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Abstract: Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease with a prevalence
rate of up to 1% and is significantly considered a common worldwide public health concern. Com-
mercially, several traditional formulations are available to treat RA to some extent. However, these
synthetic compounds exert toxicity and considerable side effects even at lower therapeutic concentra-
tions. Considering the above-mentioned critiques, research is underway around the world in finding
and exploiting potential alternatives. For instance, marine-derived biologically active compounds
have gained much interest and are thus being extensively utilized to confront the confines of in
practice counterparts, which have become ineffective for 21st-century medical settings. The utiliza-
tion of naturally available bioactive compounds and their derivatives can minimize these synthetic
compounds’ problems to treat RA. Several marine-derived compounds exhibit anti-inflammatory
and antioxidant properties and can be effectively used for therapeutic purposes against RA. The
results of several studies ensured that the extraction of biologically active compounds from marine
sources could provide a new and safe source for drug development against RA. Finally, current
challenges, gaps, and future perspectives have been included in this review.

Keywords: rheumatoid arthritis; marine-derived compounds; anti-inflammatory; drug development;
biomedical applications

1. Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disorder that affects the synovial
joints lining and is allied with progressive disability, mortality, and socioeconomic burdens.
The disease is more common in women than men, with a prevalence rate of 1%. The
clinical sign and symptoms of RA include swelling, arthralgia, the loss of mobility, and
redness of the joints [1,2]. The early diagnosis of RA is considered as the critical parameter
to prevent disease progression. In the past 20 years, a significant advancement in the
diagnosis and management of the disease has occurred. However, the early diagnosis
remains challenging because it depends on the clinical information collected from the
patient’s clinical and physical examination, including blood test and imaging results [3,4].
The pathogenesis of RA is allied with genetic factors and stimulated by environmental
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factors. It is proposed that almost 60–65% of RA cases are due to genetic factors. There
are nearly 100 loci that are responsible for the progression of RA [5,6]. Among the several
loci, the most common loci associated with RA contains information for the expression of
major histocompatibility complex (MHC class-II), especially HLADRO1/O4. Addition-
ally, the loci that express the post-translational modified enzyme, intercellular regulatory
pathways, and costimulatory pathways also contribute towards disease progression [7].
The environmental factors like exposure to Epstein-barr virus, silica particles, alcohol,
and obesity also possesses the capability to stimulate such genetic loci. The interaction
among these genetic and environmental triggers leads to the onset of self-citrullinated
proteins, which form autoantibodies against citrullinated peptides. The exposure of the
lungs to several exogenous compounds like silica particles, Epstein-barr virus, Aggregati-
bacter actinomycetemcomitans, and Porphyromonas gingivalis can trigger the maturation of
anti-citrullinated protein-antibody (ACPA) and citrullination of self-proteins [8]. This
citrullination is catalyzed via the calcium-dependent enzyme, i.e., peptidylamine deami-
nase (PAD4), which converts the cationic arginine into neutral but polar citrulline. In RA
patients, the PAD4 is secreted from the activated macrophages and granulocytes [9]. On the
other hand, the level of ACPA is increased in RA patients due to an abnormal response of
the immune system against various citrullinated proteins, including fibronectin, histones,
type-II collagen, vimentin, and fibrin. These compounds also activate the MHC-class II,
which subsequently stimulates the B-cells to produce further ACPA. This phase is also
considered as the loss of tolerance. An interesting thing about the ACPA is that the level of
these antibodies is detected years before the onset of RA symptoms, hence early detection
and prophylactic treatment of these antibodies can reduce the severity and progression of
the disease.

The visual illustration of the several stages involved in the development of RA is
depicted in Figure 1 [10].
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Figure 1. The visual illustration of the impact of several genetic and environmental factors in the pathogenesis of rheumatoid
arthritis (RA). RF - rheumatoid factor. Reprinted from [10] with permission under a Creative Commons Attribution 4.0
International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Copyright © The
Author(s) 2018.

RA’s etiology is linked with the imbalance of the immune system, and mostly, it
develops in several phases [11]. In the starting phase, which is also known as a Pre-RA
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phase, the release of several inflammatory mediators and cytokines proceeds RA’s devel-
opment. The significant changes that occur during this phase include changes in B- and
T-cells regulation, the significantly higher formation of autoantibodies (that illustrate more
specificity and affinity for modified proteins having citrulline residues), and alterations
in the reactivity of the autoimmune system [12]. In the pre-RA phase, the autoantibodies’
affinity for carbamylated and acetylated peptides have also been found. The pre-RA phase
consequently transforms into a clinically established RA phase, in which chronic inflam-
mation and tissue remodeling have been observed [13]. RA’s pathophysiology is linked
with the dysregulation of the immune system leading to high activation and penetration of
macrophages, neutrophils, dendritic cells, and lymphocytes. These activation mechanisms
subsequently lead to the formation of autoantibodies, which in turn possess the potential
to detect several post-translational modified proteins [14]. The exact mechanism through
which this autoreactivity transforms into chronic inflammation is not clear. The presence of
these autoantibodies in the synovial fluids might happen due to localized microtrauma and
complement activation [15]. Additionally, the circulating autoantibodies also detect the cit-
rullinated proteins and immune complexes, which ultimately pledge the release of several
inflammatory mediators (like IL-1β, IL-8, and IL-6, and tumor necrosis factor-alpha) and
bone damage [16]. The visual illustration of the mechanism of alterations in the synovial
membrane microenvironment is depicted in Figure 2 [17].
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2. Literature Methodology—Inclusion/Exclusion Norms

