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Abstract 

American tackle football is associated with high rates of concussion, leading to neurophysiological 1 
disturbances and debilitating clinical symptoms. Previous investigations of the neurophysiological effects 2 
of concussion have largely ignored aperiodic neurophysiological activity. We examined whether concussion 3 
during a season of high school football is related to changes in aperiodic and periodic neurophysiological 4 
activity and whether any such changes are associated with clinical outcomes. Pre- and post-season resting-5 
state MEG data were collected from 91 high school football players, of whom 10 were diagnosed with 6 
concussion. Data were source-imaged, frequency-transformed and parameterized, and linear mixed 7 
models were used to examine effects of concussion on pre-to-post-season changes in neurophysiological 8 
activity. Scores on the Post-Concussive Symptom Inventory were correlated with pre-to-post-season 9 
neurophysiological changes to determine their clinical relevance. Concussion was associated with increased 10 
aperiodic exponents in superior frontal cortices, indicating a relative reduction in cortical excitability. This 11 
slowing of aperiodic neurophysiology mediated concussion effects on raw delta and gamma power and was 12 
associated with worse cognitive concerns across participants. Pre-to-post-season changes in aperiodic-13 
corrected alpha and theta rhythmic activity were also decreased in posterior cortices in instances of 14 
concussion. These findings indicate that concussion alters both the excitability and rhythmic signaling of 15 
the cortex, with differing spatial topographies and implications for clinical symptoms.   16 
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Introduction 1 

Among youth sports played in the United States, tackle football is associated with the greatest number of 2 

concussions, with between 1.1 and 1.9 million detected annually in players 18 years old and younger.1,2 3 

Concussions, also known as mild traumatic brain injuries (mTBI), cause axonal injury and disturbances in 4 

brain function, resulting in debilitating clinical sequelae both acutely and chronically. 2–4 The adolescent 5 

developing brain is especially susceptible to concussions, resulting in profound neurostructural and 6 

neurophysiological changes at the macro-scale. 3,5–10  7 

 8 

Magnetoencephalography (MEG) can non-invasively detect these neurophysiological changes with 9 

millisecond time resolution,11,12 and has potential value as a clinical tool for concussion diagnosis and 10 

prognosis5,13,14. Previous examinations of mTBIs resulting from both football- and military-related impacts 11 

with MEG have shown abnormal changes in frequency-defined neurophysiological activity, manifesting 12 

most notably as alterations in delta (1 – 4 Hz) and gamma (30 – 80 Hz) activities, which are related to the 13 

severity of cognitive impairments.5,10,13 Concussion-related increases in slow-frequency activity in 14 

particular mirror similar pathological increases in patient with Parkinson’s15–18 and Alzheimer’s19–24 15 

diseases, which are related to the hallmark proteinopathy and clinical impairments of each disorder.  16 

 17 

With few exceptions14,25, previous M/EEG studies of concussion have used traditional approaches to 18 

spectral power analysis – exploring neurophysiological activity within canonical frequency bands while 19 

ignoring the aperiodic (i.e., arrhythmic) component. However, recent research has shown that aperiodic 20 

neurophysiological activity, and particularly its negative-signed slope (typically quantified as a positively-21 

signed exponent), has substantial implications for understanding human brain function in states of health 22 
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and disease 18,26–36. The aperiodic slope of the neural signal flattens with healthy aging29,33 and 1 

development37–40, and is slowed (i.e., steepens) in several neurological disorders such as Parkinson’s 2 

disease18,41,42, epilepsy43,44, and stroke35. Moreover, ignoring aperiodic activity as a source of “noise” runs 3 

the risk of conflating alterations in aperiodic neurophysiology with those in periodic neuronal 4 

oscillations29,45, thereby reducing sensitivity and interpretational clarity.  5 

 6 

Investigations of the aperiodic slope in human neurophysiology have indicated its potential utility as a proxy 7 

of general cortical excitability. A previous EEG study of sleep and general anesthesia in adults demonstrated 8 

that the aperiodic slope can reliably track fast changes in cortical excitability across states of wakefulness, 9 

