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Abstract

Background: Pulmonary arterial hypertension is characterized by increased thickness of pulmonary vessel walls due
to both increased proliferation of pulmonary arterial smooth muscle cell (PASMC) and deposition of extracellular
matrix. In patients suffering from pulmonary arterial hypertension, endothelin-1 (ET-1) synthesis is up-regulated and
may increase PASMC activity and vessel wall remodeling through transforming growth factor beta-1 (TGF-$1) and
connective tissue growth factor.

Objective: To assess the signaling pathway leading to ET-1 induced proliferation and extracellular matrix deposition
by human PASMC.

Methods: PASMC were serum starved for 24 hours before stimulation with either ET-1 and/or TGF-B1. ET-1 was
inhibited by Bosentan, ERK1/2 mitogen activated protein kinase (MAPK) was inhibited by U0126 and p38 MAPK was
inhibited by SB203580.

Results: ET-1 increased PASMC proliferation when combined with serum. This effect involved the mitogen activated
protein kinases (MAPK) ERK1/2 MAPK and was abrogated by Bosentan which caused a G1- arrest through
activation of p27%P. Regarding the contribution of extracellular matrix deposition in vessel wall remodeling, TGF-31
increased the deposition of collagen type-l and fibronectin, which was further increased when ET-1 was added
mainly through ERK1/2 MAPK. In contrast, collagen type-IV was not affected by ET-1. Bosentan dose-dependently
reduced the stimulatory effect of ET-1 on collagen type-l and fibronectin, but had no effect on TGF-f1.

Conclusion and Clinical Relevance: ET-1 alone does not induce PASMC proliferation and extracellular matrix
deposition. However, ET-1 significantly up-regulates serum induced proliferation and TGF-1 induced extracellular
matrix deposition, specifically of collagen type-l and fibronectin. The synergistic effects of ET-1 on serum and TGF-
B1 involve ERK1/2 MAPK and may thus present a novel mode of action in the pathogenesis of pulmonary arterial
hypertension.
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Introduction

Pulmonary arterial hypertension (PAH) is characterized by
the progressive increase of pulmonary vascular resistance and
pulmonary arterial pressure, leading to right heart failure and
death [1,2]. PAH is either a disease on its own or occurs as co-
morbidity in patients suffering from hypoxia, scleroderma, or
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chronic obstructive pulmonary disease (COPD) [2,3]. A major
pathology of PAH is the structural change of the pulmonary
arterial vessel wall, which is expressed as hypertrophic smooth
muscle and increased deposition of extracellular matrix (ECM)
in the tunica media [4,5]. Both events are independent of each
other and result in the narrowing of the lumen of pulmonary
arteries. The thickened vessel wall is caused by increased
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deposition of ECM and by smooth muscle hyperplasia/
hypertrophy; together these pathologies reduce the flexibility of
the vessel wall and increase the constrictive force of the
muscle bundles, thereby increasing the pulmonary arterial
blood pressure [5].

Endothelin-1 (ET-1) plasma levels are prominently increased
in PAH patients and correlate with pulmonary vascular
resistance, pulmonary arterial pressure, cardiac index, and
cardiac output [6,7]. ET-1 binds and activates the G-protein
coupled ET, and ETg receptors and thereby increase
intracellular calcium levels, which in turn activate both
phospholipase C and protein kinase C [8-11]. Both ET-
receptors mediate vasoconstriction and stimulate pulmonary
arterial smooth muscle cell (PASMC) proliferation [10-12]. The
mechanism underlying the ET-1 dependent thickening of the
pulmonary arterial wall involves the increase of intracellular
calcium, cAMP generation and subsequent up-regulation of
cyclo-oxygenase 2 in an autocrine loop [13]. There is evidence
that the distribution of the ET-receptors is cell type and
species-specific; therefore, data obtained in PAH animal
models cannot be directly compared to the pathology of human
PAH [14].