Aiming to justify the current review theme and compilation, a standardized inclusion–
exclusion criterion was implemented to scrutinize the collected literature from several
authentic databases. Most of the earlier reported literature lacks such inclusion–exclusion
norms to validate the literature search. For a said purpose, following two points were con-
sidered, i.e., (1) to conceptualize the scientific theme of the review, and (2) to critically cover
and compile most recent and relevant literature contents. Two most authentic databases, i.e.,
Scopus and PubMed were searched by using the most relevant key terms. Upon literature
collection, the data was carefully analyzed following the inclusion–exclusion criterion, i.e.,
the closely matched studies, as per the review theme, were included for further discussion
and rest of the irrelevant or generalized studies were excluded without any consideration.
More specifically, the pre-evaluation was performed considering the presence of all/any of
the following keywords in the article title, abstract, and keywords, i.e., (1) conventional ther-
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apies against RA, and (2) marine compounds for RA. The data obtained from the Scopus
database is summarized in Table 1. At Scopus, the literature search queries were performed
on November 17, 2020, at https://www.scopus.com. While, in PubMed, the literature was
searched for all previous years with the best match term on. Table 2 summarizes the search
results obtained from the PubMed database. At PubMed, the literature search queries were
performed on November 17, 2020, at https://pubmed.ncbi.nlm.nih.gov/. Based on the
literature data obtained, the following sections and subsections were conceptualized and
discussed with suitable examples as a core of this review.

Table 1. Literature quest results attained from the Scopus database. The spreading of articles in each
examination group is based on total number of articles and reads from top to bottom column wise.

Search Terms Document
Types

No. of
Articles from

All Years

# of Articles from Top
Journals

# of Articles
Based on
Territory

Conventional
therapies
against

rheumatoid
arthritis

Article,
Review, Book

Chapter,
Conference
Paper, Book

2020 20
Annals of the

Rheumatic
Diseases

15 United
Kingdom 53

2019 23 Clinical
Rheumatology 06 United

States 45

2018 16 Advances in
Therapy 04 Germany 32

2017 20 Archives of
Rheumatology 04 Italy 26

2016 11
Clinical and

Experimental
Rheumatology

04 France 25

All
past

years
135 All other

journals 192 Rest of the
countries 41

Marine
compounds

for
rheumatoid

arthritis

Article,
Review, Book

Chapter,
Conference

Paper

2020 03 Marine Drugs 06 India 05

2019 01
Current

Medicinal
Chemistry

03 Ireland 03

2018 03 Frontiers in
Pharmacology 02 South

Korea 03

2017 03 PLOS ONE 02 Australia 02

2016 02 Progress in Drug
Research 02 Bangladesh 02

All
past

years
17 All other

journals 14 Rest of the
countries 14

Table 2. Literature quest results attained from the PubMed database.

Search Terms Total
Articles

No. of Articles Published in the Last Five Years
Filtered with Best Match Term on

2020 2019 2018 2017 2016 All Past
Years

Conventional therapies
against rheumatoid

arthritis
237 20 27 21 20 14 135

Marine compounds for
rheumatoid arthritis 18 01 01 03 03 00 10

https://www.scopus.com
https://pubmed.ncbi.nlm.nih.gov/
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3. Current Conventional Therapies against RA and Associated Problems

The pharmacological treatment of RA has advanced a lot in the last decades, allowing
many patients to reach the state of remission or low disease activity, consequently improv-
ing the quality of life and limiting RA’s late complications. Early diagnosis and treatment
are central to control inflammation and limit the damage. The continued treatment is
equally important. However, a significant problem of conventional treatments of RA is
the high costs, mainly disease modifying anti-rheumatic drugs (DMARDs) and targeted
synthetic DMARDs. Therefore, the cost of treatment should be a factor considered by
doctors in choosing the treatment [18]. In this context, studies about the possibility of
reducing therapy in patients who have achieved remission status or low disease activity
have been increasing, as it would be a desirable alternative for patients, who would be able
to reduce their expenses with treatment. However, many concerns emerge as the possibility
of increased cardiovascular risk and the occurrence of disease flare-up [19,20]. Another
current discussion is about biosimilars, discovery and approval of generic compounds
similar to biological DMARDs have grown, and some studies have shown equivalence of
efficacy to the originals. Therefore, they constitute an essential alternative to reduce costs,
offer more treatment options, and reduce inequalities in access to treatment between poor
and rich countries [21]. Furthermore, as pointed Smolen et al. [22], therapeutic failure is
an ordinary reality in RA patients. Several patients do not attain remission or low disease
activity even if the treatment possibilities are exhausted, therefore, it is still necessary to
discover new treatments and elucidate the mechanisms related to therapeutics failure
and toxicity. Finally, one of the treatment’s biggest problems is related to the extensive
side effects and complications, especially in patients with concomitant comorbidities. In
addition to the high cost, the appearance of adverse consequences reduces the patient
adherence to the medications [18]. The NSAIDs are adjuvant drugs in the symptomatic
treatment of RA, promote rapid analgesia and reduce inflammation, can be prescribed,
but are used on self-medication by most patients before seeking an expert and receiving
the diagnosis. Prolonged use should be avoided because a significant number of side
effects are related, some lighter as nausea and abdominal pain and others more severe
as liver damage, bleeding by changes in coagulation and influence on renal circulation
with nephrotoxic potential [23,24], increased risk of cardiovascular events, effects on blood
pressure [25], and gastrointestinal related problems, such as ulcers and blending [26]. These
adverse effects may vary according to the type of nonsteroidal anti-inflammatory drugs
(NSAIDs) and some can be controlled with other drugs such as antacids and proton pump
inhibitors or changes in diet [27]. Thus, attention is needed when prescribing NSAIDs
in the treatment of RA and contraindications, especially in groups with a greater chance
of adverse events such as patients with renal or hepatic dysfunction, systemic arterial
hypertension, intestinal diseases, and blood clotting disorders [23].