NREM, and REM sleep – specifically reporting steepening of the spectral slope during REM and propofol 10 

administration27, both of which are known to increase inhibition. Furthermore, an MEG study of generalized 11 

epilepsy showed that flattening of the aperiodic slope indexed whole brain hyperexcitability, even in the 12 

absence of interictal epileptic discharges46. These findings are also supported by computational modeling 13 

of the biophysical bases of human aperiodic neurophysiology47, and together indicate that steeper 14 

aperiodic slopes (i.e., higher exponents) are associated with decreased excitability and/or increased 15 

inhibition in cortical circuits. 16 

 17 

One recent MEG study14 used spectral parameterization to determine the effect of mTBI on periodic 18 

neurophysiological activity. The authors found a reduction of beta-frequency periodic activity in 19 

participants with a mTBI but did not explicitly test whether aperiodic activity also differed significantly 20 

between the mTBI and control groups. An EEG study of adults with mTBI also examined parameterized 21 

power spectra, and found significant group differences in the peak frequency of alpha periodic activity 22 

within frontoparietal regions, but no differences in aperiodic neurophysiological activity.25 However, this 23 
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study did not include participants in adolescence, which is a period of rapid neurodevelopmental change, 1 

especially within frontal lobe regions48 that are susceptible to head impacts.49,50  Further, neither of these 2 

studies measured neurophysiological activity prior to the mTBI event, potentially limiting their statistical 3 

sensitivity. 4 

 5 

In this study, we examined whether the occurrence of a concussion during a season of football play is 6 

related to altered cortical excitability from pre- to post-season, as indexed by changes in aperiodic 7 

neurophysiological activity, and whether any such changes are associated with clinical outcomes. We 8 

hypothesized that concussion would be associated with pathologic slowing of aperiodic neurophysiologic 9 

activity, indexed by a more positive exponent and indicating a reduction in cortical excitability, and that 10 

these changes would relate to clinical symptomatology. We also expected that previously reported 11 

alterations in delta- and gamma-frequency neurophysiological activity in concussed individuals may 12 

actually be attributable to this aperiodic slowing effect. Finally, we anticipated to replicate periodic 13 

activity decreases in the alpha and beta frequency bands.  14 
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Materials & Methods 

Participants 1 

This study was reviewed and approved by the Wake Forest School of Medicine Institutional Review Board. 2 

Each participant and their parent provided assent and written informed consent, respectively, following 3 

detailed description of the study. All protocols complied with the Declaration of Helsinki. Exclusion criteria 4 

based on medical history questionnaire consisted of past neurological illness or major psychiatric disease, 5 

developmental disorders, medications that alter neurophysiology, concussion occurrence in the preceding 6 

year, or any contraindications to MRI or MEG scans (e.g., non-removable ferromagnetic implants). 7 

High school football players in Winston-Salem, North Carolina were recruited as part of the imaging 8 

Telemetry and Kinematic modeLing (iTAKL) study5,51, which follows varsity and junior varsity football players 9 

throughout their season(s) of play to study the effects of impact exposure on the brain. Of the football 10 

players recruited from the 2012 to 2019 seasons, ninety-one players had complete and useable MEG data 11 

at both pre- and post- time points for at least one season (all male; mean age = 16.35), with 57 providing 12 

useable data for one season (mean age = 16.43), 22 for two seasons (mean age = 16.33), 10 for three 13 

seasons (mean age = 15.88), and two for four seasons (mean age = 16.75). This resulted in 139 seasons of 14 

repeated measures data across 91 individuals, for a total of 278 pre- and post-season neuroimaging data 15 

collection time points. Over the course of all seasons, 10 of these players were diagnosed with a concussion 16 

during the season of play (mean age = 15.99). Concussions were identified by a certified athletic trainer 17 

who attended all games and team practices. Players with possible concussions were referred to our 18 

collaborating concussion clinic within 72 hours of injury for further evaluation and diagnosis by a Sports 19 

Medicine physician, where the Post Concussion Symptom Inventory (PCSI)52 was administered. The football 20 

players also underwent preseason and postseason T1 MRI scans for anatomical co-registration of their MEG 21 

data.  22 
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 1 

MRI Acquisition and Processing  2 

Participants underwent MRI scans on a 3T Siemens Skyra MRI scanner with a 32 channel, high-resolution 3 

head/neck coil (Siemens Medical, Malvern, PA). T1-weighted anatomical MRI were obtained via a 3D 4 

volumetric magnetization prepared rapid gradient echo (MPRAGE) sequence with 0.9 mm isotropic 5 

resolution (TR = 1900, TI = 900, TE = 2.93, FA = 9 degrees, 176 slices). Fiducial markers were placed on the 6 

nasion and bilateral preauricular regions prior to MRI for co-registration with participant MEG data. 7 

