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Background: Small changes in deltoid tension and moment arm due to glenosphere lateralization may
be associated with an increase in acromion or scapular spine strain in reverse shoulder arthroplasty
(RSA), which can lead to stress fracture. The coracoacromial ligament (CAL) may be protective and lower
the strain seen on the acromion or scapular spine. This biomechanical study investigated the impact of
glenosphere lateralization and CAL integrity on acromion and scapular spine strain after RSA.
Methods: Ten cadaveric specimens were tested on a custom dynamic shoulder frame. Acromial and
scapular spine strain were measured at 0�, 30�, and 60� of abduction using strain rosettes fixed to the
acromion (Levy Type 2) and the scapular spine (Levy Type 3). Specimens were first tested with a
standard commercially available RSA implant with zero lateralization and then subsequently with the þ3
and þ6 lateralizing glenospheres for that implant. The CAL was then cut in each specimen and testing
was repeated with the 0, þ3, and þ6 glenospheres. Maximal strain was recorded at both the acromion
and scapular spine and analysis of variance compared strain across various abduction angles and gle-
nospheres with and without CAL transection.
Results: In the intact CAL group, maximal strain decreased significantly at the acromion with abduction
from 0� to 30� and 0� to 60�, however, at the scapular spine abduction did not significantly impact strain.
Maximal strain decreased significantly with increasing abduction from 0 to 30 and 0 to 60 at both the
acromion and scapular spine in the cut CAL group. Average strain at the acromion was significantly
higher in the cut group (844.7 mε) versus the intact group (580.3 mε), a difference of 31.3% (P ¼ .0493).
Average strain at the scapular spine, did not differ in the cut group (725 mε) compared with the intact
group (787 mε) (P ¼ .3666). There were no statistically significant differences in acromial or scapular
spine strain between various levels of glenosphere lateralization in either the cut or intact state.
Conclusion: In this biomechanical study, arm abduction decreased acromial and scapular spine strain
following RSA. Cutting the CAL significantly increased strain at the acromion, and did not significantly
alter strain at the scapular spine for all angles of abduction, differing from prior literature. Glenosphere
lateralization did not have a significant effect on strain at the levels studied regardless of CAL status.
Continued study of the complexion relationship between surgical and implant factors on strain following
RSA is needed.

© 2022 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
Reverse shoulder arthroplasty (RSA) utilizes a medialized center
of rotation to increase the lever arm of the deltoidmuscle and allow
forward elevation of the arm in the absence of a functional rotator
cuff.4,5 Because of the change in moment arm and increased deltoid
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tension, there is increased strain on the superior acromion and the
base of the acromion at the scapular spine, which may result in
fractures at these areas.6,17 The incidence of acromial and scapular
spine fractures after RSA varies in the literature, and has been re-
ported between 3.7% and 10.2%.11,12,15 Acromial stress fractures are
classified based on location relative to the deltoid muscle origin,
with type I fractures involving a portion of the anterior and middle
deltoid (avulsion of anterior acromion), type II involving the entire
middle and a portion of posterior deltoid (fracture posterior to the
ulder and Elbow Surgeons. This is an open access article under the CC BY-NC-ND
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Figure 1 Specimen demonstrating the positions of strain rosettes on the scapular
spine and acromion. Black circles (B) demonstrate location of rosettes where strain
was measured.
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acromioclavicular joint), and type III involving the entire middle
and posterior deltoid origin (fractures at the scapular spine).11

Regardless of location, patients with an acromial or scapular
spine fracture following RSA have significantly worse outcomes
than those seen in an uncomplicated RSA.5-7,19

Both patient and surgical factors may contribute to the
development of an acromial or scapular spine stress fracture.
Because surgical factors are modifiable, understanding what
technical decisions decrease the risk of acromial and scapular
spine stress fractures is key to optimizing outcomes. Using glenoid
baseplates and glenosphere components to lateralize the center of
rotation is becoming increasingly popular to improve range of
motion, but may increase acromial and scapular strain patterns
after RSA.20 Another surgical variable that has been recently
shown to affect the scapular and acromial strain is the handling of
the coracoacromial ligament (CAL). Resection of the CAL has been
associated with significantly higher scapular spine strain at
0� abduction after RSA.18 A better understanding of the indepen-
dent and combined effects of glenoid lateralization and CAL
transection on acromial and scapular spine strain may help sur-
geons improve operative technique and prevent acromial and
scapular stress fractures.