Glucocorticoids are more potent than NSAIDs and are often prescribed in combination
with DMARDs and cases of severe systemic manifestations of RA. According to Strehl
et al. [28], many adverse effects can occur. The extent of them seems to be associated
with the specific conditions of the treatment (dosage and duration) and the particular
patient. Among them are reported in the literature, mainly altered bone metabolism and
increased risk of fractures [29], weight gain, increased risk of infections, changes in hor-
mone secretion [30], insulin resistance, and diabetes [31]. Additionally, there seems to
be a combination of them with a risk increase of cardiovascular events; however, with
insufficient evidence in the literature [32]. Some care is essential during the use of gluco-
corticoids, careful monitoring of patients should be undertaken and preventive measures
such as low doses and time of limited use implemented [33], and it special attention is
required for patients with comorbidities that can be aggravated by these adverse effects
such as diabetes, hypertension, and dyslipidemia [28]. There are several DMARDs avail-
able for the treatment of RA, each of them has specific complications and problems. Still,
in general, they have an excellent risk–benefit given the modifying effect in the disease
course. Among conventional DMARDs, methotrexate (MTX), (i.e., first-line agent against
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RA) is related to an increased risk of adverse pulmonary events [34], alteration of hepatic
transaminases [35], bone marrow deterioration, and, in rare cases, neurological symptoms.
The supplementation of folic acid is a highly recommended pair to reduce hepatic adverse
effects [36]. Leflunomide is associated with flares, gastrointestinal events, allergic reac-
tions, infections, and hypertension [37]. The biological DMARDs also have an excellent
benefit–risk profile, however, have an increased risk of serious infections compared to
conventional DMARDs, it is important that the rate of infections can vary depending on
other underlying risk factors [38]. Considering the different properties and mechanisms of
biological ones, there is a risk of reactivation of tuberculosis, mainly for TNF inhibitors [39],
which were also related to the worsening of multiple sclerosis crises [40]. The literature also
reports a risk of intestinal perforation in patients treated with tocilizumab [41]. Regarding
targeted synthetic DMARDs, data are still limited in the literature since they are newer
drugs, and there are many clinical trials still underway. In general, JAK inhibitors have
adverse effects similar to biological DMARDs [42]. Still, there is an increased risk of herpes
zoster infection [43,44], venous thromboembolism has been associated with the tofacitinib
and baricitinib, especially in patients with risk profile for these events and older [18].

TNF-alpha is produced from the activated macrophages, monocytes, and T- lym-
phocytes, and triggers the inflammatory responses (Figure 3). The higher expression of
TNF-alpha mediates the destruction of the bones and ultimately stimulates the progression
of the disease. Therefore, various TNF-alpha inhibitors were introduced as agents for
therapy against RA [45]. Infliximab was the first chimeric monoclonal antibody having
mouse idiotype and human antibody backbone. This antibody possesses the potential
to counteract the biological activity of TNF-alpha by binding with all forms of the TNF-
alpha [46]. It is administered as an intravenous infusion and exhibits a long-term safety
profile. The patients treated with infliximab demonstrate a significant reduction of adhesion
molecules, including IL-8, IL-6, MCP-1, and IL-1. Despite the safety profile, the infliximab
exhibits severe adverse effects such as reactivation of tuberculosis or hepatitis B, cancers,
and lymphoma [47]. Adalimumab is another example of a TNF-alpha inhibitor, a wholly
humanized antibody, and administered through a subcutaneous route. It exhibits less
toxicity profile and produces effects when used in combination with MTX. The common
adverse effects include latent reactions, skin reactions, and cardiac arrest [48]. Etanercept is
a hybrid protein consisting of human TNF receptors and immunoglobulin backbone. It is
also administered through the subcutaneous route twice a week. It also exhibits the same
toxicity profile as that of adalimumab and infliximab. Golimumab is another example used
to inhibit TNF-alpha and is administered once a month through a subcutaneous route.
The significant adverse effects include cancers, tuberculosis, and severe infections [49].
Additionally, all the TNF-alpha inhibitors show the loss of response with the passage of
time and hence the patients have to switch to other biologics.