Participant anatomical MRIs were segmented and parcellated using Freesurfer recon-all53 with default 8 

settings.  9 

 10 

Magnetoencephalography Data Collection and Analyses  11 

Eight minutes of eyes-open resting-state MEG data54 were collected using a 275-channel axial gradiometer 12 

CTF Omega 2005 system (VSM MedTech Ltd., Coquitlam, Canada) at a sampling rate of 1200 Hz with 13 

participants sitting in an upright position and fixating on a central point. Participants were monitored via 14 

real-time audio-video feeds during data acquisition. MEG data was processed using Brainstorm.55 The MEG 15 

data were resampled to 250 Hz, band passed filtered between 0.5-100 Hz, and notch filtered at 60 Hz (and 16 

harmonics). Bad data segments (e.g., SQUID jumps) were identified and rejected manually. Independent 17 

component analysis (ICA) was used to detect and remove artifacts, including heartbeats, eyeblinks, and 18 

muscle artifacts based on their temporal and spatial topographies. The MEG data were coregistered with 19 

each subject’s individual structural MRI.56 The coregistered data were then source localized using a linearly 20 

constrained minimum variance (LCMV) beamformer implemented in Brainstorm with default settings, with 21 

source orientations unconstrained to the cortical surface. Welch’s method (window = 6s; 50% overlap) was 22 
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used to transform the source-level time series data into the frequency domain. These data were 1 

parameterized using specparam29 (Brainstorm MATLAB version; frequency range = 1-40 Hz; Gaussian peak 2 

model; peak width limits = 0.5-12 Hz; maximum n peaks = 3; minimum peak height = 3 dB; proximity 3 

threshold = 2 standard deviations of the largest peak; fixed aperiodic; no guess weight). To represent the 4 

aperiodic components of the neurophysiological power spectrum, the offset and slope of the arrhythmic 5 

model fit were extracted per vertex. We also re-computed the parameterization of these spectra, excluding 6 

the lower frequencies (new frequency range = 10 – 40 Hz), to ensure that the aperiodic offset and/or 7 

legitimate periodic delta-frequency activity did not bias our estimation of the aperiodic exponent. The 8 

aperiodic spectra were then subtracted from the original Welch’s PSDs to derive the rhythmic (i.e., 9 

aperiodic-corrected) spectra.  10 

 11 

The rhythmic and arrhythmic neurophysiological features were subsequently averaged over the vertices 12 

per each region of the Desikan-Killiany atlas57, and the rhythmic spectral data were averaged over canonical 13 

frequency bands (delta: 2 - 4 Hz, theta: 5 - 7 Hz, alpha: 8 - 12 Hz, beta: 15 - 29 Hz). This resulted in six maps 14 

of neurophysiological activity for each season and participant: the rhythmic activity in each of the four 15 

canonical frequency bands and the arrhythmic activity represented by the aperiodic exponent (i.e., slope) 16 

and offset. As indicated above, we also generated an additional map per each season and participant of the 17 

high-frequency aperiodic exponent. For each of these features, the pre-season brain maps were subtracted 18 

from the post-season maps to generate maps of change in neurophysiological activity per each season and 19 

participant. Band-averaged maps of the un-parameterized spectral data (delta: 2 - 4 Hz, theta: 5 - 7 Hz, 20 

alpha: 8 - 12 Hz, beta: 15 - 29 Hz, gamma: 30 – 59 Hz) were also generated using a similar approach, to 21 

determine the influence of parameterization on previously reported neurophysiological changes. 22 

 23 
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Post-Concussive Symptom Inventory  1 

The Post-Concussive Symptom Inventory (PCSI) is a 21-item questionnaire that is used to discriminate 2 

between athletes with and without concussion by quantifying symptom severity on a scale of 0-6. Parental 3 

PCSI data were collected for each participant with diagnosed concussions at time of evaluation. Items on 4 

the questionnaire are grouped into physical, emotional, and cognitive symptom clusters.52,58 We focused 5 

our hypotheses on the cognitive symptom cluster of the PCSI, which includes: feeling mentally “foggy”, 6 

difficulty concentrating, difficulty remembering, getting confused with directions or tasks, answering 7 

questions more slowly than usual, and feeling slowed down.52,58   8 

 9 

Statistics  10 

A linear mixed-effects modeling approach was implemented to test the relationship between the 11 

occurrence of concussion and post-to-pre-season neurophysiological changes using the lme4 package59 in 12 

