our comparisons directly

on the firing rate prediction performance. The 2D models for cells

in experiment 2 are fit on the non-repeated segments, and are

subsequently tested by predicting PSTH in response to repeated

stimulus presentations for which we could measure the true PSTH;

here, too, the prediction was done either with models fit separately

at each condition, or with the global model, where 2 linear filters

and the nonlinearity were fit simultaneously across all stimuli, as

shown in Fig. 6C. In terms of PSTH prediction, the prediction of

the 1D LN models, fitted to each conditions separately, had

64%+8% (9% IQR) correlation with the real PSTH (error bar =

std across 40 cells and 7 stimuli). 2D LN models were better with

74%+9% (10% IQR), as shown in Fig. 6D. The global models

that had constant filters and nonlinearity across 7 higher-order

statistics conditions, performed negligibly lower, with 72%+9%
(11% IQR) correlation. Condition by condition, the differences

between global and separate models were small (median differ-

ences of 1.1%, 1.3%, 0.2%, 1.9%, 3.2%, 1.1%, 5.8%, for S22,

S2, S+, S++, K22, K2, K+, respectively) and statistically

insignificant for all conditions except K22 and K+ (pw0:01;

significance was assessed using bootstrap resampling to estimate

the distribution of the median difference between global and

separate models and comparing to zero difference null hypothesis;

included was an estimated gaussian IID 3% error on PSTH

prediction due to a limited number of stimulus repeats for

computing the true PSTH). Similar to the comparison of linear

filters, the largest difference is observed at K+ condition; this is also

the condition where the spike rate is lowest and the models are

hardest to infer.

Finally, we can ask how successfully the global models

recapitulate the overall firing rate changes with the stimulus

statistics. Figure 7A shows the relative change in firing rates for

cells from experiment 2 for 7 HOS stimuli; the cells have been

sorted to reveal the dominant pattern, where cells that prefer left-

skewed stimuli respond less strongly to the other stimuli, while cells

that respond strongly to right-skewed stimuli also respond to

negative kurtosis. We can use a global 2D LN model fit for every

cell to predict separately the mean firing rate in response to each of

the 7 stimuli; note that the model is only constrained to fit the

overall firing rate (across all conditions together). These models

that lack any adaptation nevertheless reproduced very well the

mean firing rate for each stimulus and cell, as depicted in Fig. 7B,

and therefore also the pattern of changes in the firing rate.

Comparing the observed HOS-induced effects to
contrast adaptation

We observed that the encoding properties of salamander

ganglion cells depend on higher-order statistics of the luminance

levels in a way that is statistically significant for some of the

conditions, but the observed changes in model parameters and the

related model performance measures were fractionally small,

usually ranging from no significant change to *10%. Here we ask

whether these changes are large or small in comparison to those

elicited by the well-characterized contrast adaptation mechanism,

and whether there is any theoretical reason for adaptation to

contrast to be different from the adaptation to higher-order

statistics.

Figure 5. Linear filters and balance index for four example cells in different stimulus conditions. Each panel shows the linear filter in four
skewed conditions (magenta), three kurtotic conditions (yellow), and the gaussian condition of matched variance (cyan). {{ stimuli are denoted by
circles, { stimuli by triangles, z stimuli by squares, and zz stimuli by stars. The balance index for 3 selected filters (two extreme skewed
distributions and the zero skew condition, G) is reported in each panel.
doi:10.1371/journal.pone.0085841.g005
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We analyzed the recordings from experiment 1 where neurons

were also exposed to high (C++) and low (C+) contrast Gaussian

stimuli. Since our analysis kept the filters normalized to unit

length, contrast adaptation would be reflected in the change of the

shape of the nonlinearity. Indeed, this can be seen in Fig. 8A

(inset), which shows the (marginal) nonlinearity, N (v1), of a typical

neuron for the high- and low-contrast experiments. We then took

the nonlinearity from the low-contrast experiment and rescaled it

as follows. First, we rescaled the range of inputs to the nonlinearity,

v1~k1
:s, by the ratio of high to low contrast, C++/C+~1:82.

