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Abstract: The circadian clock system exists in most organs and regulates diverse physiological
processes, including growth. Here, we used a prostate-specific Bmal1-knockout mouse model
(pBmal1 KO: PbsnCre+; Bmal1fx/fx) and immortalized human prostate cells (RWPE-1 and WPMY-1)
to elucidate the role of the peripheral prostate clock on prostate growth. Bmal1 KO resulted in
significantly decreased ventral and dorsolateral lobes with less Ki-67-positive epithelial cells than the
controls. Next, the cap analysis of gene expression revealed that genes associated with cell cycles were
differentially expressed in the pBmal1 KO prostate. Cdkn1a (coding p21) was diurnally expressed in
the control mouse prostate, a rhythm which was disturbed in pBmal1 KO. Meanwhile, the knockdown
of BMAL1 in epithelial RWPE-1 and stromal WPMY-1 cell lines decreased proliferation. Furthermore,
RWPE-1 BMAL1 knockdown increased G0/G1-phase cell numbers but reduced S-phase numbers.
These findings indicate that core clock gene Bmal1 is involved in prostate growth via the modulation
of the cell cycle and provide a rationale for further research to link the pathogenesis of benign prostatic
hyperplasia or cancer with the circadian clock.
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1. Introduction

The circadian clock generates the cyclical day–night somatic rhythm and modulates
diverse physiological processes, including organ growth. The central clock is localized in the
suprachiasmatic nucleus (SCN), from where it controls peripheral clocks located in organs,
tissues, and even cells [1]. The circadian master rhythm is generated by transcription–
translation feedback loops, consisting of a conserved family of clock genes, with Bmal1
playing a particularly critical role in reproductive endocrinology [2].

The prostate is a male reproductive gland responsible for 30–35% of semen compo-
sition with a pass through for the urethra. Prostate weights are usually less than 20 g
in adults, while the exact size varies by individual [3]. Mid-to-late life mechanisms of
enlargement mainly occur through hormones such as testosterone and estrogen [4] but also
through inflammation [5], oxidative stress [6] and insulin resistance [7]. However, any as-
sociations between clock genes and prostatic growth via the modulation of these causative
processes are largely unknown. To investigate such a role for peripheral clock genes in
prostatic hyperplasia, the isolation of mechanistic pathways through targeted deletions has
become a standard process for molecular studies. For example, the global Bmal1 knockout
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mouse is characterized by decreased testosterone production in Leydig cells associated
with increased luteinizing hormone [8,9]. However, even with these methods, the direct
influence of clock genes on hyperplasia or other types of proliferative growth is still obscure
in the prostate [8,10].

As clock genes are known to link with cell cycles and modulate cellular proliferation,
their expression follows an oscillatory pattern in the mouse prostate that can be exploited
to elucidate the growth effect of these key regulatory genes [11]. Here, we generated
prostate-specific Bmal1 knockout (pBmal1 KO) mice to detail the role of the circadian clock
in prostatic growth through analyzing the phenotypes of the mice.

2. Results
2.1. Prostate-Specific Deletion of Bmal1

PbsnCre+; Bmal1fx/fx (prostate-specific Bmal1 knockout; pBmal1 KO) mice were gen-
erated by crossing PbsnCre+ male mice and floxed Bmal1 (Bmal1fx/fx) female mice [12–14].
To validate the conditional knockout efficacy of Bmal1, real-time quantitative RT-PCR was
performed. The Bmal1 expression levels in all three prostate lobes of pBmal1 KO mice were
significantly lower than those of control Bmal1fx/fx mice (Figure 1A), while the expression
levels of Bmal1 in other organs, such as the bladder and the kidney, were maintained. The
knockout of BMAL1 was also confirmed by immunoblotting (Figure 1B).
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Figure 1. Validation of the Bmal1 knockout in three prostatic lobes of PbsnCre+; Bmal1fx/fx mice via
real-time PCR (A) and immunoblotting (B). (C) Prostatic weight comparison between 20-week-old
PbsnCre+; Bmal1fx/fx mice and Bmal1fx/fx mice; N = 16 each. * p < 0.05 using Student’s t-test. VPs,
ventral prostates; DLP, dorsolateral prostate; AP, anterior prostate.