Most T-cells penetrate in the synovium and some of them penetrate in the synovial
fluids and increase the expression of proinflammatory cytokines, like TNF-alpha and
interferon, which leads to cartilage damage, bone erosion, and pannus tissue formation.
To counteract this mechanism, various T-cell targeted therapies have been devised. One
such example includes the abatacept, a T-cell costimulation modulator consisting of an
extracellular domain connected with the modified Fc fragment of the IgG1 [50]. The
abatacept interacts and inhibits the signaling between CD 80 and CD 86 and, in this way,
exhibits its efficacy. It is available in the form of injection and infusion. The most common
side effects include sore throat, headache, common cold, infection, and nausea [51]. In
RA, the IL-6 stimulates pannus formation via increased expression of vascular endothelial
growth factor and ultimately increases the bone resorption. Tocilizumab is a human-based
antibody that specifically targets the IL-6. It is available as an intravenous and subcutaneous
formulation and exhibits less immunogenicity [52]. The other examples include sirukumab,
clazakizumab, olokizumab, and sariliumab. The common adverse effects of these therapies
include hypertension, headaches, and respiratory tract infections. Further clinical trials are
also required to validate further these agents’ therapeutic efficacy against RA [53].
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IL-1 is a proinflammatory cytokine that possesses the potential to produce proin-
flammatory actions. Some treatments are also available for targeted therapy against this
interleukin [54]. Anakinra is one such example that acts as an IL-1 receptor antagonist and
is administered as a once-daily injection. It blocks the activity of IL-1alpha and IL-1beta by
explicitly blocking the IL-1 receptors. The major drawbacks of these formulations include
itchy rashes, upper respiratory tract infections, allergy, and gastrointestinal tract infec-
tions [55]. B-lymphocytes produce their inflammatory properties owing to their activity
on the antigen presentation and through the expression of proinflammatory cytokines.
Rituximab is an antibody that specifically targets the CD-20 positive B-lymphocytes. The
binding of the antibody with CD-20 allows the rituximab to decrease B-lymphocytes’
functional responses through complement-dependent cytotoxicity, cell mediation, and
promotion of growth arrest and apoptosis [56]. Belimumab is another example of this
class that binds with the B-lymphocyte stimulator antibody (BLYS). The level of BLYS
is significantly increased in the serum and synovial fluid of RA positive patients. This
BLYS is very important for B-cells’ persistence and its blockage can cause apoptosis of the
autoimmune B-cells [57].

4. Marine-Derived Biologically Active Compounds

The oceans are home to many biological and chemical compounds and have enormous
biodiversity globally, with about 80% of the world’s animal and plant species [58,59]. The
oceanic environment is hostile and competitive, conditioning marine organisms to develop
adaptive mechanisms through biochemical compounds to resist various types of stressors.
Thus, the metabolites produced give these organisms unique structural and functional
characteristics [60,61]. As Halvey [62] points out, life originated in the sea and adapted to
the terrestrial environment throughout evolution. Despite intense structural changes, many
molecules continue to have the same physiological functions. Therefore, several bioactive
compounds of marine organisms have therapeutic potential and may be candidates for
developing drugs and products for the treatment of human diseases [63].

Discoveries and studies of marine bioactive compounds are still recent compared to
other areas of knowledge. In recent decades, numerous new molecules have been docu-
mented, patented, and already tested in clinical trials [61,64]. Approximately 25,000 marine
chemical compounds have been reported [65]. With the improvement of the technologies of
exploitation and extraction of these compounds and the undeniable therapeutic potential,
the trend is that in the coming years many drugs, supplements, and natural products
with marine derivatives will emerge to treat a multitude of diseases [63]. Several studies
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have shown that bioactive marine compounds have significant antitumor and anticancer
activities [66]. Jimenez et al. [67] analyzed five marine-derived drugs successfully against
cancer, and several other diseases in clinical trials. The literature also reports the association
of these compounds with several other therapeutic effects such as treatment of diabetes,
chronic pain, and cardiovascular diseases, and antibacterial, antifungal, antiprotozoal,
antituberculosis, and antiviral activity [68]. Finally, marine-derived biologically active
compounds can be used in immunotherapies. They can act by inducing, increasing, or
reducing the immune response, therefore, with enormous potential for therapeutic use [60].
In this context, evidence and findings have pointed out several marine derivatives with
immunomodulatory and anti-inflammatory properties [60,69–71], which represents new
sources for the treatment, damage control, and prevention of rheumatologic diseases whose
etiopathogenesis involves inflammatory pathway disorders, such as RA.

