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Abstract: Anorexia nervosa (AN) represents a disorder with the highest mortality rate among all
psychiatric diseases, yet our understanding of its pathophysiological components continues to be
fragmentary. This article reviews the current concepts regarding AN pathomechanisms that focus on
the main biological aspects involving central and peripheral neurohormonal pathways, endocrine
function, as well as the microbiome–gut–brain axis. It emerged from the unique complexity of
constantly accumulating new discoveries, which hamper the ability to look at the disease in a more
comprehensive way. The emphasis is placed on the mechanisms underlying the main symptoms and
potential new directions that require further investigation in clinical settings.

Keywords: anorexia nervosa; eating disorders; starvation; hyperactivity; neuropeptides;
microbiome–gut–brain axis

1. Introduction

Anorexia nervosa (AN) affects primarily adolescent girls and young women, and presents with a
loss of appetite, underweight, as well as endocrine alterations. In clinical settings, the ratio of adult
females to males ranges from 10:1 to 20:1 [1,2]. The median age of onset for anorexia nervosa is
supposed to be 18 years [3]. The lifetime prevalence of AN was found to be 0.3% among adolescents
aged 13–18 years in USA [4] and 1–4% among girls aged 12–18 years in Europe [5]. Recent studies report
incidence rates of 100–200/100,000 person-years in women aged 15–19 years, which is comparable to,
for example, diabetes type 1 [6–8]. Recently, the number of hospitalized children and adolescents has
increased in UK [9] and the age of onset has decreased [10].

Amenorrhea commonly occurs in AN and was a diagnostic criterion in Diagnostic and Statistical
Manual of Mental Disorders (DSM)-IV [11]. DSM-V eliminated amenorrhea as a criterion because
patients who menstruate but meet other criteria for AN have similar outcomes to patients who do not
menstruate [12]. Thus, to fulfill the diagnostic DSM-V criteria of AN, one must restrict energy intake
to induce body weight loss, exhibit a fear of gaining weight or behavior preventing weight gain or
indicate a lack of understanding of the consequences of low body weight [11]. In general, two subtypes
of AN can be distinguished: Restricting type (ANR), where food intake is limited, and purging type
(ANBP), where self-induced vomiting or laxatives counteract food intake [13].
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Food restriction and subsequent malnutrition in AN directly lead to severe multi-organ
complications, such as gastrointestinal, cardiac, pulmonary, hematologic, musculoskeletal, neurologic,
and dermatologic. Most of them are treatable after weight gain, effective medical interventions and
psychotherapy, especially given the relatively young age of onset of AN [14]. Those complications
resemble simple starvation (semistarvation) from the pathological point of view yet, underlying
pathomechanisms responsible for the development of the disorder remain poorly understood. The high
prevalence of fitness and thinness, the low prevalence of AN, together with a clear evidence of anorexia
occurring in the past centuries, its stereotypic presentation, heritability, and developmentally specific
age-of-onset, suggest rather biological accountabilities. Brain neuropeptides together with monoamine
systems, especially serotoninergic and dopaminergic, are of most interest in AN, yet our understanding
of the pathophysiologic role of those systems in patients is still rather limited. A disturbance of brain
serotoninergic networks predates the onset of AN, and should contribute to premorbid symptoms of
anxiety, inhibition, and a vulnerability for restricted eating. What is more, puberty-related steroids
or other age-related changes may enhance serotonin dysregulation, as well as stress and/or cultural
and societal pressures may aggravate the disease [15]. However, there is only minimal to moderate
evidence that available psychiatric medications are effective [14–16].

According to literature, up to 40–80% of AN patients also show excessive levels of physical
activity. Thus, hyperactivity, defined as rigorous physical activity combined with a compulsive need to
exercise, plays a fundamental role in the development and maintenance of AN, may precede food
restriction and accelerate body weight loss once food restriction has been initiated, and obviously
interferes with the recovery process, and has been reported as one of the predictive factors of
a higher risk of relapse after recovery [17–21]. The nature of this feature remains uncertain
although it was already recognized and described by Gull and Lasègue in the 19th century [20,21].
Rewarding activation upon reduced energy intake through dopaminergic reinforcing pathways,
hypoleptinemia and thermoregulatory compensation due to hypothermia have been hypothesized as
the leading causes of hyperactivity [18,19,22,23] but genetic factors regulating activity levels should
also contribute to the development of the disease [18]. Those rewarding effects, triggering euphoria
and dependence, are mediated by an enhanced mesolimbic dopamine release through an activation
of the hypothalamo–pituitary–adrenal axis with high blood cortisol levels due to starvation and/or
hyperactivity [24]. Yet, it should be stressed that persistently increased activity levels in the presence
of a negative energy balance are unique to anorexia as compared to semistarvation [17].

Thus, the aim of our review was to summarize current concepts regarding pathogenesis and
pathomechanisms of AN, such as alterations of brain neurotransmission, including abnormally
functioning corticolimbic circuits involved in appetite, fronto-striatal networks together with autonomic
nervous system dysfunction as well as the microbiome–gut–brain axis and endocrine alterations.
Original reports and review articles written in English indexed in Medline database from the last two
decades (older but frequently cited publications were not ignored) were selected based on their clinical
relevance, however, the process of articles’ identification was not documented in a systematic manner.

2. Neurobiological Determinants of Anorexia

From a macro perspective, anorexia leads to a decrease in brain volume [25]. This applies to
both gray and white matter, with a reduced number of astrocytes and no change in the number of
neurons or oligodendrocytes [26]. As those alterations resolve after weight recovery, they seem to
be a combined effect of malnutrition and dehydration. On the other hand, a micro perspective gives
a deeper insight into the neurohormonal pathways that may underlie the development of anorexia
nervosa. Neurochemical concepts of the anorexic state include two major theoretical currents that
revolve around dysfunction in the reward system and/or appetite regulating neuropeptides.
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2.1. Opioids as Key Regulators of Dopaminergic Activity

The hypothesis regarding the importance of endogenous opioids in the ingestive behaviors has
arisen from studies describing the reduction of short-term food intake in subjects with normal body
weight after the administration of general opioid antagonists [27]. Later studies showed that opioids
should play the most accentuated role in the hedonic assessment of food, which allowed to construct
the hypothesis of opioid palatability assuming that eating tasty food increases the level of endogenous
opioids and stimulate further eating. In addition to its role in food-related behaviors, the opioid system
also protects from starvation by reducing metabolism and preserving energy.

Both food and physical activity are known for their ability to activate reward pathways involving
the mesolimbic (from ventral tegmental area to nucleus accumbens) and nigrostriatal (from substantia
nigra to dorsal striatum) dopamine systems. Anorectic patients present with anhedonia, food aversion,
and excessive physical activity indicating abnormal reward processing that might be explained by
dysfunctional dopamine system. Moreover, an extreme degree of starvation and physical activity
despite the lethal consequences along with the denial of the disease and the high risk of relapse
resemble the mechanisms observed in addiction. Such observations have increased interests in
the role of endogenous opioids, which are known to interact with the dopamine reward circuits,
and formed the basis for reflection on the role of endogenous opioids in the pathogenesis of anorexia
nervosa [28]. Analysis of the cerebrospinal fluid (CSF) revealed the increased total opioid activity
among emaciated patients with anorexia nervosa [29]. However, further in vivo analyzes of individual
endogenous opioid molecules have given inconclusive results, and most notably reports dates back to
the 1990s. (Table 1). Dynorphin levels in the cerebrospinal fluid were normal at all stages of anorexia
nervosa, while β-endorphin (β-EP) levels were shown to be normal or decreased with a tendency
to normalize after weight restoration [30,31]. Since β-EP has been shown to be responsible for the
satisfactory (hedonic) properties of food consumption, it has been hypothesized that its reduced central
concentration may be the cause of reluctance to eat observed in AN [32].

Table 1. Reported variation in endogenous opioid levels in patients suffering from anorexia nervosa.

Author Opioid or Metabolite Location Observation

Kaye et al., 1982 [29] Overall opioid act.(MOR) CSF Increased level

Gerner et al., 1982 [33] β-endorphin CSF Normal level

Kaye et al., 1987b [34] β-endorphin CSF Reduced level

Lesem et al., 1991 [31] Dynorphin CSF Normal level

Brambilla et al., 1985 [35];
Melchior et al. 1990 [36];
Tepper et al., 1992 [37]

β-endorphin Plasma Increased level

Baranowska, 1990 [38] β-endorphin Plasma Reduced level

Brambilla et al., 1991 [39] β-endorphinβ-lipotropin Plasma Loss of circadian rhythm
(increased level) *

Brambilla et al., 1995 [40] β-endorphin T-lymphocytes Increased level

Marrazzi et al., 1997 [41] Codeine Plasma Increased level

* β-EP only at evening/night hours, β-LP all day, CSF cerebrospinal fluid.