2.2. Evaluation of Prostatic Weight in pBmal1 KO Mice

Prostatic weights were compared using the prostatic index (prostatic weight/body
weight, mg/g) in 20-week-old mice. The prostatic indices of pBmal1 KO mice were slightly
smaller than control Bmal1fx/fx mice for ventral prostates (VPs) and dorsolateral prostates
(DLPs), while the indices for anterior prostates (APs) did not significantly differ (Figure 1C).
The prostates of pBmal1 KO mice were also assessed histopathologically, showing no obvious
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changes, such as cell death or atrophy, compared with the prostates of control mice (Figure S1).
Serum testosterone levels did not significantly differ between groups (Figure S2).

2.3. Immunostaining of pBmal1 KO Mouse Prostates with Ki-67 Antibody

Next, the Ki-67 immunostaining of mouse prostates was performed to investigate the
proliferative ability (Figure 2A). Ki-67-positive epithelial and stromal cells were counted,
revealing that significantly less Ki-67-positive epithelial cells were detected in the VPs and
DPs of pBmal1 KO mice compared with control Bmal1fx/fx mice (Figure 2B). This finding
indicated that epithelial cells of pBmal1 KO mice were less proliferative than those of
the controls.
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Figure 2. Ki-67 immunostaining of mouse prostates. (A) Representative image of 20-week-old mouse
prostate (VP). (B) Percentage of Ki-67-positive cells; N = 6 each. * p < 0.05 using Student’s t-test.

2.4. Comprehensive Analysis of Differently Expressed Genes in pBmal1 KO Mouse Prostates

To reveal the mechanisms of how Bmal1 knockout produces smaller prostate sizes and
weights, a cap analysis of gene expression (CAGE) was performed. The gene expression of
the DLPs of 20-week-old mice was comprehensively compared between pBmal1 KO mice
and control Bmal1fx/fx mice. As expected, the knockout of Bmal1 affected the expression of
major clock genes as follows: Npas2, Cry1 and Rorc were upregulated. The differentially
expressed gene (DEG) analysis identified 42 upregulated genes and 24 downregulated genes
induced by the knockout (Table 1). Furthermore, the enrichment analysis using Metascape
demonstrated that cell-cycle-related genes were significantly altered (Figure 3), hinting at a
potential relationship between Bmal1 and cell cycles in the prostate. Additionally, Cdkn1a,
a gene encoding p21, was upregulated in pBmal1 KO mice.

Table 1. A list of differentially expressed genes between PbsnCre+; Bmal1fx/fx mice and Bmal1fx/fx mice,
as discovered using CAGE. Dorsolateral prostates of 20-week-old mice were analyzed (N = 3 each).

Up-
Regulation

Down-
Regulation

Gm16971 Ighv10-3 Cyp2b10 Cfd Mpz Igkv8-18
Igkv1-135 Gm16698 Gm14017 Cdkn1a Fam195b Gm16710
Gm13253 Npas2 Gm16948 Cry1 Gbp8 Gm16700
Gm11755 Abpb Iglv2 Rorc AC125484.1 Gm16829
Gm16708 Igkv15-103 Igkv12-89 Iglv1 Gm16717 Igkv4-61
Gm16792 Iglc2 Thrsp Gm14326 Cyp2e1 Rpl9-ps4

Ccne2 Ephx2 Igkv16-104 Ighv1-62-2 Igkv4-78
Retn Gm16842 Ifi27l2a Igkv8-27 Gm16949

SNORA19 Plin1 Fabp4 Igkv5-39 Hp
Gm5417 Car3 Pttg1 Igkv1-110 Abpz

Igkv1-117 Adipoq Prss28 Zfp959 Psca
Igkv6-13 Gm4167 Gm6644 Gm10243 Gm6793
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2.5. Oscillation of Cdkn1a and Clock Gene Expression in Mouse Prostates