In human lung fibroblasts and vascular smooth muscle cells,
ET-1 activates at least one mitogen-activated protein kinases
(MAPK), ERK1/2, which in turn activates cyclins and cyclin-
dependent kinases resulting in cell proliferation and
subsequently PASMC hyperplasia in PAH [15,16]. MAPK also
mediate the increase of ECM deposition in the vessel wall of
PAH patients [17,18]. Moreover, PAH is associated with an
altered interaction of MAPK with the transforming growth factor
B1 (TGF-B1) activated signaling cascades, which are relevant
to ECM restructuring [17,19]. Increased expression of TGF-31
and connective tissue growth factor (CTGF) have been
observed in PAH vessel and contribute to PASMC growth and
collagen deposition [17,20]. Taking into account that the
collagen content of pulmonary arteries has been suggested as
an indicator of PAH staging and progression, the role of TGF-
B1 and CTGF, together with other disease relevant stimuli,
such as ET-1 on this pathology, has to be further investigated
[21]. However, it is not known which specific components of the
ECM participate in PAH vessel wall remodeling.

In this study, we determined the effect of ET-1 alone as well
as in combination with a ubiquitous mitogen and TGF-$1 on
human primary PASMC. We determined the contribution of
ET-1 and its receptors on TGF-B1 induced MAPK signaling,
proliferation and ECM metabolism in human primary PASMC.

Materials and Methods

Cell culture and proliferation

Experiments were performed using a commercially available
cell line of primary human PASMC (CC-2581, Cambrex-
Bioscience, Walkersville, USA), which was grown as
recommended by the manufacturer. Experiments were
performed when the monolayer of PASMC reached 70%-80%
confluence. Prior to experiments, PASMC were serum-
deprived in medium containing 0.5% fetal calf serum (FCS) for
24 hours. ET-1 (Sigma, Vienna, Austria) was used in a
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concentration range of 0.01-1 pM. Bosentan (Tracleer™,
Actelion Pharmaceuticals, Allschwil, Switzerland) was used at
10 and 100 yM and was added to cell cultures 15 minutes
before stimulation. FCS (5%) was used as a positive control.

Cell proliferation was determined by direct cell count after 3
days of incubation [22].

Immunofluorescence microscopy

PASMC were grown on chamber slides and treated with
ET-1 and/or Bosentan for various time periods before fixation in
methanol (15 minutes). Slides were washed 3x with phosphate
buffered saline (PBS), then incubated with blocking buffer (10%
BSA in PBS) for 20 minutes at room temperature (RT),
followed by incubation (2 hours, RT) with a monoclonal
antibody specific to phosphorylated amino acids Thr 202 and
Tyr 204 of ERK1/2 (#9106, diluted 1:400, Cell Signaling
Technology, USA). Slides were washed 5x with PBS and
incubated (45 minutes, RT) with a FITC-conjugated species
specific second antibody (Sigma). Propidium iodide (15
minutes) was used to stain nuclei. Slides were washed 3x with
blocking buffer and evaluated by fluorescence microscope
(Olympus, BX41, Vienna, Austria).

Proteins: Whole cell, nuclear and cytosolic

PASMC were harvested in ice cold PBS and centrifuged
(1000xg, 6 minutes). Whole cell lysates where prepared by
resuspension of the cell pellet in lysis buffer [50 mM/L TrisCI
pH 7.4, 150 mM NaCl, 1mM EDTA pH 8, 1% NP-40, complete
protease inhibitor cocktail™ (Roche Diagnostics, Vienna,
Austria)] and frozen twice in liquid nitrogen and incubated on
ice (20 minutes). The supernatant was collected after
centrifugation (13,000%g, 15 minutes, 4°C).