4.1. Glycosaminoglycans—Chondroitin Sulfate and Hyaluronic Acid

Glycosaminoglycan (GAGs) are multifunctional polysaccharides composed of repeat-
ing disaccharide units that may change the form of sulfation and epimerization, which
determines different functions of protein recognition and biological activities of these
compounds [72,73]. Two important groups of complex heteropolysaccharides belonging to
the class of GAGs are chondroitin sulfate (CS) and hyaluronic acid (HA). CS is formed by
repeated disaccharides N-acetyl-d-galactosamine (GalNAc) and D-glucuronic acid (GlcA)
with sulfate groups allocated in different numbers and positions, which makes this poly-
mer extremely heterogeneous in terms of length and structure [74,75]. Around 16 various
disaccharides can be formed depending on the position of sulfation [76], and there are
differences in concentration and composition between land and marine source SC. It is a
biomolecule present in virtually all vertebrate organisms and invertebrates, mostly marine
organisms, because they present unusual sulfation patterns. Consequently, it is involved
in many biological processes at the molecular, cellular, and tissue levels [75,77,78]. They
play an essential structural role in the composition of extracellular matrix and formation of
tissues such as cartilage and bones, abundant in mammals’ connective tissue [73,79]. Some
studies have revealed that CS has immunomodulatory and anti-inflammatory properties
in several diseases [80,81], highlighting the promising effects of CS reducing symptoms
and improving function in osteoarthritis patients, which is one of the consequences of RA
in advanced phases [82,83]. According to Abdallah et al. [72] compiled in a recent review,
CS can be extracted from cartilage, head, skeleton, fins, and skin from different marine
animals such as sharks, salmon, zebrafish, and other species of fish, squid, ray, and octopus.
Still, the primary marine source in commercial terms is shark cartilage. Therefore, they are
valuable compounds that can be collected to optimize the use of marine waste.

HA consists of units of disaccharides N-acetyl-D-glucosamine (GalNAc) and D- glu-
curonic acid (GlcA) [84], is an unbranched high molecular weight linear polysaccharide,
the only nonsulfated GAGs that is not bound to proteins [85,86]. It is widely distributed in
the conjunctive as an essential component of the extracellular matrix, playing a vital role in
controlling tissue permeability and hydration, macromolecular transport between cells,
and bacterial invasion control [85,87]. The human body is found in higher concentrations
in connective tissues such as synovial fluid, the vitreous humor of the eyeball, and the
umbilical cord [87]. HA from marine sources can be extracted mainly from the eyeball
and liver of swordfish, shark, mollusk bivalves, stingray, and tuna [72,87]. HA is widely
used in the biomedical sector for the production of hydrogels that can be used as long-term
low-dose drug delivery vehicles [88,89], with an input for the development of new bioma-
terials applied to wound healing [90] and tissue culture scaffolds [88,91,92]. Evidence has
revealed that HA has anti-inflammatory properties and has been used in RA treatment for
decades [89,91,93].
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4.2. Chitin and Chitosan

Chitin or poly (β-(1→4)-N-acetyl-D-glucosamine) is a polysaccharide synthesized
by numerous living organisms and one of the most abundant natural biopolymers on
earth. It is found in the exoskeleton of crustaceans and cell walls of marine fungi [94],
but is extracted mainly from the shell of the crab, shrimp, and lobster [95]. Due to its
characteristics of high strength, biocompatibility, high biodegradability, and low toxicity,
it is a biopolymer with numerous applications in the biomedical field, for example, gene
delivery, target drug delivery, surgical sutures, and tissue engineering products [96–98].

Chitosan is the direct derivative of chitin obtained by partial deacetylation under alka-
line conditions [95], shares characteristics similar to its precursor. Still, chitosan has more
applications in the chemical areas, nutraceutical, and pharmaceutical industries [73,99].
It has hydrophilic and antimicrobial properties, being necessary for the production of
biomaterials [95]. It is interesting for application in drug delivery systems, emphasizing
the development of chitosan-based nanosystems to treat inflammatory diseases such as
RA [100]. Studies have pointed out that chitosan exerts anti-inflammatory, antioxidant,
antimicrobial, antitumor, and hypocholesterolemic activity [101–104].

4.3. Alginate—Polysaccharides

Alginate is a natural polysaccharide composed of building blocks of 1,4-linked (-
D-mannuronic acid) (M) and (-L-guluronic acid) (G), which vary in proportion forming
alginate compounds with different chemical and physical characteristics [105,106]. The
primary sources of Alginate are brown seaweed such as Ascophyllum nodosum, Laminaria
hyperborea, Saccharina japonica, Macrocystis pyrifera, and Laminaria digitata [107]. It is bioac-
tive with biocompatibility, low cost, low toxicity, gelling agent, and stabilizer of solutions,
which make it interesting for various biomedical applications [108], nutraceuticals, and
cosmetics [109]. It is used to treat wounds, and there are already at least 12 commer-
cially available alginate-based dressings with promising results due to its immunogenic,
antibacterial, and procoagulant activities [107,110].

4.4. Peptides

Peptides play numerous bioregulatory roles of extreme importance. Those of marine
origin stand out for having unique molecular mechanisms [111]. They offer enormous
possibilities for the study of several secondary metabolites, which have high specificity
and low toxicity. Therefore, they constitute an opportunity to identify new prototypes of
drugs and products, expanding their applications in the pharmaceutical and biomedical
industry [111,112]. Bioactive peptides usually have 3–20 amino acid residues organized
in different sequences, determining distinct structures and properties [113]. Given the
various possible compositions, they can perform different biological activities such as
antiviral, antifungal, anticancer, antidiabetic, antioxidant, anticoagulant, antihypertensive,
immunomodulatory, analgesic, and calcium-binding properties, and most marine peptides
have antimicrobial activity [114,115]. The extraction of marine bioactive peptides is made
from bacteria, mainly marine cyanobacteria, microalgae such as Chlorella vulgaris (green
algae), marine sponges, and their associated microorganisms [114,116].