To investigate the diurnal expression of Cdkn1a in the prostate and the association
of prostate-localized Bmal1, time-course experiments over 24 h under light–dark cycles
(lights on, ZT = 0, and off, ZT = 14) were performed in control Bmal1fx/fx mice and pBmal1
KO mice. The expression of Bmal1 in control mice showed a diurnal oscillation (cosinor
analysis, p = 0.002), whereas pBmal1 KO mice experienced decreased expression and lost
oscillation (Figure 4A). The expression of Cdkn1a, which encodes p21, oscillated in control
mice (cosinor analysis, p = 0.009) while expression similarly increased with disrupted
oscillation in pBmal1 KO mice (Figure 4B). These findings indicate that the expression
of Cdkn1a had a diurnal rhythm in the prostate and that its expression was negatively
modulated by Bmal1.
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mRNA accumulation of Bmal1 and Cdkn1a in the dorsolateral mouse prostate under light–dark
conditions (N = 3 for each time point). (A) Bmal1. (B) Cdkn1a. p-values with cosinor analysis
in Bmal1 and Cdkn1a were 0.002 and 0.009 in Bmal1lx/lx mice and 0.296 and 0.026 in pBmal1 KO
mice, respectively.

2.6. Expression of p21 in pBmal1 KO Mice

Next, to confirm the upregulation of the p21 protein in pBmal1 KO mouse prostates,
the immunoblotting and immunohistochemistry of p21 were conducted. An increased
expression of p21 was observed in pBmal1 KO (Figure 5A), and the positive staining of
stromal cells was only observed in pBmal1KO mouse prostates (Figure 5B), suggesting that
the knockout of BMAL1 negatively affected the cell cycle and led to growth inhibition of
the prostate.
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Figure 5. Representative images of protein expression levels of p21 in the prostate. (A) Immunoblot-
ting of dorsolateral prostates at ZT16. (B) Immunohistochemistry of ventral prostates. Stromal cells
showed positive staining in pBmal1 KO mice (shown by arrows) but little in Bmal1fx/fx mice.

2.7. Proliferation Assay (WST-8 Assay) in BMAL1-Knockdown Immortalized Human
Prostate Cells

To further investigate the role of BMAL1 in the growth of the prostate, a WST-8 assay was
performed using immortalized human prostate cells. Here, BMAL1 knockdown (Figure S3)
reduced cell growth in both epithelial and stromal cells (Figure 6A,B), indicating that BMAL1
was required for optimal proliferation at the cellular level even in transformed cells.
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Figure 6. Proliferation assay (WST-8 assay) in BMAL1-knockdown immortalized human prostate cells.
(A) Prostate epithelial cells, RWPE-1. (B) Prostate stromal cells, WPMY-1. Both BMAL1-knockdown
cells showed more delayed proliferation than mock cells. * significantly decreased with respect to the
control. p < 0.05 using one-way ANOVA with Tukey’s post hoc test (n = 3).

2.8. Cell-Cycle Analysis via Flow Cytometry in BMAL1-Knockdown Immortalized Human
Prostate Cells

A flow cytometry analysis was performed to elucidate the cell-cycle phase distributions
of immortalized human prostate cells. Here, the number of BMAL1-knockdown stromal
cells in the G0/G1 phase was found to be increased, but that in the S phase was reduced
(Figure 7A,B), in line with observed increases in p21 expression and reduced cell growth.
These findings indicate that Bmal1 affected prostatic growth by modulating the cell cycle.
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Figure 7. Cell-cycle analysis via flow cytometry in BMAL1-knockdown immortalized human prostate
cells. (A) Representative graphics of control cells and BMAL1-knockdown cells. The cell cycle was
determined with propidium iodide (PI) staining. (B) Calculated proportion of cells in G0/G1, S and
G2/M phases (N = 6). * p < 0.01 using one-way ANOVA with Tukey’s post hoc test.