On the other hand, most measurements of peripheral opioids (mainlyβ-endorphin) have presented
an increase in their concentrations [36,37,40,41]. In addition, the dynamic secretion of peptides derived
from pro-opiomelanocortin (POMC)—β-lipotropin (β-LP) and β-endorphin—seems to be altered
in the AN population. Dynamic peripheral secretion of both β-LP and β-EP has been shown to be
increased, but β-EP levels were significantly elevated only in the early night hours, while β-LP was
overproduced both during the day and at night. If we consider that both peptides originate from the
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common precursor (POMC) and β-EP is a product of β-LP transformation, changes in the dynamic
peripheral secretion may indicate the dissociation of these peptides understood as they represent
different secretory sources [39]. The fact that some of the abovementioned changes have normalized
after gaining weight suggests that these disorders are more likely the consequences of malnutrition,
weight loss, and changes in food behavior than being the cause of AN, and may not reflect the pattern
of changes in the opioid system at the onset of the disease. However, genetic studies have shown a
link between anorexia nervosa and the gene encoding the delta-opioid receptor (OPRD), making it a
promising target for future experiments [42].

Opioids are key regulators of dopaminergic activity, and the breakdown in dopamine elements
of the complex reward system is considered partially responsible for destructive behaviors in AN.
(comprehensively reviewed by O’Hara et al., 2015—the authors analyze multiple AN models and
propose their own focused around reward mechanisms [43]). The concentration of homovanillic acid
(a dopamine metabolite) in the cerebrospinal fluid decreases with an increased binding of D2/D3
striatal receptors in women who have recovered from anorexia nervosa [44,45]. In these women,
striatal and insular brain regions involved in generating hedonic impact were hypoactive to taste
stimuli in hungry state [46,47]. In contrast, when exposed to the anticipation task, visual conditioned
food stimuli caused an increased insular response [48]. Furthermore, reward prediction error studies
have shown that in AN individuals, brains regions associated with dopaminergic signaling are highly
activated when reward is different from its prediction [49,50]. Importantly, it seems that dysfunctional
recognition of rewards is not distorted by an incorrect perception of stimuli, including taste and smell,
because patients with AN do not present deficits in sensory systems [51]. Although they can identify
tastes and odors similarly to the healthy subjects, it seems that an inadequate response may result
from faulty communication between brain regions responsible for food-related signal perception and
motivation. It has recently been shown that in AN patients who were administered sucrose orally,
effective connectivity was directed from the ventral striatum to the hypothalamus, unlike the control
group [50,52]. This research defends the hypothesis that motivational systems may exert an undue
inhibitory effect on eating behavior. Those findings implicate an abnormality in the interoceptive
system and faulty reward processing as important mechanisms of AN pathology [43,53].

Overall, it appears that anorexic patients, although generally referred to as anhedonic, demonstrate
increased activity in the reward system but in response to disordered stimuli. Due to alterations in limbic
dopaminergic transmission they perceive an experience evoked by stimuli associated with starvation
and physical activity as highly rewarding, while being hyposensitive towards food. However, given
the currently published data, no definite conclusions can be drawn as to the direction of these changes.

2.2. Hypothalamic Regulation

The neurobiological approach to the pathogenesis of AN cannot omit the role of the hypothalamus
as the primary brain region involved in the regulation of food intake, as well as its integration with
neuropeptides and peripheral hormones. A vast number of observed changes in appetite-controlling
metabolites is secondary to malnutrition (Table 2), and resembles a simple starvation model. However,
patients with anorexia nervosa do not adequately respond to homeostatic body signals that should
stimulate weight restoration. The investigation of in vivo hypothalamic responses to nutrient ingestion
showed a reduced reactivity upon glucose administration (i.e., a decreased activity of the hypothalamus
following glucose infusion was not observed) [54,55]. The same study reported impaired functional
connectivity between the hypothalamus and mesocorticolimbic reward system. Prediction error has
been characterized by dopamine-dependent pattern of activation directed from the striatum to the
hypothalamus that may override physiological feeding control [50]. It has been suggested that this
pathway may be responsible for anxiety associated with food consumption [56,57].
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Table 2. Changes in the concentrations of neuropeptides and hormones involved in the ingestion
behaviors of anorexic patients. HPA—hypothalamic–pituitary–adrenal, CRH—Corticotropin-releasing
hormone, ACTH—adrenocorticotropic hormone.

Metabolite Concentration Shift

Neuropeptide Y, AgRP Mixed reports
Insulin Mixed reports
Peptide YY Mixed reports *
Leptin [58] Decrease
Adiponectin [58] Increase
Nesfatin-1 Decrease
Kisspeptin No change
Phoenixin Decrease
Ghrelin Increase
Orexins Increase
26RFa Increase
HPA axis (CRH, ACTH, cortisol) Increase
Gonadal hormones (estrogen, testosterone) Decrease

* Lower levels in patients suffering from the purging type than restrictive type of anorexia nervosa (AN) [59].

The physiological hypothalamic reaction for starvation includes an increased expression of
orexigenic hormones—neuropeptide Y (NPY) and agouti-related peptide (AgRP). The secretion of both
peptides is the result of activated AgRP neurons leading to food-seeking adaptive behavioral responses
(including modulation of fear and aggression) [60]. An activity of AgRP neurons strictly depends on
peripheral signaling mediated by ghrelin (extensively discussed in the entero-endocrine alterations
section of this review) acting through the growth hormone secretagogue receptor (GHSR). Since the
ghrelin-AgRP pathway is vital for maintaining energy balance by both metabolic and behavioral
adaptation, it may account for anxiety-relieving effects of food restriction as observed in fasted mice [61].
However, despite elevated ghrelin levels, which is a common observation in AN patients, and its
peripheral fluctuations after glucose ingestion comparable to healthy controls, it has been shown that
the hypothalamic response to glucose is blunted [56]. It has been hypothesized that ghrelin’s inability
to stimulate appetite may result from an unspecified resistance which may have a genetic basis [62].

In parallel, fasting leads to a decrease of satiety hormones such as leptin, PYY and insulin.
Loss of leptin signaling through its receptor on the AgRP/NPY neurons should provoke hyperphagia
and reduction in energy expenditure not observed in AN [63]. However, there is some controversy
regarding NPY in patients with anorexia that relates to reports of an increase as well as a decrease or
no change at all in its plasma concentrations [64–67]. Plasma NPY may reflect its peripheral synthesis,
nevertheless, despite postprandial reduction of ghrelin, NPY response to meal consumption seems
to be blunted while exercise causes its increased secretion [66]. Importantly, the effect of NPY varies
depending on the stimulation of various Y receptors. Thus, in addition to the Y1 or Y5 orexigenic
receptors, activity via the Y2 receptor reduces food consumption [68]. Moreover, NPY neuronal activity
is modulated by 26RFa neuropeptide and orexins expressed in various hypothalamic nuclei (orexins
mainly in the lateral hypothalamic area). Plasma concentrations of these peptides are elevated in
AN which is attributed to malnutrition adaptive mechanisms, but although it is known that orexins
increase food intake, they also promote physical activity and heat loss [69,70]. Chronic overexpression
of orexins finally may lead to a net decrease in body weight.

The hypothalamus also contains neurons that co-express anorexigenic pro-opiomelanocortin
(POMC) and the peptide cocaine- and amphetamine-regulated transcript (CART). POMC,
as a precursor, is processed into several short peptides, including the highly anorexigenic
alpha-melanocyte-stimulating hormone (a-MSH) that suppresses food intake and increases energy
expenditure [71]. Its expression in response to fasting is decreased due to a drop in leptin, insulin and
glucose levels and the inhibitory activity of NPY/AgRP on melanocortin receptors. Also, POMC neurons
in the brainstem were shown to mediate the suppressive effect of cholecystokinin on feeding [72].
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Epigenetic testing showed no difference in POMC promoter DNA methylation between AN and
healthy controls, suggesting adapting the melanocortin system to nutritional status rather than a
specific feature of the disease [73]. That is why plasma α-MSH levels are reduced and have a positive
correlation with the leptin concentration [67].

To further complicate consideration of neurohormonal pathways in anorexia nervosa, there is a
number of newly discovered peptides considered potential candidates for a missing link in disturbed
central feeding regulation. Fasting has been shown to reduce the concentration of various hypothalamic
neuropeptides including kisspeptin, known for its impact on hormonal regulation of a reproductive
status [74]. Kisspeptin stimulates the secretion of gonadotropin-releasing hormone (GnRH) and thus
subsequently increases the serum level of luteinizing hormone (LH). Knocking out the kisspeptin
receptor (KISS1R) leads to infertility and decreased energy expenditure with low locomotor activity
and increased adiposity. Serum levels of kisspeptin seem not to significantly vary between anorectic
and healthy patients and its association with BMI is uncertain [75–78]. However, it has been reported
that subcutaneous administration of kisspeptin in a rat model can change the weight loss pattern,
increase food intake, and modify the hypothalamic neurochemical profile [79]. Moreover, there is a
negative correlation of kisspeptin with physical activity in human studies of anorexia [76].