Second, we also rescaled the output firing rate by the ratios of the

steady-state firing rates in both C+ and C++ conditions (the rates

are not equal because the neurons do not adapt perfectly). After

these two rescaling operations, the measured nonlinearity for C++
(high contrast) stimulus lined up well with the rescaled nonlinearity

from the C+ (low contrast) stimulus, indicating the ability of the

neuron to adapt to contrast. This observation was generally true

for most (19 out of 23) neurons in our dataset, as shown in Fig. 8A.

The rescaling fails at very high firing rates, because they are not

accessed in the low contrast condition, and (potentially) because

we were only looking at the marginal 1D (and not the full 2D)

nonlinearity. Importantly, the nonlinearity gain during contrast

adaptation changes by the same factor as the contrast—in this case

almost two-fold—implying that changes in contrast experienced

during natural vision will lead to changes in gain that are not just

Figure 6. Nonlinearities and rate prediction with higher-order statistics stimuli. A) A 2D nonlinearity globally fit across all HOS stimuli for
neuron E1C2; projection of the first (second) filter shown on the horizontal (vertical) axis. Hotter colors indicate increased firing rates (see colorbar,
rate in Hz; white = regions of fv1,v2g space where no spike or prior samples have been observed). B) For the same cell, the depiction of prior
ensemble (gray dots, all 7 higher-order statistics stimuli overlaid) and the spike-triggered ensembles (magenta = skewed stimuli, yellow = kurtotic
stimuli); shown are also projections of the data, i.e. the marginal distributions P(v1) and P(v2), on the logarithmic scale, for all 7 stimuli separately. C)
The segment of predicted and true firing rate in responses to repeated K2 stimulus presentations (red = 2D LN global model fit to all stimuli for this
neuron; black = true rate). D) Model performance, measured as the Pearson correlation (PC) between the true and predicted PSTH, across different
stimuli (horizontal axis; average and error bars = mean and interquartile range across 40 neurons in experiment 2). The performance of 2D LN models
fit separately for each stimulus is shown by magenta (skewed stimuli) and yellow (kurtotic stimuli) bars. Global model performance (red squares)
matches the performance of models fit separately. Right axis, in green: information fraction captured by the nonlinear combination of the 2 linear
projections, N (v1,v2), shows no drop compared to the information captured by the linear features themselves (c.f. bars in Fig. 3F), and is between
80{85% across all stimuli (error bars omitted for clarity, comparable to error bars in information fraction captured by the 2 linear features).
doi:10.1371/journal.pone.0085841.g006

Figure 7. Measurement and prediction of changes in the mean
firing rate with stimulus condition. A) The relative change (color
scale, 1 = the firing rate of the cell is equal to the mean rate for that cell
across all stimuli) in the mean firing rate for 40 cells of experiment 2, as
a function of the stimulus condition (magenta = 4 skewed, yellow = 3
kurtotic stimuli). Neurons (rows) were sorted by the projection on the
first principal component explaining most of the change across the
recorded population; cells close to the top increase the firing rate in
response to left-skewed stimuli, while cells at the bottom increase the
rate in response to right-skewed and negative kurtosis stimuli. B) Global
2D models for each cell predict the average rate well (each dot is one
cell in one of the 7 HOS stimulus conditions).
doi:10.1371/journal.pone.0085841.g007

Retinal Adaptation to Higher-Order Statistics

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e85841



fractionally small as they appear for HOS stimuli, but can easily

exceed 100% [13,14,19,20,21,22].

When the stimulus contrast changes, retinal ganglion cells adjust

their gain, matching the variation of the signal about the mean to

the dynamic range of the firing rate at the output, thereby keeping

the information rate high. Without adaptation, the information

rate would drop because the neurons have a limited output range

and they are noisy. ‘‘Noise’’ in the context of LN encoding models

is the stochasticity related to the spike generation: from the

stimulus s to spike, s?fv1,v2g?N (v1,v2)?spike, it arises when

the nonlinear function N is interpreted as the mean firing rate of a

Poisson point process. To computationally explore the effects of

the presence or absence of adaptation, we generated spikes

according to this LN prescription in response to various stimuli,

and measured the information in such synthetic spike trains using

Eq. (2). By using the true inferred (adapting) models for low and

high contrast, we found that in both conditions the real spiking

neuron can retain *90% of the information extracted from the

stimuli by the linear filters. On the other hand, when using the

model inferred at high contrast, holding it fixed (no adaptation),

and probing it with stimuli of progressively lower contrast, the

information rate dropped significantly, as shown in Fig. 8B. The

situation is very different for skewness (or kurtosis): Fig. 8C shows

that no such drop in information is observed when the global

model is used to generate spikes in case of skewed stimuli, making

adaptation unnecessary and invariant encoding possible.