3. Discussion

The purpose of this study was to investigate the role of the peripheral clock in prostatic
growth/hyperplasia using pBmal1 KO mice. In the current study, pBmal1 KO mice exhib-
ited a mild decrease in prostatic weight and prostatic weight/body weight ratio compared
with control mice. This decrease in growth in pBmal1 KO mice was also confirmed via
Ki-67 immunostaining, demonstrating that Bmal1 was associated with cellular proliferation
through the regulation of the cell-cycle phases. The CAGE revealed that genes associ-
ated with the cell cycle were, with regard to rhythm, differentially expressed in pBmal1
KO prostate, while Cdkn1a (encoding p21) was diurnally expressed in the control mouse
prostate. Associations between Bmal1 and cellular proliferation were confirmed using
the in vitro BMAL1-knockdown immortalized human prostate cell line, which showed
reduced cellular proliferation and increased p21 expression, reflected by increased G0/G1
and reduced S phases. Collectively, the present study indicates that peripheral clock protein
Bmal1 is involved in prostatic growth through the modulation of cellular proliferation via
the cell cycle.

One important finding of this study is that the prostate-specific knockout of Bmal1
affected prostate growth via cell-cycle modulation. Under this condition, we found a robust
p21 oscillation in Bmal1fx/fx mouse prostates, indicating that p21 expression was tightly
linked with the circadian rhythm at both the organ and tissue levels [15]. On the other hand,
the expression of p21 in pBmal1 KO mice was upregulated almost completely throughout
the day and lost its rhythmicity. The cell-cycle analysis of immortalized human prostate
cells further revealed that knocking down BMAL1 resulted in an increased proportion
of G0/G1-phase cells and less S-phase cells. Since p21 is a key regulatory molecule that
prevents the G1/S transition by binding to Cdk4/Cyclin D complex to modulate the cell
cycle [16], the upregulation of p21 in pBmal1KO mice was in line with the growth inhibition
of the prostate. Mammalian p21 has two ROR response elements (ROREs) in its promoter,
themselves being regulated by circadian clock components, namely, RORa/RORc (acting
as activators) and REB-ERBα/REV-ERBβ (acting as inhibitors) [15]. Our CAGE and qPCR
analysis revealed the upregulation of Rorc in the pBmal1 KO mice throughout the day in
addition to p21 (Figure S4). The putative link between Bmal1 and cell growth in this study
is that the increased expression of Rorc via the dysregulation of the circadian clock system
under pBmal1 KO induced p21 upregulation, followed by an increase in G0/G1-phase
proportion and decreased S-phase time that inhibited prostatic growth. Shidaifat et al.
showed that gossypol, a male antifertility agent, reduced the proliferation of human benign
prostatic hyperplastic cells through G0/G1 arrest [17]; our observed association between
clock genes and cell cycles in the prostate is in line with these findings.

Since Bmal1 signaling is associated with the growth of the prostate, it is possible that it
may also be involved in benign prostatic hyperplasia (BPH), as disruptions in turnover rates
drive organ growth, and the prostate has a much higher turnover rate compared with the
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seminal vesicles [18]. BPH is the most common urological disease in men over 50 years of
age and affects bladder voiding [4]. Although associations between the circadian clock and
the pathogenesis of prostate cancer are elucidated in the basic and clinical literature [19,20],
the relationships among Bmal1 signaling, BPH and prostate cancer remain for future
research to elucidate.

This study had several limitations. Firstly, the functional roles of Bmal1 in the prostate
are still unclear, since male pBmal1 KO mice were as fertile as controls. This makes a
detailed semen analysis a necessary component of future studies. Second, the knockout
efficiency of the experiment in vitro was only examined at the mRNA level, albeit with
significant decreases being observed (Figure S3). Lastly, knockdown efficiency might have
been suboptimal for this model (especially with regard to the AP), since the AP region
had only half the observed decrease in mRNA levels and no significant differences in size,
while probasin was observed in all lobes [21].