Another disorder of neuropeptide signaling in AN is a reduced concentration of a peptide called
phoenixin, mainly expressed in the hypothalamus, but also identified elsewhere in the brain and
peripheral tissues [77,80,81]. Its receptor (GPR173) is expressed in both kisspeptin and GnRH neurons,
which, when stimulated, leads to the GnRH-mediated secretion of gonadotropins. Phoenixin has
been reported to increase food intake and correlate positively with BMI and also has some potentially
anxiolytic effects on patients’ emotional states [77,82,83]. However, it has not yet been determined
whether reduced plasma levels of phoenixin as an orexigenic factor may imply impaired appetite
stimulation or it is secondary to depleted peripheral sources such as adipose tissue or gonads.

The recently discovered hypothalamic nesfatin-1 is also seen as potentially involved in the
development of AN. It is believed to act as anorexigenic factor that inhibits food intake. Yet, there is a
limited number of studies with contradictory results regarding its plasma level and a correlation with
BMI [84,85]. However, nesfatin also appears to mediate anxiety, which often accompanies anorexia [84].

Although crucial in the development of AN, abnormalities in the feeding control system are only
part of the complex neurobiological network behind the symptoms. Reviewed studies support the
concept that homeostatic signals are overridden by pathological reward-related behaviors represented
by alterations in interconnected brain circuits. However, a group of researchers has recently identified
several loci in a genome-wide association study and suggested that a predisposition to anorexia is
correlated with an increased risk of metabolic traits such as low BMI, indicating that energy imbalance
may not only be secondary to psychological features of AN [86].

The hypothalamic response in AN appears to be partially normal, and most fluctuations of
neuropeptides are believed to be dictated by adaptation to maintain healthy body weight, but to no
avail. A wealth of research investigating the ineffectiveness of these mechanisms in stimulating appetite
tends to view it in the context of overlapping factors, including genetic predisposition, pleiotropic
effects of over-expressed neuropeptides on reward circuits, and antagonism of the over-regulated HPA
axis. Such an integrative model does not fully explain, but tries to provide insight into the disease and
its consequences, which further aggravate symptoms.

2.3. Neuroinflammation

Undoubtedly, chronic stress caused by numerous psychosocial pressures is an integral part of
anorexia nervosa. Chronic restriction of food as physical stress activates physiological adaptive
mechanisms, such as hypercortisolemia (along with CRH and ACTH), which normalizes when body
weight is regained. As CRH itself during stress presents an anorexigenic effect, its hypersecretion in
AN potentiates the disease. Hyperghrelinemia additionally aggravates these changes [87]. Apart from
maintaining a sufficient glycemia with antagonistic activity to leptin and insulin, cortisol has an



Nutrients 2020, 12, 2604 7 of 32

immunomodulating effect. As chronic stress is known to affect the immune system, various stressors
in anorexia nervosa may evoke a systemic low-grade inflammation. The glucocorticoid feedback
regulation in the inflammatory immune response, which in the case of hypercortisolemia would
down-compensate for pro-inflammatory mechanisms, appears to be impaired in AN [88]. Indeed, the
production of tumor necrosis factor-alfa (TNF-α), IL-15, and IL-6 has been reported to increase [89,90].
Those pro-inflammatory cytokines present anorexigenic effect. IL-6 reduces food intake and gastric
emptying while chronic TNF-α exposure causes cachexia characterized by anorexia, weight loss,
and depletion of whole-body protein and lipid [91]. Proinflammatory cytokines were shown to activate
anorexigenic POMC neurons as well as inhibit AgRP secretion and NPY signaling [92]. Plasma
concentrations of TNF-α and its soluble receptor were significantly higher in anorectic patients than
in controls, and these remained altered even after weight restoration [93,94]. There is evidence that
systemic inflammation might be linked to anxiety and depression, functional gastrointestinal disorders,
as well as for inflammatory bowel disorders [95]. This may suggest that the hypothalamic inflammation
and degeneration seen in anorectic mice (anx/anx) is also characteristic for AN patients [96,97].

Presented data provide the evidence for neuroinflammation as another component of the chain
reaction that drives disease-related behaviors. High intensity of psycho-emotional, as well as, physical
stress triggers a systemic inflammatory reaction involving the structures of the central nervous system.
Released stress hormones and pro-inflammatory cytokines seem to enhance self-induced starvation
through anorexigenic effects on the feeding control system, thereby exacerbating symptoms to the
life-threatening level.

3. Autonomic Nervous System

Changes associated with anorexia nervosa affect both the sympathetic (SNS) and parasympathetic
(PNS) branches of the autonomic nervous system (ANS). The most commonly described pathology is
the relative predominance of PNS over SNS, resulting in clinical symptoms including bradycardia,
hypotension, orthostatic hypotension, and hypothermia [14,98–101].

SNS dysfunction in patients with anorexia manifests itself both in lower basal levels of
noradrenaline (NA), as well as a reduced noradrenaline release in response to normalized exercise,
orthostatic stress, or feeding [102,103]. When an exercise-related increase of norepinephrine is
suppressed, this results in significantly lower maximum systolic blood pressure, maximum heart rate,
and maximum oxygen consumption, which generally reduces tolerance and adaptation to physical
activity [104]. Interestingly, a reduced adrenergic response persists in anorexic patients with a restored
body weight even a year after treatment. In addition, Lechin et al. investigated the changes within
the branches of the sympathetic nervous system (adrenal sympathetic branch vs. neural sympathetic
branch) and observed a significantly lower exercise-related ratio of noradrenaline: Adrenaline in
the anorectic group compared to the control group [105,106]. This observation was interpreted as a
consequence of the adrenal dominance over the neural sympathetic part of SNS (dissociation of the
sympathetic nervous system). It seems to confirm that the deficiency of neural sympathetic function
cannot be fully compensated by the sympathetic activity of the adrenal glands. This change is induced
by the arousal of C1 neurons residing in rostral ventrolateral medulla with parallel inhibition of A6
and A5 neurons in locus coeruleus. Activation of C1 causes excessive stimulation of the SNS adrenal
branch, while inhibition of A5 neurons limits the neuronal part of SNS. This partial and insufficient
activation of SNS may result in relative parasympathetic hyperactivity, manifested by the autonomic
symptoms of anorexia nervosa, but further research is needed to confirm this pathophysiological
mechanism. Notably, the noradrenergic system via its projections to the arcuate nucleus can markedly
impact feeding behaviors. Noradrenaline exhibits significant orexigenic activity in hypothalamic
neurons increasing NPY/AgRP and reducing POMC activity via separate receptors [107].

In conclusion, patients with AN show a decrease in sympathetic activity and possibly
over-activation of the parasympathetic system, which together result in a range of clinically important
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symptoms and potentially severe cardiac complications. These changes appear to be a consequence
rather than a cause of weight loss, with the aim of reducing energy expenditure.

4. Gut–Brain Axis Dysregulation

Submucosal and myenteric plexuses of the enteric nervous system (ENS) regulate peristaltic
activity, water, and electrolyte secretion together with local blood flow in the small and large intestine.
In the stomach, intrinsic components of the gut–brain axis are underdeveloped and the organ is
controlled by brain stem (medulla oblongata), although neurons projecting from the brain stem act
via the ENS. The peristaltic activity of the stomach relies, independently of nerve activity, on the
rhythm of the slow waves of the muscle [108]. The vagus nerve and non-vagal splanchnic mesenteric
nerves form the peripheral extrinsic component of the gut–brain axis [109], and primarily project to
the nucleus of the solitary tract localized in the brainstem [95]. The stimulation of mechano-sensitive
vagal or spinal afferent fibers through distension of the gastric wall is responsible for the perception
of fullness, and consequently controls the meal size [95,110–115]. Additionally, macronutrients
influence motility and appetite regulating molecules, and further affect energy intake, but do not
reach consciousness [114]. Dysregulation of these complex physiological processes negatively affects
eating behaviors, and might provoke the most frequent gastrointestinal symptoms observed in AN
(further discussed in the following sections), including excessive postprandial fullness, bloating,
nausea, vomiting, or regurgitation) [115,116]. Microbiome dysbiosis and microbial metabolites as
well as entero-endocrine alterations (also further discussed) contribute, as major etiological factors,
to the gut–brain dysregulation and negatively impact satiation and satiety in AN. Recent scientific
reports have confirmed the particular importance of gut heath in AN through the short- and long-term
nutritional rehabilitation.