Cytoplasmic proteins were extracted from cells in low-salt
buffer (20 mM HEPES pH 7.9, 10 mM KCI, 1 mM EDTA, 1 mM
EGTA, 0.2% NP-40, 10% glycerol complete protease inhibitor™
(Roche Diagnostics, Vienna, Austria) and incubated on ice for
10 minutes. After centrifugation (13,000xg, 1 minute, 4°C), the
supernatant was collected as cytosolic protein fraction. The
remaining pellet was dissolved in high-salt buffer (420 mM
NaCl, 20 mM HEPES pH 7.9, 10 mM KCI, 1 mM EDTA, 1 mM
EGTA, 20% glycerol, Complete Protease Inhibitor™) and
incubated on ice (30 minutes), followed by centrifugation
(13,000xg, 10 minutes, 4°C). The supernatant was collected as
nuclear protein fraction. Protein concentrations were
determined by Bradford assay (Bio-Rad, Vienna, Austria) at
595 nm. In experiments for protein phosphorylation studies, we
added PhosSTOP buffer (Roche Diagnostics) to protein
samples.

Immunoblot analysis

Proteins (25 pg) were size fractionated by gel
electrophoresis  (12%  SDS-polyacrylamide gel), then
transferred onto a PVDF membrane (Millipore Corp., Billerica,
USA) by standard protocols. The transfer was confirmed by
Ponceau red staining [22]. Membranes were incubated (2
hours, RT) in blocking buffer (PBS, 0.1% Tween-20, 5%
skimmed milk) before a protein-specific monoclonal antibody
was added for overnight incubation (4°C). The membranes
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were washed 3x (80 nM Na,HPO,, 20 mM NaH,PO,, 100 mM
NaCl, 0.1% Tween-20, pH 7.5) and then incubated (90
minutes, RT) with a secondary horse radish peroxidase-labeled
species specific antibody (Amersham, Buckinghamshire, UK).
After being washed 3x with PBS, the protein bands were
visualized by enhanced chemiluminescence substrate (Pierce,
lllinois, USA) and documented on X-ray film for image analysis
(Imaged version 1.37). Antibodies used: ETA receptor (N-15,
Santa Cruz), ETB receptor (A-20, Santa Cruz), actin (Sigma,
A-2066), p27#1) (AB3003, Chemicon).

ECM, collagen and fibronectin deposition

Deposition of total ECM was determined in confluent cell
layers. For total ECM, cells were starved for 24 hours before
being stimulated with either ET-1 or TGF-B1 for 48 hours. [*H]-
proline (1 uM Ci) was added for the last 24 hours before cells
were washed with PBS followed by fixation in ice cold
methanol: acetic acid (3:1) for 5 minutes and subsequent
measuring of ECM incorporated tritium as described earlier
[23].

The deposition of collagen type-l, -lll and -IV were
determined by a modified enzyme linked immunosorbent assay
as described earlier [24]. In brief, PASMC were seeded into a
96-well plate and grown to confluence before being stimulated
with ET-1 (1 yM) for 48 and 72 hours. Cells were removed by 1
hour incubation in hypotonic ammonium hydroxide. Plates were
incubated with 2% bovine serum albumin (30 minutes),
followed by overnight incubation (4°C) with one of the primary
anti-bodies (collagen type-l: sc-59772, type-Ill: sc-8781, type-
IV: sc-52317, fibronectin: sc-271098; all from Santa Cruz
Biotech (Santa Cruz, USA)). Plates were washed 5x with PBS
and incubated with a secondary horse radish peroxidase
labeled species specific antibody (1 hour, RT). Plates were
washed 5x with PBS and 100 ul of TMB solution were applied
to each well for 30 minutes. The signal was determined by
ELISA reader.

For experiments with neutralizing antibodies targeting pan-
TGF-B and CTGF (R&D systems, Abingdon, UK), cells were
pre-incubated for 30 minutes before stimulation.