R. Note that a major benefit of this approach is that it allows for the nesting of multiple repeated-measures 13 

(i.e., seasons) within each participant, while still utilizing all of the available data. Concussion occurrence 14 

was modeled as a categorical variable (i.e., concussion versus no-concussion in a given season), and age at 15 

pre-season scan, time between pre-season and post-season scans, and body mass index (BMI) were 16 

included as nuisance covariates. The final model took the following form: 17 

neurophysiological change ~ concussion + preseason age + time between scans + BMI + (1|participant) 18 

For each neurophysiological feature of interest, this model was fit per each region of the Desikan-Killiany 19 

atlas and the resulting p-values associated with the effect of concussion were corrected across regions via 20 

the Benjamini-Hochberg method60. Neurophysiological data were averaged over atlas regions that 21 

exhibited significant effects (with the same sign) for subsequent data visualization and mediation modeling 22 
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(see below). Based on previous literature5,10,61–64 and our own hypotheses, we initially focused our 1 

hypotheses on the maps of delta (both corrected and uncorrected for the aperiodic spectra) and gamma 2 

(aperiodic-uncorrected only, as parameterization above ~ 40 Hz is not advised29) activity, as well as the 3 

aperiodic features (i.e., slope and offset). All models were re-computed using an outlier exclusion threshold 4 

of normalized residuals ≥ the 97.5 percentile to confirm that our results were not influenced by outliers, 5 

and only results that survived this procedure are reported.  6 

 7 

To examine associations between neurophysiological changes in concussion-sensitive brain regions and 8 

cognition, we averaged the post-to-pre-season changes in neurophysiological activity over brain regions 9 

where a significant effect of concussion was observed and correlated these values with the cognitive 10 

domain score of the PCSI. Non-parametric permutation testing was also used to partially account for the 11 

biases introduced by small sample sizes in cross-sectional correlation analyses using the lmp function in R 12 

(method = “Exact”). 13 

 14 

Where appropriate, causal mediation analysis was used to test for indirect effects using a non-parametric 15 

bootstrapping approach with 10,000 simulations65 on region-averaged neurophysiological features.   16 
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Results 1 

Aperiodic Neurophysiological Activity is Slowed by Concussion  2 

We first examined the effect of concussion on changes in aperiodic neurophysiological activity from pre-3 

to-post-season. The aperiodic exponent (region-wise pFDR’s < .05; region-average effect: p < .001, t = 4.80; 4 

Figure 1) and offset (region-wise pFDR’s < .05; region-average effect: p < .001, t = 5.04; Figure S1) were both 5 

increased from pre- to post-season in individuals who experienced a concussion, relative to those who did 6 

not. Frequency spectra averaged over a representative concussion-sensitive brain region (left caudal 7 

middle frontal) are shown in Figure S2 for the pre- and post-season timepoints for concussed and non-8 

concussed individuals. These relationships remained intact when outliers were excluded (see Methods: 9 

Statistics), as did the effect on the aperiodic exponent when it was parameterized only using high-frequency 10 

neurophysiological activity (10 – 40 Hz; region-wise pFDR’s < .05; Figure S3). Pre-to-post-season changes in 11 

each neurophysiological feature for concussed and non-concussed participants can be seen in Figure S4.  12 

 13 

 14 

 15 
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1 
Figure 1. Concussion increases the aperiodic exponent in superior frontal cortices. Concussion effects 2 
on the post-minus-pre-season change in aperiodic exponent are displayed on the left as beta weight maps, 3 
thresholded based on a cutoff of pFDR < .05. The violin plot to the right demonstrates the nature of this 4 
effect from values averaged over the warm-colored regions on the left, with the post-minus-pre-season 5 
change in aperiodic exponent (residuals) for concussed seasons in red and non-concussed seasons in blue.  6 

 7 

Aperiodic Slope Contributes Significantly to Delta and Gamma Power Abnormalities in Concussion 8 

