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Abstract

Background: Immune cell infiltration in tumor is an emerging prognostic biomarker 
in breast cancer. The gold standard for quantification of immune cells in tissue sections 
is visual assessment through a microscope, which is subjective and semi‑quantitative. In 
this study, we propose and evaluate an approach based on antibody‑guided annotation 
and deep learning to quantify immune cell‑rich areas in hematoxylin and eosin (H&E) 
stained samples. Methods: Consecutive sections of formalin‑fixed parafin‑embedded 
samples obtained from the primary tumor of twenty breast cancer patients were cut 
and stained with H&E and the pan‑leukocyte CD45 antibody. The stained slides were 
digitally scanned, and a training set of immune cell‑rich and cell‑poor tissue regions 
was annotated in H&E whole‑slide images using the CD45‑expression as a guide. In 
analysis, the images were divided into small homogenous regions, superpixels, from 
which features were extracted using a pretrained convolutional neural network (CNN) 
and classified with a support of vector machine. The CNN approach was compared to 
texture‑based classification and to visual assessments performed by two pathologists. 
Results: In a set of 123,442 labeled superpixels, the CNN approach achieved an 
F‑score of 0.94 (range: 0.92–0.94) in discrimination of immune cell‑rich and cell‑poor 
regions, as compared to an F‑score of 0.88 (range: 0.87–0.89) obtained with the 
texture‑based classification. When compared to visual assessment of 200 images, 
an agreement of 90% (k = 0.79) to quantify immune infiltration with the CNN 
approach was achieved while the inter‑observer agreement between pathologists was 
90% (k = 0.78). Conclusions: Our findings indicate 
that deep learning can be applied to quantify immune 
cell infiltration in breast cancer samples using a basic 
morphology staining only. A good discrimination 
of immune cell‑rich areas was achieved, well in 
concordance with both leukocyte antigen expression 
and pathologists’ visual assessment.
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INTRODUCTION

Abundance of tumor-infiltrating lymphocytes (TILs) is 
associated with a favorable outcome in breast cancer.[1] 
Several retrospective studies report a prognostic value of 
TILs and a potential role in prediction of response to 
treatment.[2,3] Especially in patients with triple-negative 
and human epidermal growth factor receptor-2-positive 
disease, high level of TILs in the primary tumor is 
reported to correlate with better prognosis.[4,5]

TILs are commonly quantified through microscopy of 
tissue sections stained for basic morphology with H&E 
and reported as the proportion of the stroma and tumor 
compartments that the immune cell infiltrates cover.[6] 
Challenges in the visual evaluation relate to subjectivity; 
evaluations suffer from intra- and inter-observer 
variability, and detailed manual evaluation of large 
series of whole-slide samples is time-consuming and 
semi-quantitative.[7] Methodologies enabling robust and 
high throughput TIL assessment are required to better 
understand the clinical significance of TILs in breast 
cancer.

Computer vision methods have potential to improve 
reproducibility, reduce the evaluation time, and make 
the readouts more quantitative. Automated and 
semi-automated computer vision methods have shown 
promising results in analysis of histological samples, 
such as detection of mitotic cells,[8] classification 
of tissue morphologies,[9] and quantification of 
immunohistochemical (IHC) markers.[10] Recently, 
convolutional neural networks (CNNs) have achieved 
state-of-the-art performance in computer vision tasks from 
object classification and detection to segmentation,[11] 
and a number of studies have demonstrated the 
applicability of CNNs in histological samples.[12-14]

Here, we study whether TILs can be quantified in digitized 
H&E-stained whole-slides obtained from patients with 
primary breast cancer. First, we stained consecutive tissue 
sections using H&E and the pan-leukocyte marker CD45. 
The CD45 staining was used to guide the annotation 
of training set of leukocyte-rich and leukocyte-poor 
tissue regions in the consecutive, digitized H&E-stained 
tissue section. Guiding the annotation with a specific 
antibody staining decreases subjectivity in defining the 
ground-truth and accelerates the otherwise laborious 
process. Second, we applied a CNN model pretrained on 
a large dataset of natural images as a feature extractor 
in quantification of TIL-rich regions (infiltrations) from 
other tissue entities. Deep neural networks trained on 
large and diverse image data form convolutional filters 
that are highly generalizable.[15] The concept of applying 
a pretrained deep learning model on another data 
domain is known as transfer learning, and therefore, we 
designate the proposed approach as antibody-supervised 

deep learning. To evaluate the approach, we compared it 
first to a classification with texture features and then to 
visual evaluations by two pathologists.