This effect is easy to understand if we compare the extent to

which the 9 stimulus distributions differ a priori, after filtering by

the neuron’s linear filters, and after passing through the nonlinear

function. For this analysis we used real linear filters and nonlinear

functions reconstructed for all neurons in experiment 1 (see Fig. 9

caption for details). Figure 9A shows a 9|9 matrix of the

Kullback-Leibler distances DKL(Pi(s)jjPj(s)) between all pairs of

stimuli i,j~fC+,C++,S22,S2,S+,S++,K22,K2,K+g (2 Gauss-

ian, 7 higher-order statistics). The bimodal stimulus K22 is

clearly distinct from the others. After linear filtering (Fig. 9B),

however, the low contrast stimulus C+ differs the most from the

others, which are all mutually matched in contrast. Because linear

filters, as we have shown, stay essentially unchanged in shape, this

is simply a consequence of the central limit theorem: the filters sum

up (with weights) samples drawn independently from the stimulus

distributions PS , so the filter outputs must converge to Gaussian

distributions with variances that are related to the variance (or

contrast) of the input. In other words, the invariant linear filters

remove the signatures of higher order statistics and ‘‘equalize’’

different stimuli with the exception of their contrast. In the last,

nonlinear stage (Fig. 9C), the nonlinear functions adapt to contrast

as well, ultimately yielding LN model outputs whose distributions

are very similar across the range of stimuli differing in contrast,

skewness and kurtosis.

In sum, the analyses of Figs. 8 and 9 suggest that contrast

adaptation is qualitatively different from the putative adaptation to

higher-order statistics. Without contrast adaptation, where the

gain change must be of the same magnitude as the change in

contrast itself, the information rate of the neuron would fall

substantially (see also, e.g., [48]). A lack of adaptation to higher-

order statistics does not lead to a drop in the observed information

rate. The crucial role for this distinction is played by the initial,

linear, stage, where higher-order statistics—but not contrast—are

averaged away by the summation in the receptive field. Thus, so

long as the linear stage can average over sufficiently large number

of stimulus samples, efficient coding in LN models requires

contrast adaptation, but not adaptation to higher order statistics.

Optimal LN encoding of HOS stimuli
We have shown that the real neurons and their non-adapting

model versions are essentially matched in the amount of

information they can encode about the HOS stimuli. What

remains unclear is how the real and non-adapting neurons are

performing relative to optimal neurons, which could pick a separate

linear filter for every stimulus condition so as to maximize the

Figure 8. The benefits of contrast and higher-order statistics adaptation. A) Inset. The 1D nonlinearity, N (v1), for an example neuron (E0C4)
inferred at high contrast (C++, light blue), and at low contrast (C+, dark blue). The low contrast nonlinearity can be aligned to the high contrast one
by (i) rescaling the stimulus (horizontal) axis by the ratio of the two contrasts, and (ii) rescaling the firing rate (vertical) axis by the ratio of the two
average firing rates, yielding the red line. Main panel. Scatter plot of the nonlinearity at high vs nonlinearity at low contrast (black, 19 neurons from
experiment 1; the coordinates of each point are the high/low C nonlinearity values at the same value of the projection v1 for a particular neuron).
After rescaling, the nonlinearities align (red). The scaling breaks down for rates above 30Hz (rarely observed at low contrast). B) The information in
the spiking pattern of a LN model neuron, normalized by the information captured by the two linear projections of the corresponding stimulus. Cyan
circles = inferred models for 19 neurons for high and low contrast (C++, C+) stimulus. Green line = computational prediction obtained by taking 19
high contrast models and dialing down the stimulus contrast without any adaptation in the model (error bars = std across the neurons). C)
Analogous analysis for changes in skewness (note the difference in scale); magenta = models inferred separately for each skewed stimulus; green =
invariant (and therefore non-adapting) global models for every cell.
doi:10.1371/journal.pone.0085841.g008
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amount of encoded information. How much information gain, at

best, could adaptation to higher-order statistics convey?