We replicated previously reported increases and decreases in raw delta and gamma power respectively in 9 

concussed participants (region-wise pFDR’s < .05; Figure 2), and the spatial topography of this effect 10 

qualitatively mirrored the concussion-related slowing of aperiodic neurophysiological activity. However, 11 

once we corrected the delta band values for the aperiodic features, we observed no such effect (all region-12 

wise pFDR’s > .309; Figure 2). Note that similar correction for the aperiodic component in the gamma band 13 

was not possible, due to issues with fitting 1/f models at frequencies above ~40 Hz.29 We also found that 14 

the observed change in the aperiodic exponent accounted for the effect of concussion on both delta and 15 

gamma power using causal mediation analysis. There was an indirect effect of the aperiodic exponent on 16 

both the concussion-raw delta relationship (ACME = .020, p < .001; Figure 2) and the concussion-raw 17 

gamma relationship (ACME = -.002, p < .001; Figure 2).  18 
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 1 

2 
Figure 2. Aperiodic slowing accounts for the effect of concussion on raw delta and gamma power. 3 
Causal mediation analysis: regression paths are shown between concussion (top middle), post-minus-pre-4 
season change in aperiodic exponent (bottom; averaged over significant regions from the linear-mixed 5 
model analysis in Figure 1), raw delta band power (top left; averaged over the same regions from Figure 1), 6 
and raw gamma band power (top right; averaged over the same regions from Figure 1). The t-values next 7 
to each line correspond to their linear relationship modeled via multiple regression (accounting for 8 
nuisance covariates). The t-values above the top left and right arrows represent the relationships between 9 
concussion and changes in raw delta and gamma activity, respectively, without accounting for changes in 10 
the aperiodic exponent. The t-values below the top left and right arrows indicate the same relationships 11 
once change in the aperiodic exponent was included in the model. The t-values outside the dotted lines 12 
represent the relationships between post-minus-pre-season changes in aperiodic exponent and changes in 13 
raw delta and gamma power. The average causal mediation effects (ACME; below) indicated significant 14 
mediation by the aperiodic exponent for both the concussion-delta and concussion-gamma relationship. 15 
*p < 0.05, ***p < 0.001. 16 

 17 

 18 

 19 

 20 

 21 

 22 
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Periodic Alpha and Theta Activity is Reduced by Concussion  1 

We also examined whether aperiodic-corrected neurophysiological activity was related to the occurrence 2 

of concussion. Aperiodic-corrected alpha (region-wise pFDR’s < .05; region-average effect: p < .001, t = -4.57; 3 

Figure 3) and theta (region-wise pFDR’s < .05; region-average effect: p < .001, t = -4.17; Figure S5) activity 4 

were both decreased from pre- to post-season in individuals who experienced a concussion, relative to 5 

those who did not. These relationships remained intact when outliers were excluded (see Methods: 6 

Statistics). No significant effects were seen in the aperiodic-corrected delta and beta bands.  7 

8 
Figure 3. Concussion decreases aperiodic-corrected alpha oscillations in temporo-occipital cortices. 9 
Concussion effects on the post-minus-pre-season change in aperiodic corrected alpha band are displayed 10 
on the left as beta weight maps, thresholded based on a cutoff of pFDR < .05. The violin plot to the right 11 
demonstrates the nature of this effect from values averaged over the filled regions on the left, with the 12 
post-minus-pre-season change in aperiodic exponent (residuals) for concussed seasons in red and non-13 
concussed seasons in blue.  14 

 15 

 16 

 17 

 18 
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Concussion-related Aperiodic Slowing is Associated with Severity of Cognitive Symptoms 1 

Finally, to determine the clinical relevance of the observed concussion-related changes in the aperiodic 2 

exponent, we related PCSI cognitive symptom scores to changes in the pre-to-post-season exponents that 3 

we averaged over the concussion-sensitive regions indicated by warm colors in Figure 1. There was a 4 

significant positive correlation between the PCSI cognitive domain scores and pre-to-post-season exponent 5 

changes (r = .85, p = .008; N = 8; Figure 4), such that greater concussion-related aperiodic slowing was 6 

associated with higher reported cognitive symptoms at the time of assessment. To partially address the 7 

limitations of the small sample size, we re-computed this relationship using nonparametric permutation 8 

testing and findings remained significant (10,000 permutations; pPERM = .012).  9 

 10 

Figure 4. Concussion-related changes in aperiodic exponent are associated with the severity of 11 
cognitive symptoms. Post-minus-pre-season changes in the aperiodic exponent were averaged over the 12 
warm-colored concussion-sensitive brain regions indicated in Figure 1 and are plotted (x-axis) against the 13 
cognitive symptom scores from the Post-Concussion Symptom Inventory (PCSI; y-axis). The line-of-best fit 14 
and associated statistics are overlaid, and the shaded area indicates the 95% confidence interval. Note that 15 
of the 10 participants with complete MEG data who experienced a concussion, only N = 8 also had PCSI 16 
scores available for this analysis. 17 