METHODS

Patient Material
Formalin-fixed paraffin-embedded (FFPE) tumor samples 
of twenty patients operated for primary breast cancer within 
the Hospital District of Helsinki and Uusimaa, Finland, 
were used in the study. The samples were stored in archives 
of the Helsinki University Hospital Laboratory (HUSLAB, 
Helsinki, Finland) and the Head of the Division of 
Pathology and Genetics approved use of the samples. The 
samples were anonymized and all patient-related data 
and unique identifiers were removed, and therefore, the 
study did not require ethical approval in compliance with 
Finnish legislation regulating human tissues obtained 
for diagnostic purposes (act on the use of human 
organs and tissue for medical purposes 2.2.2001/101). 
Samples represented different histological types: Ductal 
carcinoma (n = 13, 65%), lobular carcinoma (n = 3, 
15%), medullary carcinoma (n = 2, 10%), adenosquamous 
carcinoma (n = 1, 5%), and cribriform carcinoma (n = 1, 
5%) and different histological grades: Grade-I (n = 3, 15%), 
Grade-II (n = 3, 15%), and Grade-III (n = 14, 70%).

Staining Protocols
From each FFPE block, we cut two consecutive 
sections (3.5 µm): One for H&E staining and one for 
staining with the pan-leukocyte CD45 antibody. The 
fresh sections were mounted on electrically charged glass 
slides (SuperFrost Plus, Thermo Scientific, Waltham, MA, 
USA) and dewaxed using alcohol-xylene series. For H&E 
staining, we used undiluted Mayer’s hematoxylin (Merck, 
Darmstadt, Germany) and 0.5% eosin (Merck). For IHC, 
we used a CD45 antibody (Agilent Technologies, Santa 
Clara, CA, USA) diluted to 1:500, 3,3’-diaminobenzidine 
as chromogen, and Mayer’s hematoxylin (Agilent 
Technologies) as a counterstain with a 1:10 dilution.

Sample Digitization
Samples were digitized with a whole-slide 
scanner (Pannoramic 250 FLASH, 3DHISTECH Ltd., 
Budapest, Hungary) equipped with a plan-apochromat 
20× objective (numerical aperture 0.8), a 
VCC-F52U25CL camera (CIS, Tokyo, Japan) with three 
image sensors (1,224 × 1,624; 4.4 × 4.4 µm/pixels), 
and a 1.0 adapter. The scanned images (0.22 µm/pixel) 
were compressed into a wavelet format (Enhanced 
Compressed Wavelet, ECW, ER Mapper, Intergraph, 
Atlanta, GA) with a compression ratio of 1:9 
and stored on a whole-slide image management 
server (WebMicroscope, Fimmic Oy, Helsinki, Finland). 
The average size of the digital samples was 8.5 × 109 
pixels (range: 2.3 × 109–12.4 × 109).
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Annotation of the Training Set
Based on the CD45-expression, we annotated a 
training set of image regions (n = 1,116) in the twenty 
H&E-stained whole-slide images [Figure 1]. While 
viewing the consecutively cut H&E and CD45 sections 
side-by-side, we labeled the regions with a raster graphic 
editor (Adobe Photoshop, Adobe Systems, Mountain 
View, CA, USA) in downscaled H&E-stained image (1:10, 
2.2 µm/pixel). Five entities, four representing different 
tissue categories and one representing background (BG), 
were labeled: (1) leukocyte-rich (LR) regions – tissue 
regions in epithelium and stroma densely populated 
with TILs. (2) Epithelial (EP) tissue – regions of normal 
and malignant epithelium with none or few TILs. (3) 
Stroma predominant regions (SR) – regions of stromal 
tissue including tissue folds and other tissue types not 
separately defined with none or few TILs. (4) Adipose 
tissue (AD) and (5) BG. The TIL-rich and TIL-poor 
regions were confirmed and selected based on the CD45 
expression in the consecutive section.

Annotation of the Test Set
To compare our approach to pathologists’ visual 
assessment at the patient level, we randomly selected 10 
images (1,000 × 1,000 pixels, 440 × 440 µm2) excluding 
areas containing BG from each of the 20 whole-slide 
image. Two pathologists (P.E.K. and M.M.) visually 
estimated relative proportions of the different tissue 
categories of interest (LR, EP, SR, and AD) in this test 

set of 200 images. The experts were blinded from the 
results of the automated quantification, and they were 
asked to estimate the proportions of tissue categories on 
a continuous scale and independently of each other.