To answer this question, we considered a one-dimensional LN

model neuron, whose probability of spiking was assumed to be a

saturating nonlinear function of the filtered stimulus:

P(spikejs)~
1

2
tanh (k(S):szh(S))z

1

2
, ð3Þ

where the linear filter k and the spiking threshold h may depend

on the stimulus type S. We simulated spike sequences s of this

model neuron in response to repeated presentations of the

stimulus, whose value in each time bin was drawn independently

from from PS(L): s(t,r)~f0,1g was ‘0’ when the neuron was

silent in time bin t and during repeated presentation r of the

stimulus, and ‘1’ if it spiked. To quantify how well such a neuron

encodes information about the stimulus into spike trains, we

estimated the information rate I (in bits per second) between the

stimuli and the response, using the direct method [49].

For stimulus types S of varying skewness, we found the optimal

filter k and the threshold h that would maximize the information

rate I that the neuron would convey. If real neurons were adapting

in such a way, this procedure would then predict how their filters

would change with the stimulus distribution. We made the

following assumptions: (i) the linear filter was biphasic, with a

‘‘fast’’ lobe of amplitude Af , and a ‘‘slow’’ lobe of amplitude As,

whose widths and the positions were fixed, so the filter was fully

specified by the two amplitude parameters fAs,Af g as schema-

tized in Fig. 10A (also see Methods); (ii) we maximized the

information rate I for a fixed average firing rate �rr; (iii) the

effective noise of the neuron, or fraction of output entropy that is

lost to noise, g~Snoise=Stotal, was fixed. We chose biphasic filters

for three reasons: first, they can be parametrized easily, making

their optimization tractable; second, the filters of retinal ganglion

cells in different species and across stimuli have bi- or mono-phasic

shapes; third, on such filters the balance index b is well-defined

and interpretable, a condition for comparing b extracted from

data to our model findings. We also note that 1{g is a standard

measure of coding efficiency. g~1 means that all the entropy of

the spike train is noise entropy, i.e., that the response is completely

uncorrelated with the stimulus; such a code has zero coding

efficiency. On the other hand, g~0 means that the total entropy

of the spike train codes for information reliably, corresponding to a

100% efficient code. In our case, the total and noise entropies are

estimated as in Ref [49].

Figure 10 shows the dependence of the information rate on the

shape of the stimulus filter: left-skew distributions (S22) slightly

favor OFF cells (negative fast lobe, positive slow lobe, Fig. 10B),

while right-skew distributions (S++) slightly favor ON cells (not

shown). This conclusion was robust to noise in the neuron g
ranging from *0 to 0.5, which is broadly the range for

salamander ganglion cells [36]. For a specific choice of g~0:2
in Fig. 10C, Fig. 10D shows the dependence of information rate

on the ratio of the fast to slow lobe amplitude, tan w~Af =As. For

each stimulus (S++ and S22), there are two local maxima, one for

an ON-like and one for an OFF-like cell, which differ in the

transmitted information by less than 10%. Importantly, however,

the maxima are not achieved at the same value of q in both

stimulus conditions – this means that while an adapting ON or

OFF cell can maintain the same rate of information transmission

when the stimulus changes, it will need to modify the filter shape

by adjusting the ratio Af =As.