4.1. Microbiome Dysbiosis

A gut microbial imbalance in AN patients may affect mood, behavior, and appetite, influence weight
gain and host adiposity, disturb the development of the gut mucosal immunity, and further deregulate
the hypothalamic–pituitary–adrenal axis, and those relationships are undoubtedly bi-directional [117].
Short- and long-term dietary changes immensely influence both the composition and the abundance of
the gut microbiota [118]. In AN, the starvation effects are similar, but are not identical to those observed
in famine. The weight loss maintenance is constantly on the patients’ mind and their knowledge
about the nutritional value of food determines the meals’ quantity and quality [119]. An altered diet
reshapes AN patients gut microbiota, which might exacerbate or perpetuate the disease by modulating
intestinal homeostasis, eating behaviors, mood, and finally weight loss [120]. Bacterial transplantation
from children with kwashiorkor, a severe acute form of malnutrition, into germ-free mice fed with
a low caloric density and nutrient-deficient diet resulted in a much greater weight loss in recipient
mice than those transplanted with the microbiota of healthy animals [121]. What is more, Hata et
al. demonstrated that gnotobiotic mice with the gut microbiota of female anorectic patients (gAN)
gained weight weakly, expressed decreases in appetite and food efficiency, and were more anxious
(open-field and marble-burying tests) than the mice with the gut microbiota of healthy controls
(gHC). Additionally, the brain stem serotonin levels in gAN were lower in comparison to gHC [122].
Breton et al. hypothesized that a gut dysbiosis may precede the onset of AN and trigger the start of a
vicious cycle where the aberrant diet further alters the composition of the intestinal ecosystem and
exacerbate the clinical symptoms of this disease [120]. So far, results regarding bacterial abundance and
alpha diversity of AN patients’ microbiota are inconclusive. A reduction in microbial diversity was
related to impaired immune defense and limited ability to obtain calories from food [123]. Inconsistent
results (Table 3) are observed between studies regarding the Firmicutes/Bacteroidetes ratio or the
identity of altered levels of bacterial taxa in these patients [122,124–132], either. According to Fava et al.
an increased level of Bacteroidetes were linked to weight loss, which is, at least partly, characteristic for
AN patients [133].
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Table 3. Up-to-date studies (excluding case reports) demonstrating gut microbiota in restricting type (ANR) and purging type (ANBP) anorexia nervosa (AN).

References Number and Sex of Participants AN Patients Characteristics Exclusion Criteria Microbiota Diversity Microbial Metabolites

Armougom et al., 2009 [124]
AN patients (n = 9), normal weight
(n = 20) and obese (n = 20) controls,

all female

19 to 36 years-old, BMI 12.73 ± 1.6
at enrollment, meeting the DSM

IV-TR criteria
Use of probiotics prior to the study

Firmicutes, Bacteroidetes and
Lactobacillus levels in AN patients

were reported to be similar to normal
weight controls.

-

Million et al., 2013 [125]

AN patients (n = 14 F +1 M),
lean (n = 36 F + 40 M, overweight

(n = 6 F + 32 M),
obese (69 F + 65 M) controls

Age = 27.3 ± 10.8, BMI 13.5 at
enrollment, meeting the DSM

IV-TR criteria

A history of colon cancer, the presence
of an inflammatory bowel disease, an

acute or a chronic diarrhea 4 weeks and
an antibiotic administration 6 months

prior to the study

Firmicutes was found in almost all of
the individuals (>98.5%), whereas
Bacteroidetes was detected in 67%.

Bacteroides animalis was the rarest of
species (11%),

and Methanobrevibacter smithii
(64%) was more prevalent than E. coli

(51%). A lower concentration of
E. coli was found in obese vs.

anorexic, lean and overweight
participants, and a higher

concentration of E. coli was
associated with a lower BMI.

-

Kleiman et al., 2015 [126]

AN patients (n = 16; only 10
patients provided samples after

weight restoration) and
age-matched, healthy (n = 12)

controls, all female

Age = 28.0 ± 11.7, BMI 16.2 ± 1.5 at
enrollment, meeting the DSM

IV-TR criteria, presented with less
than 75% of ideal body weight

A history of gastrointestinal tract
surgery (other than appendectomy or

cholecystectomy), inflammatory bowel
disease, irritable bowel syndrome,

celiac disease or any other diagnosis
that could explain chronic or recurring

bowel symptoms; use of antibiotics,
NSAID, steroids or probiotics 2 months

prior to the study

Alpha diversity was lower in AN
both before and after inpatient
renourishment, however after
hospital-based renourishment,
intestinal microbiota diversity

showed a trend toward a healthier
state. Greater levels of depression

were negatively correlated with the
number of bacterial species.

-

Morita et al., 2015 [127]
ANR (n = 14) and ANBP (n = 11)

patients and age-matched, healthy
(n = 21) controls, all female

Age = 30.0 ± 10.2, BMI = 12.8 ± 1.3
at enrollment, meeting the DSM

IV-TR criteria

Severe physical (renal failure) and
infectious diseases and a history of
antibiotics use or a regular intake of

yoghurt or probiotics 3 months prior to
the study

AN patients exhibited lower amounts
of total bacteria—Clostridium

coccoides group, Clostridium leptum
subgroup, Bacteroides fragilis and

Streptococcus in comparison to
age-matched healthy women.

SCFA (acetate and propionate)
levels were found to be reduced
in AN patients in comparison to

normal-weight participants.

Mack et al., 2016 [128]

AN patients (n = 55, only 44
provided samples after weight

restoration), both ANR (n = 14) and
ANBP (n = 11), and age-matched,

healthy (n = 55) controls, all female

Age = 23.8 ± 6.8, BMI = 15.3 ± 1.4
at enrollment

A use of antibiotics 8 weeks prior to the
study, or severe diseases including

renal failure and liver dysfunction, or
limited German verbal skills, or unable

to understand the instructions and
perform stool sampling

Alpha diversity was reduced in AN
patients both before and after

inpatient renourishment.

SCFA levels (excluding lowered
butyrate levels) were comparable

between AN patients and
normal-weight participants,

BCFA levels (especially valerate
and isobutyrate) were increased

in AN patients at the time of
hospital admission and after

weight gain.
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Table 3. Cont.

References Number and Sex of Participants AN Patients Characteristics Exclusion Criteria Microbiota Diversity Microbial Metabolites

Borgo et al., 2017 [129]
AN patients (n = 15) and

age-matched, healthy (n = 15)
controls, all female

Age not reported, BMI = 13.9 ± 2.1
at enrollment, meeting the DSM

V-TR criteria

Use of antibiotics or probiotics a month
prior to the study, celiac disease,

irritable bowel syndrome, history of
colorectal cancer, diabetes mellitus,
binge eating or purging behavior,
recent enteral/parenteral nutrition

An unbalanced Gram positive/Gram
negative relative abundance as well

as Bacteroidetes enrichment and
Firmicutes depletion was

characteristic for AN.

SCFA (in particular butyrate and
propionate levels) levels were

found to be reduced in AN
patients in comparison to

normal-weight participants.

Mörkl et al., 2017 [130]

AN patients, (n = 18) athletes
(n = 20), normal weight (n = 26),

overweight (n = 22) and
obese(n = 20) controls, all female

Age = 22.44 ± 3.2,
BMI = 15.29 ± 1.28 at enrollment,

meeting ICD-10 criteria

Antibiotic or antifungal treatment
2 months prior to the study, daily or

irregular intake of prebiotics or
probiotics 2 months prior to the study

(yoghurt and dairy products were
permitted), acute or chronic diseases, or
infections (including upper respiratory

tract infections, fever, chronic
inflammatory disorders, autoimmune
disorders) 2 months prior to the study,
alcohol- or drug abuse, major cognitive

deficits, life-threatening conditions,
history of digestive diseases, such as

inflammatory bowel disease, and
irritable bowel syndrome, history of
gastrointestinal surgery (other than

appendectomy), pregnancy, and period
of breastfeeding

Microbial richness was reduced in
obese woman and AN patients

compared to athletes.
Coriobacteriaceae was the only

enriched phylotype in AN compared
to other participants. Alpha-diversity

was negatively correlated with
depression scores.