C o m p u t e r i z e d  Q u a n t i f i c a t i o n  o f 
Tumor‑infiltrating Lymphocytes
The whole-slide images were downscaled (0.44 µm/pixel) 
and divided into nonoverlapping tiles (3,000 × 3,000 pixels) 
for the analysis. The proposed approach is composed of 
three main components: (i) regional segmentation into 
superpixels, (ii) classification of superpixels with CNN 
activations, and (iii) postprocessing [Figure 2].

Superpixel segmentation is a low-level segmentation 
method that divides an image into locally similar 
segments, i.e., superpixels. The motivation to use 
superpixel segmentation is to first over-segment tissue 
structures into homogeneous regions [Figure 2e], which 
are subsequently classified into the tissue categories or 
to BG [Figure 2f]. Prior to the superpixel segmentation, 
we downscaled the image tiles (0.88 µm/pixel), and 
median filtered the color channels with ten pixels’ 
radius. Then, we further filtered the image tiles with 
an average filter with radius of 15 pixels and converted 
the images into Lab color-space for simple linear 
iterative clustering (SLIC)[16] superpixel segmentation 
algorithm. Filtering images before SLIC smoothen the 
fine image structures and guide superpixel formation to 
global changes in color and intensity. The regions’ size 
and shape parameters of SLIC were set to 50 and 150, 
respectively.

Inspired by work on transfer learning,[17-20] we used a 
pretrained CNN model (the  VGG-F network)[21] as feature 
extractor. From each superpixel, we extracted activations 
of the penultimate layer of the VGG-F network, a 
model trained with the ImageNet image dataset.[22] The 
superpixels were scaled to fit the input of the pretrained 
network (224 × 224 pixels). A linear multiclass support 
vector machine (SVM)[23] (one vs. rest, L2 regularized 
L2-loss) classifier was used in the classification of the 
superpixels. The classifier’s cost parameter (C) was 
optimized with a 3-fold cross-validation grid search over 
C = [2-10, 2-7,… 27, 210]. In training, we weighted the 
C-parameter according to the relative proportion of 
training samples in the different categories.

To fine-tune the final segmentation, we smoothed the 
classification results with spatial filtering [Figure 2g]. 
First, the decision value channel of the BG was dilated 
with a circular structuring element (radius of 50 pixels) 
to minimize possible classification errors on the tissue 
borders. Then, we filtered each decision value channel 
with a disk-shaped average filter bank: Radii of {20, 25, 
25, 25, 50} pixels for corresponding channels {LR, EP, 
SR, AD, BG}. Finally, we formed the final segmentation 
result by pixel-wise majority voting through the decision 

Figure 1: Antibody‑supervised deep learning. (a) Each pair (n = 20) of 
consecutively cut tumor sections were stained with H&E (left) and 
the pan‑leukocyte CD45 antibody (right). (b) Guiding annotation 
by the CD45 expression, regions representing different tissue 
categories were marked in the H&E section (LR: leukocyte‑rich, 
EP: epithelium, SR: stroma predominant, and AD: adipose). 
(c) Marked tissue regions (n = 1,116) were extracted from the 
H and E sections. (d) An example of superpixel segmentation and 
feature extraction
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channels and labeled all AD regions smaller than 40,000 
pixels as stroma (SR).

The analysis methods were implemented in a numerical 
computing environment (MATLAB, MathWorks, 
Natick, MA, USA), with libraries for computer vision 
and classification; LIBLINEAR,[24] VLFeat,[25] and 
MatConvNet.[26] On a 3.1 GHz quad-core processor 
with 16GB memory, the average time to analyze an 
image tile (3,000 × 3,000 pixels) was 1 min, including 
download from a remote server, superpixel segmentation, 
and feature extraction.

Texture Features
A joint distribution of local binary patterns (LBPs)[27] 
and local variance (VAR) was used to capture the texture 
content of the superpixels. We extracted rotation 
uniform 2 LBP/VAR features without (LBP/VAR) and 
with (LBP/VAR-KCHI2) an explicit kernel mapping.[28] 
The LBP/VAR features were computed in a neighborhood 
of 16 sampling points (n) on radius (r) of 4 pixels. 
The quantification limits for VAR were set based on 
10 random images of the different tissue categories by 
dividing the VAR distribution into quartiles.