In conclusion, prostatic Bmal1, a core clock gene, was involved in the growth of the
prostate via the modulation of the cell cycle. The findings of this study can provide a
basis for further research to elucidate the reproductive physiology of the prostate and the
pathogenesis of benign prostatic hyperplasia or cancer in terms of the circadian clock.

4. Materials and Methods
4.1. Animals

PbsnCre+; Bmal1fx/fx mice and Bmal1fx/fx mice were housed under specific-pathogen-
free, controlled conditions (constant room temperature and lights on 7:00 am to 9:00 pm).
Food and water were given ad libitum. All animal experiments were approved by Kyoto
University Institutional Animal Care and Use Committee (IACUC; permit number: Med-
Kyo 18242) and conducted according to the guidelines for animal experimentation of the
experimental animal center of Kyoto University.

4.2. Dissection and Weight Measurement of Mouse Prostate Glands

Experimental 20-week-old male mice were anesthetized with isoflurane and eutha-
nized via cervical dislocation, followed by immediate en bloc dissection of the prostate,
urethra, bladder, seminal vesicles, ampullary glands and proximal vas deferens. The
prostate was divided into 4 lobes (VP, DP, LP and AP) under the microscope. Each lobe
was rinsed and weighed immediately after removal using an electronic scale with DP and
LP clumped together as DLP.

4.3. Histology and Immunohistochemistry of Mouse Prostate Glands

Prostate glands were obtained from 20-week-old mice. The prostates were fixed in 10%
neutral buffered formalin and embedded in paraffin blocks. Serial sections (5 µm) were cut
and submitted to routine hematoxylin and eosin (H&E) staining. Immunostaining with
Ki-67antibody (12202; Cell Signaling Technology, Danvers, MA, USA) and p21 antibody
(187; Santa Cruz Biotechnology, Dallas, TX, USA) was performed at Center for Anatomical,
Pathological and Forensic Medical Researches at Kyoto University. Ki-67-positive epithelial
cells were counted in each lobe (VP, LP and DP).

4.4. Cap Analysis of Gene Expression (CAGE)

CAGE library preparation, sequencing, mapping and gene expression analysis were
performed by DNAFORM (Kanagawa, Japan). Total RNA was extracted using RNeasy
Mini Kit (Qiagen, Hilden, Germany) and RNA quality was assessed using Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) before standardization to an RNA integrity
number (RIN) > 7.0. RNA purity was analyzed using Nano Drop and considered good-
quality when the A260/280 and A260/230 ratios were >1.7. First-strand cDNAs were
transcribed to the 5′ end of capped RNA and attached to CAGE “bar code” tags, and the
sequenced CAGE tags were mapped to the mouse mm9 genomes using BWA software
(v0.5.9, Wellcome Trust Sanger Institute, Cambridge, UK) after discarding ribosomal or
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non-A-/C-/G-/T-base-containing RNAs. For tag clustering, CAGE-tag 5’ coordinates were
input for Reclu clustering [22], with a maximum irreproducible discovery rate of (IDR) 0.1
and a minimum tags per million (TPM) value of 0.1. Differentially expressed gene (DEG)
analyses were performed using the edgeR package in Reclu. The statistical threshold for
DEGs was defined as a false discovery rate (FDR) <0.05 and absolute log2 (fold-change)
>0.5. The enrichment in the DEGs was analyzed using Metascape with default settings [23].

4.5. Real-Time Quantitative RT-PCR Analysis

Total RNA from mouse prostate glands was extracted similarly to the CAGE samples.
Complementary DNA was synthesized from 1 µg of RNA using ReverTra Ace qPCR RT
Kit (TOYOBO, Osaka, Japan). Real-time quantitative RT-PCR was performed with SYBR
Green PCR Master Mix (Life Technologies, Carlsbad, CA, USA) and a 7300 Real-time PCR
system (Life Technologies). The thermal cycling conditions were set at 94 ◦C for 15 s, 60 ◦C
for 15 s and 72 ◦C for 1 m. Values were adjusted relative to the expression levels of the
housekeeping gene human Gapdh or mouse 18 s ribosome. The primers used are shown in
Table S1. The ∆∆Ct method was adapted to evaluate the relative gene expression of the
target genes.