Real-time PCR

Total mRNA was isolated by TRIZOL [25] and transcribed
into cDNA by reverse transcriptase (Advantage RT-for-PCR
Kit, Clontech, Palo Alto, USA). Real-time PCR was performed
by LightCycler480 (Roche Diagnostics) using the following
commercially available primers: p27Kie? mRNA
(Hs00153277_m1), TGF-B1(Hs00171257_m1) and collagen
type 1 alpha1 chain (Hs01076777_m1); all were purchased as
TagMan pre-developed gene expression assay (Applied
Biosystems, ABI, CA, USA). The internal control for PCR
analysis was 18S mRNA (Applied Biosystems). 50 PCR cycles
(95°C for 10 seconds; 65°C for 30 seconds; 72°C for 5
seconds) were performed. Relative mRNA expression was
determined using the ACT method [26].

Cell cycle phase characterization

PASMC (1 x 10° cells/ml) were grown in 6-well plates and
stimulated by ET-1 (0.1-1 uM) in the presence or absence of
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Bosentan (100 uM) for various time intervals. FCS (5%) was
used as positive control. Cells were harvested after 6 and 24
hours by accutase treatment, washed with PBS, and fixed in
100% ethanol (30 minutes, on ice). Cells were centrifuged
(1500 rpm, 5 minutes) and re-suspended in PBS-containing 20
ug/ml propidium iodide (Sigma) and 60 pg/ml RNase A (Sigma)
for 15 minutes (RT). The DNA content was determined by flow
cytometry, and the cell cycle distribution was analyzed by
CellQuest Software (Becton Dickinson, Mountain View, CA).

Statistics

Data are presented as mean = S.E.M. and the Null-
hypothesis was: no difference between treated and untreated
cells. Protein expression and mRNA transcription were
compared by Student’s t-test (two-tailed, unpaired). The effect
of Bosentan on ET-1 induced cell cycle progression was
compared by multivariate analysis ANOVA. Results were
considered significant when the p-value was < 0.05.

Results

Effects of endothelin-1 on cell proliferation

ET-1 (0.1-1 pM) did not induce proliferation of growth
arrested, serum starved PASMC; while 5% FCS stimulation
increased the cell number by ~1.8 fold over 3 days (Figure 1A).
When combined, ET-1 dose-dependently further increased the
FCS (5%) induced proliferation of PASMC up to 1.43 fold
(Figure 1B). Bosentan (100 uM) significantly reduced the ET-1
induced proliferation of PASMCs (Figure 1C). The p38 MAPK
inhibitor SB203580 (10 yM) had no significant effect on ET-1
induced PASMC proliferation, while the ERK1/2 inhibitor U0126
significantly reduced both ET-1 and 5% FCS-induced
proliferation (Figure 1C). To further characterize the effect of
ET-1 on proliferation control, we determined the cell cycle
distribution and found that ET-1 reduced the number of cells in
the G1-phase in a dose-dependent manner, while it increased
the number of cells in G2-phase from 39.2% to 48.6%. When
pre-incubated with Bosentan, the percentage of cells in the G2-
phase significantly decreased to 33.5% (Figure 1D). The
inhibitory effect of Bosentan on ET-1 induced proliferation was
paralleled by increased nuclear accumulation of the cell cycle
inhibitor p27®®" (Figure 1E) while p21Waf1’Ce) was not affected
(data not shown). TGF-B (0, 0.5, 1 and 5 ng/ml) had no effect
on proliferation (data only shown for 5 ng/ml, Figure 1F). In
contrast, the addition of ET-1 (10 nM) significantly induced
proliferation, while the ERK1/2 inhibitor U0126 significantly
reduced the combined effect of ET-1 and TGF-R-induced
proliferation (Figure 1F).