Statistical Methods
The classification performance was evaluated 
based on F-score, area under receiver operating 
characteristics curve (AUC), and with accuracy, 
sensitivity, specificity, and precision. F-score is defined 

as a harmonic mean of precision and sensitivity: 
2 × (sensitivity × precision)/(sensitivity + precision). 
The inter-rater agreement was assessed with 
Cohen’s kappa coefficient (k) with quantization to: 
{0%, 20%, 40%, 60%, 80%, 100%}. The same quantization 
was used in evaluation of percent-agreement. For 
evaluating correlation, we computed pairwise Pearson’s 
linear (two-tailed) correlation coefficient (r). For 
statistical evaluation, we used 3-fold cross-validation and 
leave-one-out cross-validation. In 3-fold cross-validation, 
a dataset is divided into three random partitions from 
which one at the time is used in evaluation and the 
rest are used for training whereas in leave-one-out 
cross-validation only one sample at the time is used in 
evaluation and the rest are used for training.

RESULTS

Classification Accuracy According to Feature 
Extraction Method
First, we evaluated how features extracted with the 
deep learning (VGG-F) network compare to texture 
features (LBP/VAR) in discrimination of TILs and 
different tissue categories. Details of the features are 
listed in Table 1. The training samples (n = 1,116) were 
segmented into superpixels with SLIC, resulting in a set of 
123,442 superpixels representing different categories (LR 
n = 9,995, EP n = 25,749, SR n = 28,784, AD n = 31,269, 

Figure 2: Computerized quantification of tumor infiltrating immune cells in whole‑slides. (a) An example of a whole‑slide image subject 
to analysis and (b) corresponding analysis result with (c) a pie chart visualizing proportional ratios of different tissue categories excluding 
background. (d) An example of an image tile that is divided into (e) homogeneous tissue areas, superpixels, which are (f) classified into 
different tissue categories (LR: Leukocyte‑rich, EP: Epithelium, SR: Stroma, AD: Adipose, and BG: Background). (g) Classification results 
were smoothed with spatial filtering
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and BG n = 27,645). For statistical evaluation, we ran a 
3-fold cross-validation 10 times.

Overall F-scores for VGG-F, LBP/VAR, and 
LBP/VAR-KCHI2 were 0.96, 0.89, and 0.92, respectively, 
while corresponding AUCs were 0.996, 0.983, and 0.984, 
respectively. The mean sensitivity in the discrimination of 
TIL-rich regions with the VGG-F based model was 91% 
(range: 88%–92%), specificity 100% (range: 100%–100%), 
and precision 96% (range: 96%–97%), respectively.

In all pairwise/inter-category comparisons, features 
derived with the VGG-F CNN outperformed the 
LBP/VAR texture features [Table 2]. Kernel mapping 
improved performance of the texture features in all 
categories although the difference in classification of 
TIL-rich regions was marginal (F-score: 0.88 vs. 0.87). 
AD tissue and BG are more homogeneous in comparison 
to other tissue categories, and all features discriminated 
AD and BG superpixels better than others. By definition, 
the TIL-rich category is composed of the immune cells 
mixed with different tissue morphologies, and overall it 
obtained the lowest F-scores.

Comparison to Visual Evaluations
To further evaluate the proposed approach, we 
compared the automated quantification to visual 
assessment of TILs and other tissue entities performed 
by two pathologists in the test set (n = 200). First, 
we analyzed the whole-slides (n = 20) using a 
leave-one-out cross-validation, processing all the samples 
independently [Figure 3]. Then, we extracted the regions 
corresponding to the test images from the segmentation 
result images for evaluation [Figure 4].

On a patient level, the average agreement between the 
automated CNN-based and the pathologists’ visual 
TIL quantification was 90% (k = 0.79) while the 
TIL quantification agreement between the pathologists 
was 90% (k = 0.78). The largest differences in TIL 
quantification were seen in the middle range, between 

values 25% and 75%, where the automated quantification 
slightly overestimated values in comparison to visual 
evaluations as seen in the Bland–Altman plots [Figure 5].

The average agreement between the CNN-based 
quantification and the visual assessments across all tissue 
entities was 83% (k = 0.73), whereas the agreement 
between the pathologists was 84% (k = 0.75). The 
average correlation between the automated quantification 
and visual assessments was r = 0.87, as compared to a 
correlation of r = 0.93 observed between pathologists’ 
evaluations [Figure 6].