4.5. Fatty Acids

Fatty acids (FA) are carboxylic acids with different carbon numbers and double bonds.
According to the structure and biochemical properties they are classified into two broad
groups, saturated FAs that do not contain double bonds in their carbon structure and
unsaturated FAs that include double bonds in their composition and are subdivided into
monounsaturated FAs (MUFAs) or polyunsaturated FAs (PUFAs) [117,118]. PUFAs are
classified into two categories: (i) Omega-3 (n-3 PUFAs), which mainly includes α-Linolenic
acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA); (ii) Omega-6
(n-6 PUFAs), which includes linoleic acid (LA); y-linoleic acid (GLA) and arachidonic
acid (AA) [119,120]. They are synthesized by the human organism but need to be also
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ingested through diet, being classified as essential FAs due to their enormous importance
participating in various metabolic processes throughout human life [120] and constitute the
phospholipids that form the cell membrane [121]. They act significantly in inflammatory
responses with participation as substrates for the biosynthesis of inflammatory mediators,
cellular receptors’ activation, and modulation of membrane fluidity to alter cell func-
tion [122–124]. Omega-3 rich oils, especially DHA and EPA, can be extracted from seafood
such as algae and fatty fish, the best are salmon, sardines, tuna, herring, and trout [119,125].
Marine fatty acids play essential anti-inflammatory activities and studies have pointed out
that they can be used in the treatment of RA, promoting clinical improvements [126–129].
Figure 4 is showing the various strategies that can be implemented to treat RA effectively.
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Figure 4. Strategies for implementing marine-derived compounds for RA treatment. Marine-derived
compounds can form new bioactive substances and new drug delivery systems. These bioactive
compounds can be implemented for RA treatment as new drugs or functional foods. The drug
delivery systems can be applied to enhance the pharmacokinetic properties of both marine-derived
bioactive compounds and conventional drugs and deliver these substances on-target.

5. Advantages and Applications of Various Marine-Derived Compounds for
RA Therapy

Over the past two decades, a better understanding of the pathophysiology of RA has
allowed significant progress in the treatment efficacy. Multiple possibilities of intervention
arose from comprehending the complex pathways involved in the inflammation [130].
Despite all the advances, still 20–25% of the patients cannot reach low disease activity
with all options available [131]. On the other hand, this noticeable room for improvement
could be fulfilled by the inexhaustible source of unique and useful compounds: the marine
environment. Many strategies can be applied in the process of employing these products
in the context of RA. Its benefits could range from improving the effectiveness of already
known drugs, diminishing the adverse effects and lowering the costs of treatment, to
the discovery of new medicines that could act via the established mechanisms as well as
through others not yet explored in this particular disease.

Methotrexate is an excellent example of a drug that could have its pharmacokinetics
properties improved. It has been used in RA for more than 50 years. It is still a part
of the first-line approach to the disease [131], even though its rapid elimination by the
kidney grants it a relatively short half-life on plasma, resulting in low drug concentration
in the target tissue [132], a characteristic far from ideal, considering the long-term therapy
needed in RA. This rapid excretion is an important aspect, as it has to be compensated by
more frequent and higher doses to maintain the desired effect [133], which comes with
an increased risk of therapeutic tolerance and systemic adverse effects [134]. Under these
circumstances, drug delivery systems, such as liposomes, nanoparticles, and microspheres,
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would help increase solubility, bioavailability, half-life, and drug action on the inflammation
sites while minimizing systemic exposure and adverse effects [135–139]. By improving the
impact of the first-line treatment approach, it would be possible to avoid the employment
of biologic DMARDs, whose price may reach five-digits [131], hence reducing the overall
cost of the therapy.