 18 
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Discussion 1 

Alterations in neurophysiological activity have been previously documented in adults with mTBI13 and to a 2 

lesser degree, in pediatric populations5; however, these investigations have primarily focused on periodic 3 

(i.e., rhythmic) brain activity. Whether the emerging physiologic importance of the aperiodic component 4 

of neurophysiological activity is related to concussion in the adolescent brain, and whether any such 5 

changes are clinically meaningful, are questions that have yet to be answered. Using resting-state MEG, we 6 

demonstrate aperiodic neurophysiologic slowing after concussion in youth tackle football players, 7 

indicating reductions in cortical excitability, with association to cognitive symptoms.  8 

 9 

With these same data, and in agreement with several reports10,66–70, Davenport et al. previously showed 10 

that whole-brain delta power was significantly increased in high school American football players after a 11 

concussion was diagnosed during the season.5 We reaffirm this finding with enhanced spatial specificity: 12 

activity in the delta frequency band, when uncorrected for aperiodic activity, is increased from pre- to post-13 

season in adolescents who experienced concussion in this participant sample. We also extend our analyses 14 

to the gamma band and find a significant decrease in gamma activity after concussion, which again aligns 15 

with previous research.13,71   16 

 17 

Intriguingly, we then showed that the aperiodic exponent increased from pre- to post-season in tackle 18 

football players with diagnosed concussion, relative to players without such a diagnosis, indicating a relative 19 

decrease in cortical excitability. This aligns with previous research indicating cortical hypoexcitability and 20 

increased inhibition following concussion72,73. The spatial topography of this concussion effect is similar to 21 

those of raw delta and gamma activity, indicating that it may be responsible for the effects seen in these 22 
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canonical frequency bands. Supporting this concept, we find that correction of delta band values for 1 

aperiodic activity results in no observed concussion-related effects in this band. Additionally, a causal 2 

mediation analysis indicated that the concussion-raw delta and concussion-raw gamma relationships could 3 

both be explained by changes in the aperiodic exponent. Using the parental PCSI, which has high test-retest 4 

reliability and developmentally appropriate utility in studying concussion-related symptomatology,58 we 5 

also show that the magnitude of concussion-related decreases in cortical excitability are associated with 6 

higher parent report of cognitive symptoms in concussed adolescents, indicating potential for the use of 7 

aperiodic features as clinical markers.  8 

 9 

We also observe significant pre- to post-season decreases in both alpha and theta periodic activity in 10 

posterior cortical regions, which replicate and add to existing literature indicating rhythmic changes in the 11 

context of mTBI.14,25 We did not observe the decrease in beta band activity that has previously been 12 

reported in adults with mTBI, and future research should investigate potential developmental changes in 13 

the spectral definitions of periodic effects of mTBI. 14 

 15 

Our results are notably limited by a relatively small sample of individuals who experienced a concussion 16 

during a season of youth football, due to the inherent difficulties of collecting this type of multi-timepoint 17 

data. However, this repeated measures approach (i.e., both from pre-to-post season and across seasons 18 

within an individual) partially ameliorates this concern by reducing unrelated variance in our signals of 19 

interest, and our linear mixed-effects statistical approach fully leverages the nested nature of these data. 20 

The inclusion of only male participants is also a limitation and should be addressed via similar studies in 21 

female and mixed-sex impact sports. The subjectivity regarding the clinical diagnosis of concussion is also 22 

important to consider in this study; however, several factors were employed to mitigate this limitation. Not 23 
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only were parents, coaches, and players educated before each season on the signs and symptoms of 1 

concussion, but an experienced certified athletic trainer was also present at all practices and games to help 2 

identify these signs and assess for concussion. Furthermore, a board-certified sports medicine physician 3 

evaluated all suspected concussions at our collaborating concussion clinic within 24-72 hours of injury to 4 

confirm the diagnosis.  5 

 6 

Overall, our findings suggest that previous electrophysiological neuroimaging findings in mTBI could be, at 7 

least partially, explained by a more parsimonious slowing of aperiodic neurophysiological activity, which is 8 

also associated with symptom severity. Our results in parallel demonstrate the utility of parameterizing the 9 

neurophysiological signal to enhance mechanistic interpretation and statistical sensitivity.   10 
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