-

Mörkl et al., 2018 [131]

AN patients (n = 17, including six
with ANR type) and normal weight

athletes (n = 20), normal weight
(n = 25), overweight (n = 21) and
obese(n = 19) controls, all female

Age = 21.79 ± 3.62,
BMI = 15.22 ± 1.27 at enrollment,

meeting ICD-10 criteria

Antibiotic or antifungal treatment
2 months prior to the study, daily or

irregular intake of prebiotics or
probiotics two months 2 months prior

to the study (yoghurt and dairy
products were permitted), regular

intake of medication (except for AN
patients), acute or chronic diseases or

infections (including upper respiratory
tract infections, fever, chronic

inflammatory disorders, autoimmune
disorders) 2 months prior to the study,
alcohol- or drug abuse, major cognitive

deficits, life-threatening conditions,
history of digestive diseases, such as

inflammatory bowel disease, and
irritable bowel syndrome, history of
gastrointestinal surgery (other than

appendectomy), pregnancy, and period
of breastfeeding

Zonulin levels were comparable
when participants were divided

according to their BMI. No difference
on phylum level of gut microbiota
between the high and low-zonulin

group was reported.
Ruminococcaceae and

Faecalibacterium were more
abundant in the low-zonulin.

Increased levels of inflammatory
markers (CRP and IL-6) were

reported in the high-zonulin group.

-
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Table 3. Cont.

References Number and Sex of Participants AN Patients Characteristics Exclusion Criteria Microbiota Diversity Microbial Metabolites

Hanachi et al., 2019 [132]
ANR (n = 22) and ANBP (n = 11)

patients and age-matched, healthy
(n = 22) controls, all female

Age = 32 ± 12, BMI = 11.7 ± 1.5 at
enrollment; meeting the DSM

IV-TR criteria

Use of antibiotics 2 months prior
hospitalization, diabetes, digestive

pathology, metabolic disease, a history
of obesity, inflammatory and/or

autoimmune disease before the onset
of AN

AN patients showed a reduced
alpha-diversity compared to controls.

The severity of malnutrition was
negatively correlated with the

Verrucomicrobiaceae and
Ruminococcacea families and

positively with the Clostridiales
order, Turicibacteraceae and

Eubacteriaceae families.

-

Hata et al., 2019 [122]
ANR patients (n = 10) and

age-matched, healthy (n= 10)
controls, all female

Age = 23.0 ± 3.4, BMI = 13.7 ± 0.1
at enrollment; meeting the DSM

IV-TR criteria

A history of digestive diseases such as
inflammatory bowel disease and

irritable bowel syndrome and severe
conditions (renal failure) and infectious
diseases, and/or a history of antibiotic

use or regular intake of yogurt or
probiotics 3 months prior to the study

A lower relative abundance of
Bacteroidetes was observed in AN in
comparison to age-matched healthy

women.

-

SCFA: short-chain fatty acids, DSM: Diagnostic and Statistical Manual of Mental Disorders.
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In AN patients, methanogen Methanobrevibacter smithii was found to be increased, which
could be a result of an adaptive response to the efficient energy extraction from lower energy-dense
diets [124,129]. This increase in M. smithii was also reported in patients suffering from constipation,
specifically in patients with a constipation-predominant subtype of irritable bowel syndrome. In these
patients, the rise of M. smithii was negatively correlated with the stool frequency [134]. Some evidence
suggest that methane slows gastrointestinal motility and thus may contribute to constipation [120].
Another study confirmed the increased levels of M. smithii in fecal samples from individuals with BMI
levels below 25 kg/m2 compared to those with BMI above 25 kg/m2 [125]. Yet, Mack et al. reported a
detection of the archaeon Methanobrevibacter in less than 20% of AN patients [128]. Kleiman et al.
(2015) reported changes, especially among the Ruminococcaceae family during AN renourishment,
similar to those observed in inflammatory intestinal diseases [126]. Mack et al. reported a low relative
abundance of Bacteroidetes and carbohydrate degrading taxa (for example, Roseburia spp. and
Gemminger spp.), and a high of mucin and protein degrading taxa in AN patients in comparison to
age-matched healthy women at the time of hospital admission. Bacteroides and Parabacteroides spp.
were decreased after renourishment, while Firmicutes increased in comparison to age-matched healthy
women. No differences for the carbohydrate utilizing Roseburia spp. and Gemmiger spp. between
AN patients and age-matched healthy women were reported anymore. Ruminococcus increased,
while Verrucomicrobia spp., Anaerotruncus spp. and Akkermansia spp. decreased during weight
gain of AN patients [128]. And indeed, Akkermansia muciniphila levels were positively correlated
with weight-loss and negatively correlated with body weight gain [135,136]. Akkermansia muciniphila,
a mucin degrader, is a bacterium living within the gut mucus layer [137] and its abundance has been
related to fasting [138] further like elevated fiber intake [139]. According to Borgo et al., the relative
abundance of Ruminococcus, Roseburia, and Clostridium genera (Firmicutes) was decreased [128],
and importantly, decreased levels of Roseburia spp. were also associated with inflammatory bowel
diseases [140,141]. According to Hanachi et al. gut microbiota dysbiosis (unknown genera belonging to
Peptostreptococcaceae family, Dialister, Robinsoniella, and Enterococcus) in malnourished AN patients
was correlated with the severity of functional gastrointestinal disorders. Pathogenic genera (Klebsiella,
Salmonella) were overrepresented while symbionts (for example, Eubacterium and Roseburia) involved
in immune balance were underrepresented in AN [132]. Enterobacteriaceae were more abundant
in AN in comparison with the control, and thus authors hypothesized that their higher abundance
could be linked to the elevated production of neuropeptide caseinolytic protease b (ClpB), which in
turn could deregulate gut–brain communication in AN patients [129]. A correlation between ClpB
and α-melanocyte-stimulating hormone production was associated with satiety and anxiety in eating
disorders [142]. ClpB constitutes an example of a bacteria-derived molecule linking the gut microbiota
with hypothalamic circuits controlling host appetite [143,144]. Morita et al. (2015) also demonstrated
that the levels of Bacteroides fragilis group in ANR and ANBP patients as well as Clostridium coccoides
in the ANR patients were essentially reduced in comparison with the control group. Clostridium
difficile was detected only in the ANBP patients, and the colonization might be due to ANBP-specific
behaviors, such as recurrent purging [127]. Hata et al. also reported a lower relative abundance of
the phylum Bacteroidetes in AN patients in comparison with healthy matched controls; however,
both the long-term and short-term Bacteroides treatment (with B. vulgatus as a predominant species
of the B. fragilis group) did not exert any influence on weight gain in gAN mice, but successfully
reversed compulsive behavior in those animals [122]. The correlation analysis revealed that Bacteroides
uniformis (another example of species from the B. fragilis group) was negatively correlated with
BMI [129].

Limited data is available regarding the influence of hyperactivity in AN patients on the gut
microflora, either. Excessive physical activity has been noted as a typical AN feature since the
19th-century descriptions [20], and thus patients during renourishment are to reduce their physical
activity in order to reduce their energy expenditure rates and advance weight recovery. In general,
physical exercise is believed to improve gut homeostasis [145]. So far, Mörkl et al. reported that



Nutrients 2020, 12, 2604 13 of 32

physical activity was associated with an increased gut microbiota alpha-diversity [130]. Although data
remains unclear whether supervised physical activity during renourishment might be healthful for
anorectic patients, physical activity itself has been reported beneficial for depression, anxiety, and bone
mineral density, which are all expected comorbidities of AN [146].

Collectively, these results confirm the gut microbial imbalance characteristic for AN patients, but it
is too early to draw definite conclusions, especially casual links. The fact that anorexia nervosa is a
heterogeneous entity only makes the matter worse. So far, most studies enrolled a very limited number
of participants and variable inclusion and exclusion criteria were utilized (Table 3). The individuals
menstrual cycle and the estrogen levels might have influenced on gut microbiota [131] but were
not take into account in the mentioned studies. Nor were the information regarding participants’
mode of birth, and whether they were breastfed, which should have influenced their microbiome [8].
Of note, there are several limitations of those studies, such as different sample collection procedures,
quantification methods of bacterial species in feces samples, selection methods of the control group,
choice of time point for an investigation or patients’ diet composition (including the use of food
additives) together with levels of calorie intake. It should be also kept in mind that characterized
feces samples may significantly differ from the actual ecosystems present in the colon or the small
intestine [120]. Longitudinal dietary intervention studies with larger and younger cohorts, and more
male participants are in need to advance the research in this field.

In general, since the diet has the ability to reshape the host microbiome and promote its successful
survival, which should further influence the host immunity and the central reward pathways via the
gut–brain axis, the particular attention should be paid to dietary habits of the whole AN families before
and after the diagnosis. And thus, it would also be advisable to screen and compare the intestinal
microflora among the family members (cohabitants) of AN patients instead of the age-matched
healthy controls. And further, those results should be also paired with their genetic profiles. In our
opinion, such studies should advance the research regarding the unestablished (but hopeful) role of
the microbiome in AN pathogenesis. Surely, its role in the AN pathobiology is certain (based on animal
studies), however, since the available results are inconsistent, probably due to the abovementioned
methodological discrepancies, a complete definition (pathomechanisms) of such role could not
be presented.