The purpose of this biomechanical study was to evaluate the
impact of both CAL integrity and glenosphere lateralization on
acromial and scapular spine strain in RSA. We hypothesized that
transection of the CAL would be associated with significantly
higher strain across the acromion and scapular spine, that gle-
nosphere lateralization would also independently increase strain,
and that the combination of a lateralized glenosphere and trans-
ected CAL would show the highest level of acromial and scapular
spine strain.
Materials and methods

Specimen preparation

Ten fresh-frozen cadaveric shoulders (3 female, 7 male;
average age 81.6 years) were dissected of all soft tissue except the
deltoid musculature and tendon and the CAL. Ligaments of the AC
joint were kept intact to stabilize the clavicle and therefore the
origin of the anterior deltoid. Careful dissection was performed to
avoid transection to the CAL. The deltoid musculature was then
sharply split at the posterolateral acromion to separate the ante-
romedial and posterior deltoid. Two #5 ethibond sutures were
used to whip stitch the anteromedial and posterior deltoid to
attach theweights supported by the deltoid. A sawwas used to cut
the humeral shaft 5 cm below the deltoid insertion to allow
mounting of the humerus to a custom testing frame with 6 de-
grees of freedom.
RSA implantation

RSA was performed utilizing a commercially available implant
system (Zimmer Biomet Comprehensive Reverse system; Zimmer
Biomet, Warsaw, IN, USA). The humeral head was cut in an
anatomic fashion along the medial rotator cuff insertion. The gle-
noid was prepped using the appropriate instrumentation, and a
25-mm baseplate was used for all specimens. A þ0 (standard)
glenosphere was initially placed on all specimens. Glenospheres
were set in the B position for the chosen system to provide 1.5 mm
of inferior offset consistently among all specimens. The humerus
was then broached, and an appropriately sized short humeral stem
was placed. A standard (no offset) humeral tray and standard þ0
humeral polyethylene bearing were utilized.
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Strain gauge placement

Two C2A-06-031WW-120 stacked rosettes per specimen were
used (Vishay Measurements Group, Inc, Malvern, PA, USA). Each
strain rosette has 3 strain gauges placed at 0�, þ45�, and �45�

relative to each other. We used Optotrak Data acquisition Unit III
(Northern Digital Inc. Waterloo, ON, Canada) to record voltage
output of the strain gauges at 300 Hz and then converted voltages
to maximum principal strain.

Strain rosettes were placed in locations corresponding to Levy
type II and Levy type III acromial and scapular spine fractures
(Fig. 1), the origins of the middle of posterior deltoid, respectively.
For consistency, the acromial rosettes were placed halfway across
the acromion on a line drawn andmeasured from the posterolateral
corner of the acromion to the superior glenoid. The scapular spine
rosettes were placed 1 cm medial to the lateral flare of the base of
the acromion. A curette was used to clear all soft tissue and peri-
osteum from the scapula. The rosettes were then glued onto the
bony surface.
Specimen mounting and testing

The scapula for each specimen was fixed using rigid screws to
the shoulder frame. The humeral shaft was placed in a cylindrical
metal frame and fixed with rigid screws drilled through the shaft.
Established regression equations were utilized to determine the
glenohumeral angles needed to account for a fixed scapula and 2:1
scapulothoracic rhythm.13 (Fig. 2)

Loads were then placed to simulate active glenohumeral
abduction and joint compressive forces. Loads were 300-N
compression load across the joint, 150-N load to the anteromedial
deltoid, and 75-N load to the posterior deltoid.18 Loads were
applied via wear-resistant wires and a pulley system to allow un-
obstructed movement within the frame construct during range of
motion. Maximal principal strain was recorded at both the acro-
mion and scapular spine at 0�, 30�, and 60� of abduction. Once this
testing was complete, loads were removed, thereby relieving the
compressive forces across the prosthesis. A tuning fork was then
used to remove the þ0 glenosphere, and the þ3 lateralized gle-
nosphere was impacted on to the glenoid with the offset directed
inferiorly. Loads were reapplied and strain was again recorded at



Figure 2 Specimen on the custom dynamic shoulder frame. No. 5 ethibond was passed
through two deltoid heads and loops were tied to connect to the pulley system that
loaded the deltoid. The specimen was manually abducted to 30� and 60� and the
humerus was then held at those angles.

Table I
Strain at the acromion and scapular spine with cut and intact coracoacromial liga-
ments. Difference between cut and intact ligaments included.

Anatomic site Ligament status Strain P value Percent difference

Acromion Cut 844.7 – –

Intact 580.3 – –

Difference cut - intact 264.4 .049* �31.3
Scapular spine Cut 725.0 – –

Intact 786.7 – –

Difference cut - intact �61.7 .367 7.8

*P < .05 are statistically significant.
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the previously mentioned abduction angles. This process was then
repeated for the þ6 lateralized glenosphere. The CAL was then cut
and the entire loading process was repeated with the þ0, þ3,
and þ6 lateralized glenospheres.