Focusing on the case of an OFF cell, we found that an optimally

adapting cell would increase the area under the fast (negative) lobe

and would decrease the area under the slow (positive) lobe with

increasing skewness. We used the balance ratio b, introduced

previously, to quantify this change. Figure 10E shows significant

changes in the filter shape with skew that range from b~0:3 for

S22 to b~{0:3 for S++ (the optimal filter for the Gaussian

stimulus is balanced (b~0), with equal and opposite areas under

the two lobes). However, these substantial changes in the filter

shape only lead to moderate changes in the amount of encoded

information: in the case shown in Fig. 10, the information gain of

the adaptive neuron relative to the case of no adaptation is always

less than 10%. While the exact number varies with the chosen

constraints—�rr, g, the locations and widths of the filter lobes—

three qualitative observations remain true: (i) we have theoreti-

cally shown that biphasic filters outperform monophasic (single

lobe) filters for all skewed and Gaussian stimulus ensembles

examined; (ii) the neurons should adjust the biphasic linear filter

Figure 9. Neurons with contrast adaptation yield similar distributions of firing rates in response to very different distributions of
inputs. Differences between distributions of stimuli before linear filtering, after filtering, and after nonlinear transformation, are quantified by
Kullback-Leibler divergence matrix, DKL , measured in bits [56]; while this is not a proper distance metric (since it is not symmetric), a value of 0
indicates identical distributions, and high values signify very different distributions. A) DKL between all 9 pairs of stimulus distributions (cyan = 2
Gaussian, magenta = 4 skewed, yellow = 3 kurtotic distributions). Bimodal K22 distribution is most different from the others. B) The difference
between the respective 2D linear projections of the 9 stimulus distributions (shown are the averages over DKL matrices for 19 neurons in experiment
1). Linear filtering of IID stimuli washes out most of the higher-order structure (but not the second order), and the most distinct stimulus type at this
stage is C+, since its variance is different from the other distributions of projections. C) DKL (average over 19 neurons) between the nonlinear
transformations of the respective linear projections. Since the nonlinearity adapts to contrast, this step equalizes the low contrast (C+) with the other
stimuli.
doi:10.1371/journal.pone.0085841.g009
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away from the balanced configuration (optimal for Gaussian

stimuli) by systematically adjusting the weight under the fast and

slow lobes so that, e.g. in case of the OFF cell, negative skew favors

larger weight in the slow lobe; but also that (iii) these adaptive

changes would only lead to small relative information gains.

The optimal changes in the filter shape predicted here for a

change in skewness are qualitatively consistent with changes in real

filters observed in Fig. 4: for OFF cells, positive skewness leads to

negative b, and negative skewness leads to positive b, although the

changes observed in the recordings are smaller than the optimally

predicted ones. Despite this apparent match, we find that neither

in the theoretical model nor in the data do changes in filter shape

lead to very large changes in the amount of information a neuron

can encode about the stimulus.

Discussion

We explored adaptation to higher-order statistics in the light

signal, by analyzing the responses of salamander retinal ganglion

cells to temporally uncorrelated and spatially uniform stimuli with

Gaussian, skewed and kurtotic luminance distributions. While the

retina is highly adaptive to changes in first and second order

statistics, we found much smaller changes in neural encoding in

response to variations in stimulus skewness and kurtosis. A specific

instance of this has been reported in relation to switches between a

Gaussian and a binary stimulus of the same variance; there

appeared to be no adaptation to kurtosis, but higher-order

statistics could, interestingly, affect the dynamics of adaptation to

contrast [50]. A related result was reported in the cat LGN for

spatially structured stimuli, using 1D LN models inferred using

reverse correlation [31]: no changes in cells’ encoding properties

were observed for spatial textures, but the range over which the

skewness and kurtosis varied was much smaller than in our study.

To establish our result, we compared the shape of linear filters

across the stimulus conditions directly (by measuring their overlap

and the balance quantity b), by information-theoretic measures

(information per spike captured), and through the impact on the

prediction performance; similarly, we assessed the changes in the

nonlinearity by measuring their impact on the firing rate

prediction performance. In all cases—with the possible exception

of the highly kurtotic (K+) stimulus—we found that global models,

i.e., models with an invariant pair of filters and an invariant

nonlinearity, account for the neural behavior almost as well as the

models fit to different stimuli separately. This is in stark opposition

to contrast adaptation, where some encoding properties of the cells

(e.g., nonlinearity gains) change in proportion to the change in

contrast and are thus straightforward to detect.