In quantification of EP tissue, the correlation between 
automated quantification and the pathologists’ 
assessment (r = 0.92) was lower than the correlation 
between the two pathologists (r = 0.99). In quantification 
of stromal and AD tissue, the correlation between a 
computerized and human observer assessment was on par 
or higher (stroma: r = 0.94, AD: r = 0.99) as compared 
to correlations between the two human observers (stroma: 
r = 0.95, AD: r = 0.96).

CONCLUSIONS

Our results indicate that it is feasible to quantify 
tumor-infiltrating immune cells in H&E-stained breast 
cancer samples. The proposed deep learning immune 
cell quantification approach achieved an agreement with 
human observers (90%, k = 0.79) that is comparable 
to the agreement between two human observers (90%, 
k = 0.78) on a patient level. Furthermore, we report an 
F-score of 0.94 and an AUC of 0.99 in discrimination 
of TIL-rich and TIL-poor tissue regions and show that 
features extracted with the pretrained CNN-model 
outperform texture features in classification of TILs 
and other tissue categories. In addition, we present an 
application of antibody staining as a guide for image 
annotation and definition of ground-truth.

Table 1: Image feature details

Model Descriptor Parameters Mapping Number of bins

LBP/VAR LBP/VAR riu2, r=4, n=16 ‑ 144
LBP/VAR‑KCHI2 LBP/VAR riu2, r=4, n=16 KCHI2 1008
VGG‑F VGG‑F ‑ ‑ 4096

LBP: Local binary pattern, VAR: Variance, riu2: Rotation uniform 2, KCHI2: Chi2 Kernel mapping

Table 2: Classification accuracies for different image features

Model C Mean F‑score (range)

LR EP SR AD BG Overall

LBP/VAR 32 0.87 (0.86‑0.88) 0.87 (0.85‑0.88) 0.85 (0.84‑0.87) 0.92 (0.91‑0.92) 0.95 (0.95‑0.96) 0.89 (0.84‑0.96)
LBP/VAR‑KHCI2 32 0.88 (0.87‑0.89) 0.90 (0.88‑0.90) 0.89 (0.87‑0.89) 0.94 (0.94‑0.95) 0.97 (0.97‑0.97) 0.92 (0.87‑0.97)
VGG‑F 1 0.94 (0.92‑0.94) 0.96 (0.96‑0.96) 0.96 (0.95‑0.96) 0.98 (0.97‑0.98) 0.99 (0.99‑0.99) 0.96 (0.92‑0.99)

LBP: Local binary pattern, VAR: Variance, LR: Leucocyte‑rich, EP: Epithelial, SR: Stroma predominant, AD: Adipose, BG: Background, KCHI2: Chi2 Kernel mapping
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Figure 3: Analysis of whole‑slide images. H&E sections were segmented into four tissue categories and background (LR: Leukocyte‑rich, 
EP: Epithelium, SR: Stroma, and AD: Adipose)

Automated quantification of TILs in H&E-stained breast 
cancer samples has not been studied extensively. A study 
using Markov random fields reported a cross-validation 
accuracy of 90% in classification of TIL-rich and TIL-poor 
images[29] in a set of 41 images (600–700 × 500–600 
pixels; 0.33 µm/pixel). Another study evaluated a method 
based on expectation-maximization driven geodesic 
active contours[30] for detection of lymphocytes in 
100 images (400 × 400 pixels), obtaining a sensitivity 
of 86% and a precision of 64%. Both active contours 
and Markov random fields are suitable algorithms 
for cell segmentation; however, because of high 
computational requirements, they might not scale for 
analysis of whole-slide images. In fact, detailed cell/nuclei 

segmentation might not be necessary in TIL assessment 
and could be replaced with an evaluation of proportional 
area covered by TIL-rich regions, as recommended by an 
international TIL-working group.[6]