For a compound to be used in a drug delivery system, it must present biocompati-
bility, low immunogenicity, and low toxicity. Furthermore, it is also relevant that it can
be modified [132,140,141]. These properties are widely observed in marine-derived natu-
ral polymers such as carrageenan, fucoidans, alginate, and agar, making them potential
bases for producing these systems [142]. Indeed, there has been extensive research using
these compounds for delivering drugs for treating diabetes, pain, infections, and cancer,
some with the ability to target specific cells and some capable of producing particles with
size ranging from 1 nm up to 1000 nm [143]. When it comes to RA therapy, many re-
searchers were able to employ these exciting properties of the marine-derived compounds
for modifying pharmacokinetics of other drugs to control inflammation [144]. A platform
of alginate beads has successfully delayed the release of Prednisolone in rats [145]. A
chitosan thermosensitive hydrogel combined with alginate microspheres could prolong the
release of Diclofenac sodium to 5 days in vitro and present promising characteristics for
intra-articular administrations [146]. Sodium alginate has been used to prepare Ibuprofen
microbeads with a variety of physicochemical properties [147]. Encapsulated Eugenol
with Chitosan Nanoparticle has been able to alleviate the symptoms of joint inflammation,
synovial hyperplasia, and cartilage damage caused by RA in rats (Figure 5) [148]. Chitosan
improved Leflunomide’s anti-arthritic effect when used as a coating in an oral nanosystem
in an RA-induced rat model. Chondroitin sulfate was also used in this same investigation
as a coating and showed even better joint healing, probably due to its cartilage homing
process [149]. A platelet-rich plasma (PRP)-chitosan thermo-responsive hydrogel was able
to reduce edema degree on an arthritic rat model when combined with black phosphorus
nanosheets (BPN) [150]. Carboxymethyl chitosan has been proven to be a good carrier for
the treatment of RA, as it was able to enhance Triptolide’s solubility and reduced its toxic-
ity both in vitro and in vivo [151]. Chitosan nanoparticles were also used to encapsulate
Methotrexate and Dexamethasone and showed promising results in controlling inflamma-
tion in a rat arthritic model after intraperitoneal administration [152]. Other Methotrexate
conjugated nanoparticles were engineered based on chitosan and demonstrated the poten-
tial for treating ovarian cancer [140]. Another complex sialic acid (SA)-modified chitosan
oligosaccharide-based biphasic calcium phosphate (BCP) loaded with Methotrexate not
only was capable of a targeted delivery into arthritic paws but executed a rapid drug re-
lease and significantly inhibited the inflammation response. The component also enhanced
bone regeneration, expanding the treatment of RA for a nanometer-scale dimension, and
acting further than only aiming at low disease activity or remission [153], as even the most
effective conventional therapy will not reverse the joint damage [131].

As if the benefits and possibilities of modifying already known drugs were not
enough, the lengthy list of bioactive marine substances that shows analgesic, antitumor,
immunomodulatory, antioxidant, and anti-inflammatory properties makes the oceans
a relevant source of new therapies for RA [60,69,141,142,154]. The anti-inflammatory
mechanisms reported are very diverse and could allow a more complex approach to the
pathways responsible for RA’s development. In other words, these marine substances
could represent multiple possibilities to interfere in different steps of the pathogenesis
with varying intensities from the ones now applied, restoring the balance between the pro
and anti-inflammatory cytokines [155]. If correctly employed, this variety of options can
certainly make it possible to explore the alluring spectrum of precision medicine to provide
a more adequate treatment for each individual [156] in a therapy that better considers
factors like the disease level of activity, the presence of comorbid conditions, the stage of
therapy, the patient preferences, and the presence of adverse prognostic signs for each
specific case [157]. Besides, this precision treatment based on the patient profile could be
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even more helpful for those who could not reach low disease activity or remission with the
currently offered treatments [156].
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The application of marine compounds could take place as a complementary medicine
implemented through diet and the development of a new drug. It has been pointed out
that 30–60% of rheumatic patients use complementary medicine [158]. The marine world
represents a vast reserve of anti-inflammatory and antioxidant substances (Figure 6) [158],
that might be helpful against chronic inflammatory diseases like RA, such as carotenoids,
n-3 polyunsaturated fatty acids (n-3 PUFAs), vitamins, and peptides [154]. A systematic
review and meta-analysis of randomized trials found moderate-quality evidence for marine
oil use to alleviate pain in RA [128]. In another study, the supplementation with n-3 PUFAs
mostly obtained from fish has been considered a valuable option for RA, as it was able
to reduce the expression of TNF-α and interleukin-1β, and improved the pain symptoms,
the tender joint count, the duration of morning stiffness, and the frequency of NSAIDs
consumption [156,159]. A list of recent patents and discoveries of marine anti-inflammatory
agents named mussel lipids as applicable to RA [160].

Since antioxidants can also suppress the release of inflammatory cytokines, reducing
reactive oxygen species (ROS) production, and scavenging free radicals systemically, ma-
rine carotenoids (e.g., Astaxanthin and Fucoxanthin), polysaccharides, and phenols have
been assessed for their potential role as functional foods in RA [154,161]. It is stated that a
higher intake of these components can not only alleviate symptoms but also ameliorate
adverse effects and risk of complications of pharmacological therapy and prevent RA
development [154]. However, it is important to highlight that the mechanisms of these
components still have to be elucidated [155]. The evidence for the practical use of these
substances is still scarce [162]. There is usually a lack of communication between doctors
and patients using natural products for RA that can be prejudicial to the therapy [163].

Marine-derived compounds can also be explored in the discovery of new drugs that
could act both on well-known pathways (with fewer adverse effects) and on others not
yet seen as suitable for RA. For instance, 4-(Hydroxymethyl)catechol extracted from fungi
in marine sponges was able to modulate the PI3K/Akt/NF-kB pathway, suppressing the
Th immune responses and matrix metalloproteinases expression, hence inhibiting the
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production of inflammatory cytokines in human RA synovial fibroblasts which confirmed
its potential anti-RA effect [164]. Steroids obtained from a bivalve (Paphia malabarica)
showed important antioxidant and anti-inflammatory activities and could have an essential
role in RA therapy [165]. A fucoidan like sulfated polysaccharide extracted from the
macroalgae Turbinaria ornata inhibited inflammation and bone damage with a significant
reduction in the arthritic score and paw volume in rats [166]. Recently, a few marine
compounds have been described as ligands of the Pregnane X Receptor (PXR), a nuclear
membrane receptor involved in crucial physiological processes as detoxification, glucose
and lipid homeostasis, bone metabolism, and inflammation [167,168]. Solomonsterol A,
an agonist of the PXR extracted from the marine sponge Theonella swinhoei, is capable of
attenuating systemic inflammation and immune dysfunction in a mouse model of RA [169],
which enforces the possibility of finding new pathways to intervene in the pathological
process of RA. The details of various marine-derived compounds for the potential treatment
of RA are illustrated in Table 3.
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Table 3. Applications of marine-derived compounds for therapy against RA.