Do the ganglion cells in the salamander retina adapt to skewness

and kurtosis? Unlike for the case of contrast, this question is not

easy to answer. We do observe statistically significant changes in

the shape of filters between some, but not all of the conditions, as

well as changes in the information captured by the model, but

these changes are fractionally very small; some of them are close to

the estimated resolution of our inference method. When one

approximates a neuron responding to stimuli of varying statistics

with a simple LN model, one would expect, on general grounds,

that the parameters of the approximating LN model depend on

the stimulus statistics. The observed changes thus do not

necessitate the existence of a separate biological adaptation

process in the real neuron, and could simply imply that the

neuron’s best LN approximation is slightly different when it is

driven by signals with different statistics. Furthermore, adaptation

is usually taken to mean not any change in encoding, but a

functional change in particular, one which improves the neuron’s

signaling quality. When viewed through this measure, the small

changes we observe improve information transmission only

marginally over a non-adapting model. In sum, while our

measurements cannot rule out adaptation to the list of higher-

order statistics that we tested, they strongly suggest that any

adaptive changes that can be accounted for by 2D LN models

must be small and are unlikely to be functionally significant for

encoding, with the possible exception of K+ stimulus.

Should the ganglion cells in the salamander retina adapt to

higher-order statistics? Two analyses that we performed suggest

that for temporally uncorrelated stimuli adaptation to HOS is

unlikely to yield large benefits for information encoding. First, any

Figure 10. Finding optimal filters for an LN model neuron for stimuli with negative skew (S22). A) The biphasic filter with two
parameters determining the amplitudes of the fast and slow lobes, fAf ,Asg. Each of the amplitudes can be positive or negative. When As is positive
and Af is negative, the cell is an OFF cell; when As is negative and Af is positive, the cell is an ON cell. B) Information about the stimulus encoded in
the spike train (bits per second, color scale), as a function of the fast lobe amplitude Af and the slow lobe amplitude As . The ON and OFF types have
been denoted in the 2 corresponding quadrants of the plot. C) Fraction of entropy lost to noise, g, as a function of fAf ,Asg. Points in the plane that
have g*0:2 are shown in white, and lie on a circular locus of points; we are only interested in the models with fixed value of g. We parametrize such
points by their angle, w, going counterclockwise from the vertical (Af ~0). Magenta dot (here and in B, D) denotes the (OFF) filter that maximizes the
transmitted information. D) Information on the locus of points g*0:2 as a function of w; these values are extracted from B) along the g~0:2 contour.
Green points correspond to ON cells, cyan points to OFF cells. There are two peaks in information, one (slightly higher) peak for the OFF type cell and
one for the ON type cell. For positive skew (S++, not shown for clarity), the results are analogous, with the maximum achieved for ON instead of OFF
cells. E) Theoretical prediction for the shape of the optimal biphasic OFF filters for stimuli with different skewness values. As skewness increases from
negative (S22, red) to positive (S++, blue), the negative lobe becomes more prominent and the positive lobe becomes less prominent. For the
symmetric Gaussian stimulus (C++, green) the optimal filter is balanced. These changes are quantified by the balance index b (see text), which
measures the difference in area between the lobes, normalized to the total absolute area under the filter. For the simulations in this figure, the
stimulus refresh time is 10ms and mean firing rate is held fixed at 5Hz (results are qualitatively unchanged for rates up to fourfold higher).
doi:10.1371/journal.pone.0085841.g010
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model of neural processing which starts by linearly summing the

light signal in the recent past with an invariant linear filter will

tend to wash out any signatures of HOS, such that the output of

the linear filter will converge to a Gaussian distribution, by direct

application of the central limit theorem. This convergence will be

much faster if the signal is spatio-temporal as in the case of Bonin

et al. [31], since in that case the neurons perform spatio-temporal

summation in their receptive field over a much larger number of

samples from the luminance distribution. In short, after the linear

stage, the only two statistics that are retained from the original

signal in the distribution of filter outputs are the mean luminance

and the contrast. Second, even if the linear filters are not invariant

but can change with the stimulus condition, our computational

model in Fig. 10 shows that substantial changes in optimal filter

shape with skewness only yield order 10% improvements in

encoded information or smaller, much less than what contrast

adaptation can deliver (Fig. 8B). While the exact numbers are

specific to model details, the general argument that makes contrast

adaptation qualitatively different from the putative HOS adapta-

tion remains true (but see the discussion about analysis limitations

below).