The laborious nature of image annotation, especially 
when cell-level annotations are required, and lack of 
common databases are limiting the number of training 
and test samples available for researchers. An approach 
using Haralick features and an SVM classifier resulted 
in a cell level classification sensitivity of 58% in a test 
of 168 annotated cells, including 94 lymphocytes.[31] In 
another study, a method based on a transferable belief 
model obtained 94% sensitivity and 81% precision in 
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Figure 4: Comparison to pathologists’ assessments. Test 
images (n = 200) were randomly selected from the whole‑slides, 
and visually evaluated for immune cell‑rich regions (LR), 
epithelium (EP), stroma (SR), and adipose (AD) by two pathologists, 
and the results were compared to automated quantifications. 
(a) Four example images: H&E images (left), automated 
quantification (middle), and a bar‑plot illustrating the visual 
assessments and automated quantification (right). (b) Distributions 
of automated quantification and visual assessments of immune 
infiltration in test images (n = 200)

b

a

Figure 5: Bland–Altman plots for immune cell infiltration assessment in the test images (n = 200)

lymphocyte detection on cell level when evaluated with 
10 images (400 × 400 pixels).[32] Evaluation done with 
only a few images or cells might not reflect the true 
performance, making the comparison to other studies 
difficult.

With 91% sensitivity, 96% precision, and 100% 
specificity in classification of TIL-rich and TIL-poor 
regions (superpixels), our results are well on par with 
the literature. By guiding the annotation with the 
antibody staining, we create a dataset of nearly 125,000 
superpixels of which approximately 10,000 represents 
TIL-rich regions. Because of a superpixel can contain 
tens of cells, particularly when taken from a dense 
infiltration region, our dataset is considerably larger when 
compared to those reported in the literature. To the 
best of our knowledge, similar approach using antibody 
staining for annotation has not been presented earlier. 
Antibody-based supervision is potential for applications 
outside the current work, such as in more detailed 
classification of immune cell subtypes, detection of blood 
vessels or mitosis by use of corresponding antibodies and 
staining methods.

In addition to the evaluation of the TIL quantification 
on regional level, we compared the approach to 
human observers, which is the current gold standard 
in evaluation of H&E-stained tissue samples as well 
as IHC. The observed mean agreement between the 
automated quantification and pathologists’ assessments 
(90%, k = 0.79) was in line with pathologists’ 
inter-observer agreement (90%, k = 0.78). In concordance 
with the cross-validation in test set, the largest 
disagreements between the automated quantification and 
pathologists’ assessments were observed in the TIL-rich 
tissue category. This was also true for the agreement 
between the pathologists.
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In addition to the analysis of FFPE samples, an image 
analysis application for detecting TILs in frozen tissue 
sections has been reported.[33] Morphological and contextual 
multiscale features together with an SVM classifier reached 
a cross-validation accuracy of 90% in the discrimination 
between cancer cells, lymphocytes, and stromal cells when 
tested with 871 annotated cells. Nevertheless, because 
of insufficient evidence outside the research settings, 
frozen sections are not presently recommended for TIL 
assessment[6] in clinical settings. In addition, a study based 
on local morphological scale[34] proposed a combination of 
epithelium-stroma-classifier and an IHC staining to assess 
TILs in ovarian cancer samples.

Deep learning algorithms have so far not been widely 
adapted for analysis of histological tumor samples. In 
general, the best performing deep learning models are 
trained with a vast number (million to 100 million) of 
labeled images. However, annotation of such amounts of 
training samples from histological material is challenging. 
Transfer learning is an attractive alternative to end-to-end 
training, first because of the availability of the best 
performing models, such as the VGG-networks,[21] 
AlexNet,[35] and GoogLeNet,[36] and second because of 
the good generalization that can be achieved already with 
a low number of training images.

Studies with LBP-based features have shown good 
agreement with human experts in classification of 
tissue morphologies, Linder et al. 2014 and Turkki et al. 
2015[9,37] and they are broadly applied in medical image 
analysis.[38] Nevertheless, the features we extracted using 
the VGG-F model clearly outperformed the LBP-based 
features. This suggests that a similar approach could 

benefit applications that currently rely on texture features 
or other handcrafted image descriptors.

In summary, our findings show that automated 
quantification of TILs in digitized H&E-stained tissue 
samples from patients with breast cancer is feasible with 
an accuracy comparable to human experts. As biomarkers 
to support decision-making on immunological therapies 
are needed, automated methods would be beneficial 
in further exploration of the potentially predictive 
role of TILs in breast cancer. Enabling analysis of 
large cohorts of whole-slides, our work has potential 
implications in cancer research and clinical trials, as 
well as in clinical work by offering an automated report 
of the immunological characteristics of the tumor 
microenvironment based on a simple morphological 
stain only.
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