Marine-Derived
Compound Source(s) Applications for Therapy against RA Reference

n-3 PUFAs

Fish oil

Reduce the expression of TNF-α and interleukin-1β,
pain symptoms, the duration of morning stiffness,

and the frequency of NSAIDs consumption
Moderate-quality evidence for the use of marine oil

to alleviate pain in RA

[128,156,159]

Mussel
(Mytilus coruscus

and
Perna canaliculus)

Can be used for the prevention and treatment of RA
A synergistic effect is obtained of combined

omega-3 series fatty acid and flavonoids in the
treatment of RA

[160,170,171]

Astaxanthin Algae and aquatic
animals

Potential prevention and treatment of RA due to
antioxidant and membrane preservation properties [154]

Fucoxanthin Marine brown
seaweeds

Potential prevention and treatment of RA due to
powerful antioxidant properties [154]

4-
(Hydroxymethyl)catechol

Fungi in marine
sponges

Modulate the PI3K/Akt/NF-kB pathway,
suppressing the Th immune responses and matrix
metalloproteinases expression, thus inhibiting the

production of inflammatory cytokines in human RA
synovial fibroblasts

[164]

Steroids Bivalve (Paphia
malabarica)

Antioxidant and anti-inflammatory activities and
may play an important role in RA therapy [165]

Fucoidan Macroalgae
(Turbinaria ornata)

Inhibits inflammation and bone damage with a
significant reduction in the arthritic score and paw

volume in rats
[166]

Solomonsterol A Marine sponge
(Theonella swinhoei)

Attenuates systemic inflammation and immune
dysfunction in a mouse model of RA [169]

n-3 PUFAs: n-3 polyunsaturated fatty acids; RA: rheumatoid arthritis; NSAIDs: nonsteroidal anti-inflammatory drugs.

6. Concluding Remarks, Challenges, and Future Outlook

The current review focused on some marine-derived compounds for the potential
treatment of RA. In addition to the valuable nutritional values, these natural compounds
and their derivatives have demonstrated anti-inflammatory and antioxidant properties
and thus could be used as drug candidates for therapy against RA. with an increment in
the exploration of the marine sources, it is anticipated that more novel compounds with
anti-inflammatory and analgesic properties will be explored and subsequently developed
as antiarthritic agents for clinical use.

Despite the plethora of possibilities described, only a few marine compounds were
explicitly tested for RA, and no new drug has yet been approved for this purpose. This
contrasts with anticancer therapy, which had in 2017 seven marine-derived pharmaceutical
substances authorized by the Food and Drugs Administration for clinical use as drugs.
Others underwent different stages of clinical trials in oncology and hematology [172].
Indeed, this advance against tumors is good news for overall marine research and its
applicability in RA, as the two diseases share a few mechanisms in their pathogenesis, such
as the participation of the immune system and cytokines, intense cell proliferation, and
angiogenesis [132]. Hence, the pharmacological compounds developed for cancer might as
well be useful for the treatment and diagnosis of RA.

The road to developing a new drug is long and takes a lot of time, investment, and
hard work. Besides, it becomes even more complicated with so many possibilities to be
screened. On the other hand, considering the low overall success rate, it is essential to
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maintain a robust pipeline of new drug candidates in which marine natural products
could make a significant contribution [173]. To overcome these challenges, innovative
approaches such as artificial intelligence (AI) can be implemented to make the hunt for new
medicines quicker, cheaper, and more effective [174]. Indeed, AI represents a powerful data
mining tool that can be used in many phases of the drug developing process such as virtual
screening, quantitative structure–activity relationship (QSAR) analysis, de novo drug
design, activity scoring, and in silico assessment of absorption, distribution, metabolism,
excretion, and toxicity (ADME/T) properties [175].

One relevant problem when using natural products is their low bioavailability. Still,
the development of nanoparticles, even marine-derived ones, for delivering these drugs
can solve it, protecting the substances against degradation and delivering them in specific
tissues [141]. Lastly, another challenge is to escalate the production for a pharmaceutical
application, as often, an insufficient quantity of a compound of interest can be isolated
from marine organisms [69]. To surpass this, a pharmacophore analog that replicates the
lead natural substance’s desired biological activity can be developed, ideally in a more
straightforward, more potent, and less toxic way [173]. Another option that can be used
for some organisms is to find new ways of increasing their cultivation. For instance, new
aquaculture technologies have been made possible for various types of soft corals, helping
to solve this issue [69].
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