4.2. Microbial Metabolites

Gut microbiota forms an individual metabolic organ with the ability to produce numerous
signaling molecules, and the communication between microorganisms and their mammalian hosts is
bidirectional, with either symbiotic or pathogenic relationships [117,147]. Some of those molecules can
be identical to human neurotransmitters, such as, for example, gamma-aminobutyric acid produced by
strains of Lactobacillus and Bifidobacterium [148], or biogenic amines such as noradrenaline, dopamine
or serotonin [149], and can directly and indirectly modulate the gut–brain axis [150], and affect eating
behaviors. Asano et al. reported that the majority of catecholamines detected in specific pathogen-free
(SPF) mice with a normal gut microbiota were of the biologically active free type, and more than
90% of dopamine and 20 to 40% of norepinephrine detected in germ-free (GF) mice were of the
glucurono-conjugated type [151]. As reported by Sudo, the total intestinal norepinephrine levels were
higher in SPF in comparison with GF mice [147]. Some bacterial species have transporters such as
a bacterial neurotransmitter sodium symporter family member, Leu T [152], still, it awaits further
research to assess if norepinephrine and dopamine found in gut microbiota originate from bacterial
production via a rate-limiting tyrosine hydroxylase-like enzyme or if they come from the gut lumen via
a Leu T-like transporter [117]. Such results reveal the gut microbiota as a possible net sink for biogenic
amines, for example, in order to prevent an excessive host production of neurotoxins. And indeed,
some scientists have already hypothesized at the turn of the 19th and 20th century that depression
or anxiety (also characteristic for AN) might have resulted from the so-called autointoxication due
to those neurotoxins [153]. Until recently, the concept was largely neglected, but Sudo proposed
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biogenic amines to be interesting candidates of such autointoxication [147]. Biogenic amines, whether
endogenous or of possible microbial origin, are engaged in the intestinal immunology which further
justifies the relevance of the concept in AN studies.

Thus, some authors suggest that microbial metabolites and various signaling molecules are of more
importance than the gut microorganisms themselves [154]. Interestingly, the microbial formation of
short-chain fatty acids (SCFA), resulting from non-digestible carbohydrates fermentation and supplying
up to 10% of the host’s daily caloric intake, not only keeps the epithelial integrity and influences immune
responses but may also stimulate the secretion of satiety hormones, including ghrelin, leptin and
peptide YY [147,153–155]. The levels of total SCFA (acetate, propionate, and butyrate) have been
changeably reported in AN studies (Table 3), while branched-chain fatty acids (BCFA; especially
valerate and isobutyrate), resulting from protein fermentation [156], were increased in AN patients
at the time of hospital admission [124]. Yet, the casual role of both SCFA and BCFA in the onset,
progression and nutritional rehabilitation in AN patients needs further investigation [157], especially
due to the fact that AN patients prefer to consume relatively high amounts of fiber-rich foods.

This area of research is relatively new (analogously to other psychiatric and gastrointestinal
disorders as well) and much more evidence is needed to establish either a causative or a consequential
(symptomatic) role of microbial metabolites (or microbial metabolites imbalance) in the course of AN
disease. The methodological approach, similarly to all microbiota-related studies, should be clearly
standardized to ease the interpretation of the results, too.

4.3. Entero-Endocrine Alterations

Numerous appetite regulating molecules (cholecystokinin (CCK), peptide YY (PYY), ghrelin,
and obestatin) are secreted by enteroendocrine cells in response to the presence of luminal nutrients.
These hormones are able to act on neighboring cells (i.e., enterocytes or vagal nerve endings) as well as
on distant organs such as pancreatic islets, and participate in the regulation of meal size [158]. Functional
toll-like receptors (TLR 1, 2, and 4) are expressed on enteroendocrine cells and thus, these cells can
simultaneously monitor intestinal immune responses to symbiotic and harmful microorganisms [159].
Thus, enteroendocrine cells maintain gut homeostasis and influence the gut–brain axis through the
release of these hormones, yet their role in AN pathobiology remains inadequate and call upon
well-designed studies.

The sulfated forms of cholecystokinin (CCK-8-S, -33-S, -39-S, and -58-S) bind to the A-type receptor
predominantly found in the gastrointestinal tract and are responsible for the regulation of meal size
and satiety, while the unsulfated tetrapetide CCK-4 binds to the CCK-B receptors predominantly
found in the brain [160]. Both, increased circulating baseline CKK and postprandial CCK-8S levels
were reported in AN patients [161]. A diminished CCK response was observed after a glucose load,
but the body weight restoration normalized CCK levels [162]. Interestingly, it was also reported
that exogenous CCK-8 was more satiating and endogenous CCK plasma levels were elevated in the
fasted state as well as after a low-energy preload in older adults. And despite the elevated plasma
level, older adults maintained sensitivity to the satiating effects of exogenous CCK, suggesting that
enhanced endogenous CCK activity should be responsible for the anorexia of aging [163]. Yet, the most
recent studies reported no difference between AN patients and healthy controls, nor any correlation
between CCK and BMI. However, CCK levels at the time of hospital admission were a good predictor
of gastrointestinal symptoms’ improvement. While an inability to adapt CCK levels to a lower food
intake might be genetically determined in the subgroup of AN patients, and CCK levels might be also
linked to neuropsychological dysfunctions characteristic for AN [164].

Peptide YY is a 36-amino acid anorexigenic hormone released by the endocrine L cells of the
gastrointestinal tract as well as pancreatic endocrine cells and stomach enteric neurons, in response
to food ingestion, in proportion to energy intake and meal composition. It inhibits food intake,
gastrointestinal motility and secretion, and is known to modulate microbiome–gut–brain axis.
The release of PYY can be stimulated by gastric acid secretion and metabolites, such as already
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mentioned CCK or SCFA. PYY (1–36) is cleaved enzymatically by dipeptidyl peptidase 4 to the
main circulating form PYY (3–36) of more relevance regarding energy and glucose homeostasis [165].
PYY activated brain regions involved in reward processing, based on functional magnetic resonance
imaging [166]. So far, heterogeneous results were reported in AN patients, and most importantly
usually instead of PYY (3–36), the total PYY concentrations were investigated. It was reported that
fasting and postprandial PYY and PYY (3–36) were increased in those with active disease. PYY was
positively associated with a drive for thinness despite the fact that the suppression of PYY would be
rather expected in AN [167–169]. PYY (3–36) levels were positively associated with dietary restraint
and lower levels in ANBP patients (significantly lower after controlling for BMI) than in the restricting
type were reported [59]. Some authors suggested an involvement of PYY in the pathogenesis of
anorexia nervosa rather than an adaptive response to starvation, since postprandial PYY (3–36) levels
were also increased in women with restricting type AN following nutritional rehabilitation [167].
Yet, contradictory results, decreased pre- and postprandial levels of PYY in both AN subtypes, but with
no significant differences between AN subtypes, were published. And those authors proposed PYY
as a marker for appetite alterations in eating disorders [170]. Recently, an additional evidence for
normal basal PYY (3–36) concentrations in AN participants was provided. The longitudinal analysis in
acute patients yielded no change in PYY (3–36) concentration after short-term weight rehabilitation,
either. A negative correlation between PYY3–36 concentration and BMI was found at admission to
treatment. And importantly, physical activity (with the ability to modulate PYY secretion) levels were
controlled [171].

Acylated (and thus activated) ghrelin is thought to stimulate food intake, reduce insulin secretion
and stimulate gastric motility, while desacylated ghrelin should counterbalance the orexigenic effect of
acylated ghrelin. Ghrelin is mainly produced in X/A-like cells of the stomach, pancreatic and intestinal
cells, and its orexigenic effects are mediated centrally via NPY- and AgRP-expressing neurons [172].
Ghrelin also activates dopamine neurons in the ventral tegmental area (VTA), increases dopamine
turnover in the nucleus accumbens and stimulates food intake if locally administered to the VTA [173].
So far, results regarding ghrelin and AN patients have been consistent, suggesting a role of ghrelin
in the development and/or maintenance of the disorder [172]. Fasting plasma ghrelin levels in AN
patients (in ANR only) were reported to be elevated, and an increase in BMI decreased circulating
ghrelin levels [174,175]. AN patients had doubled fasting and 24-h plasma ghrelin levels compared
to constitutionally lean, BMI-matched and healthy, subjects. Ghrelin was increased in both AN and
constitutionally thin subjects with very low BMI but different eating behaviors, suggesting that both
body fat mass and nutritional status should influence ghrelin levels [176]. Interestingly, ghrelin levels
positively correlated with the amount of physical activity [76]. AN subjects also displayed higher
ghrelin levels compared to cancer patients with cachexia [176]. One study thoroughly examined
ghrelin’s secretion in adolescent girls, which demonstrated that not only its concentration is higher
in AN but also its nadir as well as total area under the curve over 12 h of nocturnal sampling were
higher. Additionally, secretory burst amplitude and burst mass were elevated in AN resulting in
higher pulsatile and total ghrelin secretion [87]. The decrease of ghrelin in ANBP was reinforced by
the assessment of a preproghrelin-derived peptide called obestatin. The ghrelin and obestatin profiles
of ANBP patients were identical with that of normal-weight subjects with bulimia nervosa, suggesting
that bingeing/purging behavior should adjust homeostatic aspects of food restriction. Up-to-date the
identification of the two AN subtypes solely depends on patients’ testimony, and thus the assessment of
appetite-regulatory peptides has been proposed to ease differentiation between subtypes of AN [170].