If the central limit theorem erases signatures of higher order

statistics in the filter outputs, could the nervous system beyond the

retina ever respond to such statistics when manipulated in

synthetic stimuli (e.g., as in the psychophysically demonstrated

sensitivity to changes in luminance histograms beyond contrast in

humans)? First, there might be cells that respond selectively to

HOS which are rare and haven’t been observed in our

experiment. Another explanation is that in salamanders, and

unlike in humans, there simply is no sensitivity to higher order

moments of the luminance distribution. The third option is that

the removal of HOS statistics by linear filtering is not complete,

only approximate, and the remaining deviations get encoded into

the spike trains. Lastly, there exists another interesting explana-

tion. Central limit theorem guarantees that the distribution of filter

outputs will converge to a Gaussian. However, linear filtering

(even of identical independently distributed luminance levels)

induces temporal correlations in the filter output, and conse-

quently could induce temporal correlations in the spike train.

Those correlations could differ between two stimulus distributions

matched in mean and variance, and differing in HOS. In contrast,

for natural stimuli with long temporal correlations, the linear

filtering in the receptive field might not (fully) remove the

signatures of HOS, as we explain below, thus allowing

downstream processing to detect and respond to HOS changes.

Even if an adaptive code were to confer (a small) coding benefit,

it would also incur additional costs due to its ambiguity. The same

response from an adapting neuron can, for example, signal two

different light intensities, depending on the stimulus history.

Downstream neurons must therefore rely either on keeping track

of the adaptive state of the encoding neuron, or on using diversity

in the neural population in a proper way to estimate the stimulus.

Moreover, nontrivial processing is required also on the encoding

side: the adaptive neuron needs to infer from the stimulus itself

whether some underlying property of the stimulus, such as the

mean luminance or contrast, has changed and thus an adaptive

response needs to be triggered. Such detection might not be easy,

and in particular, might require a substantial number of

independent stimulus examples (and thus time). In short, adaptive

codes most likely incur computational costs that invariant codes do

not. One explanation for the lack of dynamic adaptation to higher-

order statistics is therefore that it does not yield much gain in

information, while potentially increasing the coding cost and

complexity. Instead of implementing a costly adaptation mecha-

nism able to dynamically change the filter shape on an individual

cell basis in response to stimulus skew, the neural population

could, for example, be structurally adapted to the overall

luminance distribution of natural scenes, by (e.g.) properly

partitioning the population between ON- and OFF-like cells [51].

Taken together, while some of the (small) changes in the

encoding properties of retinal ganglion cells that we report may be

statistically significant, the issue of whether these changes

constitute ‘‘adaptation’’ is likely to remain a matter of interpre-

tation. The changes are consistent with adaptation, and are also

qualitatively consistent with the theoretically expected changes in

optimal filter shape for different values of skewness. On the other

hand, their functional effect on information encoding is small

compared to the changes during, and benefits of, the adaptation to

contrast. This is expected based on a simple theoretical argument,

and confirmed in a toy model of an adapting LN neuron. Sparse,

highly kurtotic stimuli (like K+) merit further attention, and point

to the possibility that an alternative experimental design could be

more successful in pursuing adaptation to HOS. To be concrete,

we discuss below three limitations of our current analysis and

conclude by making suggestions for follow-up experiments.

First, we have used LN models fitted to data to probe for

adaptation, by looking for stimulus-statistics-induced changes in

the model parameters. While this is a standard procedure in

sensory neuroscience, we note that one cannot exclude adaptation if

LN model parameters don’t change, or if they change very slightly.

If information were encoded in, for example, spike-train temporal

correlations, and the neuron modulated that correlation structure

with the stimulus condition, our analysis would have missed such

changes. One could attempt to capture the effects of spike

interactions by, e.g., generalized linear models [43] or Keat-type

models [35], which would also enable us to predict the PSTH of

single neurons even better. Alternatively, adaptation could be

taking place at the level of the whole neural population, an idea

that we explored recently in a theoretical setting [52]; our current

analysis would also be unable to capture such effects. Nevertheless,

on the level of single-spike sensitivity to the stimulus, our 2D LN

models tend to capture the majority of information per spike, and

it is unlikely that any major adaptive effects would go unnoticed.