4.6. Immunoblotting

Mouse prostate cell lysates were prepared with radioimmunoprecipitation assay
(RIPA) buffer containing proteinase inhibitors. Protein samples (30 µg) were separated
on SDS polyacrylamide gels and transferred to polyvinylidene difluoride membranes
(Millipore, Bedford, MA, USA) with a Mini Trans-Blot Cell system (Bio-Rad Laboratories,
Hercules, CA, USA). Membranes were blocked with 5% bovine serum albumin-diluted
TBST (BSA/TBST) for 1 h and incubated with primary antibodies diluted in 1% BSA/TBST
overnight, followed by incubation with the corresponding secondary antibodies diluted in
1% BSA/TBST for 50 min. Immunoreactive protein bands were visualized using enhanced
chemiluminescence (SuperSignal West Pico Chemiluminescent Substrate, Thermo) and an
LAS-4000 imaging system (Fujifilm Life Science, Tokyo, Japan). The following primary
antibodies were used: anti-BMAL1 (Santa Cruz Biotechnology; H-170; 1:200), anti-p21
(Santa Cruz Biotechnology; 187; 1:100) and anti-beta actin (ab6276; Abcam; 1:5000). The
levels of Bmal1, p21 and beta-actin (loading control) protein expression were quantified
using ImageJ software (1.52u, National Institute of Health, Rockville Pike, MD, USA;
http://rsb.info.nih.gov/ij/, accessed on 15 Septemer 2022). Values were first normalized
to the respective loading control and were expressed relative to Bmal1fx/fx levels.

4.7. Cell Culture

Human prostate epithelial RWPE-1 and stromal WPMY-1 cell lines were purchased
from American Type Culture Collection (Rockville, MD, USA). RWPE-1 cells were routinely
cultured in keratinocyte serum-free medium (Invitrogen, Carlsbad, CA, USA), and WPMY-1
cells were cultured in Dulbecco’s modified Eagle medium (Invitrogen).

4.8. Cell Transduction

Cell lines were stably transduced with shRNA lentivirus and selected in the presence
of 1.5 µg/mL puromycin. Lentivirus-based plasmid containing oLKO.1 shRNA sets to
human Bmal1 (SHCLG-NM_001178; TRCN0000331012 (sh12), TRCN0000331014 (sh14),
TRCN0000331079 (sh79)) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Non-silencing shRNA (Sigma-Aldrich) was used as a negative control. The experimental
procedure for shRNA transfection was performed according to the manufacturer’s protocol.

4.9. Cellular Proliferation Assay

Cells were seeded into 96-well plates at the density of 5000 cells per well in each
medium. Proliferative activity was measured using the WST-8 assay (Dojindo, Kumamoto,
Japan) using a microtiter plate reader at 450 nm.

http://rsb.info.nih.gov/ij/
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4.10. Flow Cytometry

Cells were harvested, washed with cold PBS and fixed with 70% ethanol. The fixed
cells were incubated with 500 µL of propidium iodide (PI; 1 mg/mL), followed by cell-
cycle analysis using BD FACSAria III (Becton, Dickinson and Company, Franklin Lakes,
NJ, USA).

4.11. Statistical Analysis

Data are shown as the means ± SE. The results were analyzed using the unpaired
t-test and the one-way analysis of variance (ANOVA) with Tukey’s post hoc test when
appropriate. EZR (Saitama Medical Center, Jichi Medical University), a graphical user
interface for R (R Foundation for Statical Computing), and a modified version of R Com-
mander designed to add statistical functions frequently used in biostatistics were used for
all analyses [24]. p-values less than 0.05 were considered as significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231911272/s1.
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