The abovementioned hormones represent the most studied examples of appetite regulating
molecules. So far, the results seem to be inconsistent, as one would ultimately expect an increase in
orexigenic signals and a decrease of the anorexigenic ones due to starvation. However prolonged
physical hyperactivity, believed to play a fundamental role in the development and maintenance of
AN, activates reward pathways and might deregulate entero-endocine homeostatic mechanisms via
descending pathways of the gut–brain axis, and could further cause both gastrointestinal dysfunction
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and aggravate neuropsychiatric instability. Still, it is too early to judge, as the methodological approaches
of those studies immensely limit the interpretation and consequently perpetuate uncertainty regarding
the role (either etiologic or adaptive) of these hormones in the course of the disease. Only some of the
abovementioned studies recorded dietary habits or use of medications. As already stressed, the diet
(and/or medications) could impact the participants’ microflora, which could affect the results by either
the direct release of the entero-endocrine molecules by certain strains of bacteria or by the (in)activation
of the already released ones by the host, which was not considered, either. Only one study assessed the
level of AN participants’ physical activity. And while the circadian variability was taken into account
for the blood collection, different diagnostic tests were used, which would make it difficult to replicate
the protocols.

4.4. Gastrointestinal Malfunction

Anorexia nervosa frequently manifests with a range of gastrointestinal symptoms related to all
parts of the digestive system and of different severity, and such symptoms can be the first physical signs
of the disease. Sometimes years of unsatisfactory diagnosis and therapy, including unnecessary surgical
procedures, may precede the final diagnosis of the late-onset AN [177]. Yet, it remains unknown, due to
the lack of sufficient clinical data, whether these symptoms are etiologic and lead to AN, or whether
they represent short and long-lasting consequences of the disorder. The presence of structural or
metabolic gastrointestinal disorders in the majority of patients with eating disorders, including AN
were excluded [178–183], and rather suggested an impaired gastrointestinal function [184]. It is
noteworthy, a structural illness like celiac disease may increase the probability of an eating disorder
development because such patients pay detailed attention to their diet, body weight, and food-related
gastrointestinal symptoms that may further result in a chronic dietary restriction [185].

Dry mouth, inflammation, and erosion of the gums as well as angular cheilitis (inflammation
of one or both corners of the mouth) tend to be frequent in AN patients due to reduced resting and
stimulated salivary flow together with lowered pH of saliva [186–188] Heartburn, non-cardiac chest
pain and dysphagia are frequently observed in patients with AN [189]. Damaged oral mucosa and
esophageal acidic damage (alike gastroesophageal reflux disease) are typical for ANBP patients due to
self-vomiting, and increase the risk of the dysplasia and cancer [190]. AN patients also reported more
fullness and less hunger [191], which served as an additional argument for severe food restriction [192].
AN patients exhibited slow gastric emptying for liquids [180,193,194] and solids [178,183] in both AN
subtypes [195]. Some authors (but not all [180,195]) demonstrated that gastrointestinal symptoms
such as nausea, vomiting, and postprandial fullness (but not satiety [196]) correlated with slow gastric
emptying [181]. Noteworthy, gastric emptying and gastrointestinal symptoms improved after weight
restoration [191,194], even without reaching normal levels of BMI [197]. A meta-analysis confirmed an
association between anxiety, depression, neuroticism, and functional disorders (especially irritable
bowel syndrome) in AN [198]. In fact, disordered eating behaviors were increased in adult patients
with irritable bowel syndrome (IBS) in comparison with non-IBS patients, ranging from 15% to 25% vs.
3% [199]. A systematic review demonstrated that approximately 23% of patients with gastrointestinal
diseases had disordered eating habits, which is higher than the 10% prevalence rate reported for the
general population. Studies have also shown that over 90% of patients with anorexia nervosa have
functional gastrointestinal symptoms [196,200,201].

Pathophysiology of functional gastroduodenal disorders in AN is very complex, multifactorial
and poorly understood due to the lack of sufficient clinical data and clinical variability among AN
patients. Motor and sensory gastroduodenal dysfunction, impaired mucosal integrity, local low-grade
immune activation as well as dysregulation of the microbiome–gut–brain axis signaling are all involved
in etiopathogensis of functional gastrointestinal disorders [132,202,203]. According to Schalla and
Stengel (2019) long-lasting food restriction together with laxative abuse led to gastric damage including
autonomic nerve dysfunction, which negatively alters local neural regulation and further leads to
impaired gastric accommodation, bradygastria and decreased gastric emptying [204]. AN patients
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presented with an increased risk of the superior mesenteric artery syndrome development, which
involves vascular compression of the distal part of the duodenum and results in vomiting and
abdominal pain. The compression can be alleviated through positional changes and it might be
a result of sever weight loss [119]. Moreover, enhanced pain perception, visceral hypersensitivity,
altered regional brain activation, infections, immune and neuroendocrine dysfunction, and genetic
susceptibility have all been mentioned in regard with AN [205].

Chronic constipation negatively impacts quality of life, with a higher prevalence among
females [206,207] and in AN patients might be the result of abnormal colonic function due to poor or
substandard intake of food as well as electrolytic alterations secondary to laxative abuse (in ANBP)
and medications (especially tricyclic antidepressants) [201,208,209]. And indeed, more than 60% of
AN patients suffer from delayed colonic transit and around 40% from pelvic floor dysfunction [210].
According to Santonicola et al. (2019) the correlation between pelvic dysfunction and a history of
an eating disorder (including AN) might be explained as a combination of prolonged evacuation
efforts, laxative abuse, enforced vomiting together with extreme exercise, and subsequently lead to the
structural damage of pelvic floor muscles in addition to atrophy and rhabdomyolysis (skeletal muscle
breakdown) due to starvation [115].

It seems reasonable to hypothesize that gastrointestinal malfunction in AN should primarily
result from the disturbed gut homeostasis and gut–brain axis due to numerous environmental and
behavioral causes (including malnutrition and hyperactivity) combined with genetic susceptibility.
Gastrointestinal malfunction and inflammation may uncover and/or aggravate the disease. Nonetheless,
the etiological role of the gastrointestinal malfunction in AN remains unlike and unevidenced.

5. Endocrine Dysregulation

All metabolic changes in AN represent the duration and degree of body weight loss due to
starvation and physical hyperactivity, and thus almost solely represent a consequence of the disease;
however, their etiologic role cannot be excluded based on the available data. Once the body weight is
below 60% of the normal weight, every endocrine system become affected as caloric restriction overrules
physiologic adjustments [119,211]. Endocrine deregulation might exert long-lasting consequences
and should be closely monitored, and the below mentioned brief examples are given to support
such arguments.

Due to depleted energy reserves and to reduce its further expenditure, weight loss in anorexia
is often accompanied by hypothalamic amenorrhea with inhibition of gonadotropin secretion and
low estrogen levels. Although estrogen is known to inhibit food intake and seems to increase the
serum leptin concentration, its deficiency in anorexia may also exaggerate anxiety [212]. Regulation
of reproductive function seems to center around kisspeptin neurons that mediate metabolic signals
and HPG feedback mechanisms (discussed in the hypothalamic regulation section of this review).
The dysfunctional hypothalamic–pituitary–gonadal axis (HPG) with a reduced concentration of
gonadal steroids not only impair the reproductive function of AN patients but also determines low
bone density due to the dominance of resorption processes in bone metabolism (together with low IGF-1
levels and hypercortisolemia) [213,214]. Moreover, estrogen is involved in the normal development of
neuronal pathways, such as reward circuitry, during adolescence, which is a particularly important
period in the onset of anorexia [215].