Statistical analysis

Analysis of variance was utilized to determine differences be-
tween maximal principal strain between the intact and cut CAL
group at various abduction angles and with different lateralized
glenospheres. Statistical significance was set at 0.05. P values were
reported using the Tukey-Kramer adjustment for multiple com-
parisons. A priori power analysis, based upon research performed
by Wong et al indicated that a sample size of 10 cadaveric speci-
mens would provide 85% power to reject the null hypothesis of zero
effect size (no difference between the four groups).

Results

In the intact CAL group, acromial maximum principal strain
decreased from 0� to 30� of abduction by an average of 20.8%
(�171.6 mε, P¼ .0699) and from 0

�
to 60

�
of abduction by an average

of 67.7% (�569 ± 99 mε, P ¼ .0009). At the acromion in the cut CAL
group, maximum acromial strain decreased significantly from 0� to
30� (�960.9 ± 620.3; P ¼ .016) of abduction by an average of 19.7%
(�201 ± 87 mε) and from 0� to 60� by 49.9%(�293.7 ± 214;
P ¼ .0009).

At the scapular spine, in the intact CAL group, strain did not
differ significantly from 0 to 30

�
(�157.7 mε ,P ¼ .0837) or 0 to 60�

(�212.8 mε, P ¼ .37). In the cut CAL group, scapular spine strain
decreased significantly by an average of 12.3% from 0 to 30� of
abduction (�108.5 mε; P¼ .043) and by 40% from0 to 60

�
(�351.4 mε,

P ¼ .00023).
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Average strain at the acromion was significantly higher in the
cut group (844.7) versus the intact group (580.3), a difference of
31.3% (P ¼ .049). Average strain at the scapular spine did not differ
significantly between the cut group (725 mε ) compared with the
intact group (785 mε) (P ¼ .367). (Table I)

At both the acromion and scapular spine, there were no signif-
icant differences in strain between the þ0, þ3, and þ6 lateralizing
glenospheres. No interaction between lateralization and CAL tran-
section was observed. (Tables II and III)

Discussion

This cadaveric biomechanical study evaluated the effects of
glenosphere lateralization and CAL transection on acromial and
scapular spine strain through a range of motion following RSA.
Strain decreased across the scapular spine and acromion when the
arm was abducted from a neutral position. Glenosphere laterali-
zation showed no impact on acromial and scapular strains at the
levels of lateralization studied, while CAL integrity impacted acro-
mial strain regardless of glenoid lateralization.

Appropriate deltoid tensioning is important in RSA as this in-
fluences active abduction at the shoulder. One goal of RSA is to
improve the efficiency of the deltoid lever arm by distalizing and
medializing implants, compared to the natural center of rotation.1,2

Higher abduction forces working against the deltoid will reduce its
mechanical advantage. In our study, acromial strain was reduced
with arm abduction from 0� to 30� and 0� to 60�. This result
occurred regardless of glenosphere lateralization and whether the
CAL was cut or intact. Taylor et al also found that increasing
abduction angle decreased strain at the acromion and scapular
spine.18 After surgery, patients with RSA are commonly braced with
a bolster that abducts the shoulder, which is supported by these
biomechanical results as the position may help remove strain from
the acromion and prevent fracture.

With CAL transection, strain significantly increased at the
acromionwhile strainwas not significantly different at the scapular
spine, for all abduction angles, regardless of glenosphere laterali-
zation. This contrasts with previous literature, which also showed a
significant independent effect of CAL integrity on scapular strain
following RSA, but the significant increase in strain was at the
scapular spine, with a decrease in strain at the acromion after
cutting the CAL.18 Taylor et al describe a scapular ring model, made
up of the scapular spine, acromion and CAL.18 When the CAL is
removed, the stress is redistributed, and in theory, this increases
the load on the scapular spine rather than the more anterior
acromion or coracoid. In our study, strain was increased at the
acromion with CAL transection, which is not consistent with the
scapular ring model. The reasons why our results differ from Taylor
et al are likely multifactorial and complex. Our model is a truly
dynamic powered shoulder model which may have led to varying
results.18 Subtle differences in the location of strain measurement
could play a role. Variability in cadaveric anatomic factors and bone
quality may also impact strain, and how CAL integrity impacts



Table II
Strain on acromionwith cut and intact coracoacromial ligament with varying offsets
for glenoid components sized 0, 3, and 6.