Second, we were restricted to the low range of contrasts by the

limitations of our display device. If HOS adaptation mechanisms

were conditioned on the light signals having a high contrast, our

current experimental design would preclude us from detecting

such adaptation. More fundamentally, it is not clear what are the

actual statistics that the neurons are adapting to [31,53]. While we

commonly think in terms of contrast, skew, and kurtosis as the

relevant statistical properties of stimuli, it is not obvious that the

brain relies on these same measures in dealing with natural scenes.

In particular, they may be poor choices in natural settings, as their

values are sensitive to outliers and because they might vary in a

dependent way in nature (c.f. [54]). It therefore remains an open

question which estimators the retina (and other neural systems) are

using for contrast-, skew-, and kurtosis-like statistics, and which of

these measures drive adaptive processes.

Third, our reasoning about the limited benefits of HOS

adaptation in LN-type neurons rests on the application of the

central limit theorem. We used full field stimuli (which are spatially

maximally correlated) to address an absence of the observed

adaptation in Ref [31]. There, random checkerboard stimuli were

used, raising the possibility that adaptation was not observed

because the convergence to a gaussian distribution after linear

summation in the receptive field is much faster. Despite strong

spatial correlations in our full-field flicker, we don’t observe a large

adaptive effect, and thus an interesting extension to our analysis
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would consist of using spatially homogenous and temporally

correlated stimuli, or of using heavy-tailed (or naturalistic)

luminance histograms – if they can be reproduced in the lab

using display hardware with a larger dynamic range [55]. With

such a display it would also be interesting to explore in detail the

responses to sparse kurtotic (K+) type stimuli, the only stimulus

ensemble for which the performance of global models was

noticeably lower. Both of these extensions would affect the central

limit theorem argument above: in the case of temporally

correlated stimulus, the samples would no longer be independently

drawn and thus might not (quickly) converge to a Gaussian; in case

of heavy tails, the linear filter similarly might not be able to

average over a sufficient number of luminance samples to ‘‘erase’’

the signatures of higher-order statistics. A concrete hypothesis to

test in a future experiment would therefore be to ask whether the

shape of the nonlinearity in a ganglion cell can adapt to the

distribution of linear filter outputs, even when those are no longer

Gaussian. This is a test that should especially be relevant for

responses of ganglion cells to natural movie clips. As both

proposed stimulus distributions would bring the stimuli closer to

the naturalistic ones, they could provide us with a more complete

window into the nature and limits of retinal adaptation to natural

scenes.
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41. Agüera y Arcas B, Fairhall AL (2003) What causes a neuron to spike? Neural

Comput 15: 1789–1807.

42. Fairhall AL, Burlingame CA, Narasimhan R, Harris RA, Puchalla JL, et al.

(2006) Selectivity for multiple stimulus features in retinal ganglion cells.
J Neurophysiol 96: 2724–2738.

43. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, et al. (2008) Spatio-temporal

correlations and visual signaling in a complete neuronal population. Nature 454:

995–999.

44. Balasubramanian V, Sterling P (2009) Receptive fields and functional
architecture in the retina. J Neurophysiol 587: 2753–2767.

45. Schwartz O, Pillow JW, Rust NC, Simoncelli EP (2006) Spike–triggered neural

characterization. J Vis 6: 484–507.

46. Lesica NA, Ishii T, Stanley GB, Hosoya T (2008) Estimating receptive fields

from responses to natural stimuli with asymmetric intensity distributions. PLOS
One 3: e3060.

47. Segev R, Puchalla J, Berry MJ 2nd (2006) Functional organization of ganglion

cells in the salamander retina. J Neurophysiol 95: 2277–2292.

48. Gaudry KS, Reinagel P (2007) Benefits of contrast normalization demonstrated

in neurons and model cells. J Neurosci 27: 8071–8079.

49. Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W (1998) Entropy
and information in neural spike trains. Phys Rev Lett 80: 197–200.

50. Wark B, Fairhall AL, Rieke F (2009) Timescales of inference in visual

adaptation. Neuron 61: 750–61.

51. Ratliff CP, Borghuis BG, Kao YH, Sterling P, Balasubramanian V (2010) Retina

is structured to process an excess of darkness in natural scenes. Proc Nat’l Acad
Sci USA 107: 17368–73.
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