Leptin, a fat-derived hormone, is assumed to initiate an adaptive response to starvation,
since the reduction in leptin levels were proportional to the loss of body fat mass. Leptin acted
on hypothalamic feeding circuits as well as forebrain pathways regulating taste, olfaction, learning,
memory, and reward [173], and low brain leptin levels deactivated anorexigenic signals that could
cause anorexia as well as activated orexigenic signals to promote eating and to suppress energy
expenditure [216]. In general, leptin levels were decreased in AN [59,217–220] and increased with
subsequent weight restoration [219,220]. Anorectic females with higher fat mass and higher leptin
levels were more likely to have menses even so having low body weight [221]. Mean leptin levels
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were lower in ANBP subtype compared to restricting type but were not significant after controlling
for BMI. Still, it remains unclear whether low leptin levels should be related to AN psychopathology
independently of body weight [59]. Additionally, decreased bone mineral density together with low
levels of bone formation markers both in healthy populations [222] and in AN patients [223] were
correlated with hypoleptinemia. AN females had lower amounts of brown adipose tissue (BAT) in
comparison to controls, which was associated with lower T3 levels and lower bone mineral density,
but no association between BAT and BMI was found [224].

The production and secretion of growth hormone (GH) in AN was highly elevated, whereas
circulating levels of IGF were low, potentiating the release of GH [87,225–227]. It is the effect of the
acquired GH resistance that can be reversed by refeeding. There are several mechanisms responsible for
GH resistance, which include reduced levels of its binding protein, decreased expression of the hepatic
GH receptor, and impaired GH intracellular signaling as a result of signal transducer and activator of
transcription 5 (STAT5) inhibition by fibroblast growth factor 21 (FGF21) [228–230]. Such observations
have led to the conclusion that the malnourished organism adaptively retains energy that would be
spent on IGF-mediated bone growth, and increases GH lipolytic activity that does not require IGF
participation. In addition to metabolic effects, GH is considered a factor that modulates the development
and function of neuronal structures, and thus affects the mental state. In particular, a recent correlation
study showed that changes in the GH/IGF axis may affect the underlying psychopathology [231].

Additionally, hormones might serve as screening, diagnostic and prognostic markers, and appetite-
regulatory peptides were already given as an example. However multicenter randomized controlled
studies are in need to address the idea.

In conclusion, endocrine adaptations to malnutrition are responsible for the development of severe
symptoms of AN, such as amenorrhea or osteoporosis, but their potentially negative impact on mental
health, hindering the recovery process, should also be emphasized. Anxiety and depression may be
aggravated by hypercortisolemia, hypoestrogenemia or high concentration of GH, which indicates the
need for integrated treatment by specialists in various fields.

6. Psychopathology

A model explaining the onset and the development of anorexia nervosa is multifactorial, and these
relationships are undoubtedly complex. Indeed, psychological concepts have been decidedly used to
explain the disease, which according to assumptions, refer to various theoretical constructs. From a
clinical perspective, results have been quite consistent in the field of personality traits analysis as
predictors of food restrictions. In addition, these traits are most often analyzed in the context of
characteristic personality profiles. In the classic studies of Grillo and colleagues (2003), it was found
that among people with AN personality disorders with anxiety traits are twice as common (avoiding,
dependent, obsessive-compulsive), and in the purging type of AN, most often borderline and histrionic
personality traits are observed in comparison to control groups [232].

Contemporary research has been focused on the development of regulatory personality functions.
Traits that promote the development of AN, depending on the level of organization of the personality
structure, influence affective, cognitive, and social responses. Among the psychological features
and mechanisms essential in the etiology of the disease are personality predispositions such as fear
of adolescence, including psychosexual, related to the need to return to childhood and the desire
for security; perfectionism expressed in setting high-performance standards with a strong need for
control as well as carrying out tasks in accordance with social expectations; depression and low
self-esteem related to a negative assessment of one’s own skills and competences, the feeling of
self-ineffectiveness, which causes isolation and loneliness; difficulties in building relationships with
other people based on trust and mutual exchange of positive emotions; or low interoceptive awareness
resulting from a difficulty of recognizing emotional states and signals arising from self-body experience.
Special importance has been given to the affective regulation, especially its manifestations, such as
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emotional instability, impulsiveness, anger and a tendency to self-harming behavior, in the analysis of
psychological mechanisms [233–235].

A fairly coherent picture has emerged from the analysis of the results of socio-cultural research
in various cultures indicating the importance of, above all, the standards of one’s own body image,
shaped by mass media. The internalization of the value of having a slim body and dissatisfaction with
one’s own body as well as socio-cultural pressure associated with the pursuit of an ideal appearance
have been indicated as key to the emergence of food restrictions [236–238].

One of the consequences of popularizing a very slim figure, especially in women, is the pursuit of
the perfect appearance, which can not only be associated with cognitive distortions related to one’s
own body, but can also promote the persistence of negative affect and depression, which are predictors
of eating behavior disorders. These complex interactions of socio-cultural and psychological factors
justify the importance of analyzing the causes of anorexia nervosa in multifactorial models, however,
they are not further discussed in the current review.

7. Conclusions

This review points the complexity of multifactorial pathogenesis of anorexia nervosa (AN),
trying to concisely summarize the mechanisms involved primarily in the development of the disease
itself, and secondly in the formation of the clinical picture of the patients (Figure 1). Although, it
should be noted that the presented theoretical model that could fit based on the evidence reported is
not evidence-based yet. Additionally, the conclusions are subject to bias due to the narrative format of
the review, which certainly limits the presented results.
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Figure 1. The interplay between the major pathophysiological concepts of anorexia nervosa symptomatology.

The importance of psychological and socio-cultural factors in the development of AN is widely
established and accepted; however, there is an increasing evidence that metabolic dysregulation is
much more involved than we initially thought. New concepts relate to the observed lack of reactivity
to the adaptive homeostatic mechanisms activated in a state of negative energy balance, such as
an increased serum concentration of ghrelin and reduced leptin or peptide YY. The neurochemical
basis of these concepts revolves around the dysfunction in the reward system and appetite regulating
neuropeptides, which apart from playing an adaptive role in preventing weight loss can exaggerate
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anxiety-like behaviors. This central anomaly could affect the microbiome–gut–brain axis and the
nutritional homeostasis of anorectic patients. The autointoxication resulting from toxic microbial
metabolites along with chronic stress and hormonal dysregulation tend to elicit a systemic inflammatory
response, and could induce a pathological viscous cycle. Constipation was already mentioned as an
anorectic symptom in the Gull’s descriptions of the disease in the 19th century; however, the scientific
evidence for the importance of gut health in AN has surfaced in the last two decades. With more
arguments on their way, the nutrition status and habits of the patients should no longer be considered
purely in terms of caloric density. The ineffectiveness of approved treatment methods seems to result
from the approach that focuses mostly on relieving the symptoms. Thus, we believe that the outlined
pathophysiological components of AN may help clinicians in their therapeutic approach to thoroughly
address the symptoms presented by their patients. What is more, an interdisciplinary approach should
be applied both in research and clinics due to the disease heterogeneity, decreasing age of onset and
increasing prevalence.
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Abbreviations

ACTH adrenocorticotropic hormone
AgRP agouti-related peptide
a-MSH alpha-melanocyte-stimulating hormone
AN anorexia nervosa
ANBP anorexia nervosa purging type
ANR anorexia nervosa restricting type
ANS autonomic nervous system
BAT brown adipose tissue
BCFA branched-chain fatty acids
β-EP β-endorphin
β-LP β-lipotropin
BMI body mass index
CART cocaine- and amphetamine-regulated transcript
CCK cholecystokinin
ClpB caseinolytic protease B
CRH corticotropin-releasing hormone
CSF cerebrospinal fluid
D2 dopamine D2 receptor
D3 dopamine D3 receptor
DSM Diagnostic and Statistical Manual of Mental Disorders
E. Coli Escherichia coli
FGF21 fibroblast growth factor 21
fMRI functional magnetic resonance imaging
gAN mice with the gut microbiota of patients with AN
GF germ-free
GH growth hormone
gHC mice with the gut microbiota of healthy controls
GHSR growth hormone secretagogue receptor
GIP glucose-dependent insulinotropic peptide
GLP-1 glucagon-like peptide 1
GLP-2 glucagon-like peptide 2



Nutrients 2020, 12, 2604 21 of 32

GnRH gonadotropin-releasing hormone
GUS β-glucuronidase
HPA hypothalamic–pituitary–adrenal (axis)
IBS irritable bowel syndrome
IGF-1 insulin-like growth factor 1
IL-15 interleukin 15
IL-6 interleukin 6
KISS1R kisspeptin receptor
LH luteinizing hormone
MOR Mu-opioid receptor
NA noradrenaline
NPY neuropeptide Y
OPRD delta-opioid receptor
PNS parasympathetic nervous system
POMC pro-opiomelanocortin
PYY peptide YY
SCFA short-chain fatty acid
SNS sympathetic nervous system
SPF specific pathogen-free
STAT5 signal transducer and activator of transcription 5
T3 triiodothyronine
T4 thyroxine
TLR toll-like receptors
TNF-α tumor necrosis factor-alfa
TSH thyroid-stimulating hormone
VTA ventral tegmental area
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