Maximum principal strain by glenoid offset at the acromion

State of CAL Glenoid component Mean Standard deviation P value

Cut Size 0 711.77 659.5 .293
Size 3 1105.9 1351.5
Size 6 887.6 631.8

Intact Size 0 867.4 1072.8 .910
Size 3 925.9 749.2
Size 6 981.1 1038.7

CAL, coracoacromial ligament.

Table III
Strain on scapular spine with cut and intact coracoacromial ligament with varying
offsets for glenoid components sized 0, 3, and 6.

Maximum principal strain by glenoid offset at the scapular spine

State of CAL Glenoid component Mean Standard deviation P value

Cut Size 0 918.2 1096.1 .970
Size 3 839.8 955.5
Size 6 884.9 1391.2

Intact Size 0 794.9 459.4 .700
Size 3 933.2 830.9
Size 6 918.6 696.9

CAL, coracoacromial ligament.
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strain, leading to such a difference in results. A study by Shah et al17

demonstrated that deltoid lengthening above 25 mm and a more
posteriorly oriented acromion result in higher strain patterns
within the scapula. Another study by Sabesan et al16 found that
smaller acromions are at higher risk of stress fracture. Other patient
specific risk factors for acromial and scapular spine stress reactions
identified in a large multicenter study included chronic disloca-
tions, massive rotator cuff tear without arthritis, rotator cuff
arthropathy, self-reported osteoporosis, inflammatory arthritis,
female sex, and older age.12,15,21 Rheumatological disorders such as
RA have shown to increase the risk of acromial stress fracture.14 All
these factors which may differ between the specimens used in the
present study and that of Taylor et al may affect how the CAL
contributes to acromial and scapular spine strain. Additionally,
while our methods were modeled on the prior work of Taylor
et al,18 a minor difference in scapulothoracic motion exists between
the shoulder model used in our biomechanics lab and the model
used in their study. Our model abducts the arm to reach 90 degrees
of total scapular abduction with 60 degrees of shoulder abduction,
whereas the model in the paper by Taylor et al reaches 90 degrees
of scapular motion at 67.5 degrees of shoulder abduction.13,18 This
variation may alter strain through range of motion.13

Glenoid lateralization in RSA has become more common to
prevent complications seen with earlier medialized implants.
However, studies have shown that increased lateralization may
increase stress at the acromion during abduction.8,10,20 Our study
showed glenosphere lateralization at the levels studied did not
have a significant impact on strain patterns at the acromion or at
the scapular spine, regardless of CAL integrity. A prior cadaveric
study examining glenosphere lateralization in isolation demon-
strated that glenoid lateralization from 0 to 5 mm caused negligible
changes in scapular spine strain; however, from 5 to 10 mm, there
were significant increases in strain. In our study, we lateralized to
a þ6 mm glenosphere, for both the cut and intact CAL states, and
saw no effect from glenoid lateralization, perhaps because the level
of lateralization was not substantial enough.9 Alternatively, other
implant, surgical, and patient factors may actually be more
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important than glenosphere lateralization for altering acromial and
scapular spine strain. In a cadaveric study, Kerrigan et al9 found
humeral lateralization to significantly decrease scapular spine
strain. A biomechanical analysis by Wong et al20 found the glenoid
position inferior and medial serves to decrease acromial stress.
Finally, the present study found cutting that the CAL independently
affected acromial and scapular spine strain regardless of arm po-
sition and glenosphere lateralization. Continued study of the pa-
tient, implant, and surgical factors that may be impacting acromial
and scapular spine strain is needed as these relationships are
complex.

There are limitations to this study. A biomechanical model
cannot fully reproduce the dynamic loads seen in vivo. Additionally,
stress reactions and fractures seen clinically are a result of repeti-
tive loading, not time zero strain. During biomechanical testing,
soft tissues may undergo creep after sequential loading, leading to
additional variation in values recorded during the earlier tests with
ligament intact and the latter values after the CAL was cut. Finally,
the various lateralized glenospheres were placed in order and not
randomized, which may create bias as the soft tissue changes with
sequential testing may confound differences seen or not seen in
lateralization.

Conclusion

In this biomechanical study, arm abduction decreased acromial
and scapular spine strain following RSA. Sectioning the CAL
significantly increased strain at the acromion and did not signif-
icantly alter strain at the scapular spine for all angles of abduction,
differing from prior literature. Glenosphere lateralization did not
have a significant effect on strain at the levels studied regardless
of CAL status. Continued study of the complex relationship be-
tween surgical and implant factors on strain following RSA is
needed.
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