The role of ERK1/2 MAP-Kinase in ET-1 induced
proliferation

In human PASMC, 5% FCS significantly induced the
phosphorylation of ERK1/2 MAPK by 1.9 fold at 60 minutes;
while the content of total ERK1/2 MAPK was not changed
(Figure 2A). Addition of ET-1 to 5% FCS further increased the
phosphorylation of ERK1/2 MAPK, and this effect of ET-1 was
prevented by 30 minutes pre-incubation with Bosentan (Figure
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Figure 1. The mitogenic-supportive effect of Et-1 on PASMC. (A) ET-1 alone has no mitogenic effect, while 5% foetal calf
serum (FCS) induced proliferation of PASMC within 3 days (n = 6). (B) When combined with 5% FCS, ET-1 dose-dependently
increased cell numbers within 3 days (n = 6). Similar results were obtained after 5 days. (C) ET-receptor blockade by Bosentan and
chemical Erk1/2 MAPK inhibition abolished the supportive effect of ET-1 on serum-induced PASMC proliferation (n = 3). (D) ET-1
induced accumulation of S/G2-phase cells is prevented by Bosentan (n = 3). (A—D) Bars represent mean + SEM. (E) Representative
immune-blot of the effect of ET-1 and Bosentan on cell compartment distribution of p27®), similar results were obtained in 3
additional experiments. (F) TGF-3 alone did not induce proliferation, whereas the addition of ET-1 significantly increased PASMC
proliferation, which was abolished by the inhibition of Erk1/2 MAPK.

doi: 10.1371/journal.pone.0073399.g001
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2A). In the presence of U0126, the phosphorylation of ERK1/2
MAPK was completely suppressed (Figure 2A). The results
from triplicate experiments for all conditions were quantified by
image analysis and are presented as bar charts in Figure 2B.
The nuclear accumulation of ERK1/2 in the presence of ET-1
has also been demonstrated by immune-fluorescence
microscopy (Figure 2C).

ET-1 alters extracellular matrix synthesis through TGF-
B1 but not through CTGF

Tissue remodeling in PAH also involves increased ECM
deposition. Therefore, we assessed the effect of ET-1 alone or
in combination with the fibrosis relevant stimulus TGF-f1 in
PASMC. As shown in Figure 3A, ET-1 stimulated the secretion
of TGF-B1 by PASMC over 3 days continuously; this effect of
ET-1 was prevented when the cells were pre-incubated for 30
minutes with Bosentan. This was confirmed on the mRNA level
(Figure 3B). When combined with 5% serum, TGF-$1 mRNA
levels were further increased while Bosentan significantly
reduced ET-1 and serum induced TGF-B1 mRNA levels as
shown in Figure 3B. Regarding the role of MAPK in ET-1
signaling, we provide data in Figure 3C that UO126 but not
SB203580 inhibited ET-1 induced TGF-f1 mRNA de novo
synthesis. We further observed that ET-1 stimulation increased
the secretion of CTGF by PASMC and pre-incubation with
Bosentan prevented this effect (Figure 3D).

Next we determined the effect of ET-1 on ECM deposition.
TGF-B1 but not ET-1 dose dependently increased the
deposition of total collagens by PASMC within 2 days as shown
in Figure 4A. When combined, ET-1 dose dependently
increased the collagen stimulating effect of TGF-B1 (Figure
4B). When the cells were pre-incubated with Bosentan, the
drug dose dependently prevented the synergistic effect of ET-1
on TGF-B1 dependent collagen deposition, but it had no effect
of TGF-B1 itself (Figure 4C).

We further investigated the effect of ET-1 on ECM
composition and we observed a significant dose dependent
increase of collagen type-l by both TGF-1 and ET-1 (Figure
5A). When combined, the two stimuli had an additive effect on
collagen type-l deposition, which was dose dependent for ET-1
(Figure 5B). This additive effect of ET-1 on collagen type-l
deposition was dose dependently reduced when the cells were
pre-incubated with Bosentan (Figure 5C).

Fibronectin also contributes to inflammation and was up-
regulated significantly in a dose dependent manner by TGF-$1
and ET-1, with the ET-1 being less effective than TGF-B1
(Figure 5D). When the two stimuli were combined, ET-1
synergistically increased the stimulatory effect of TGF-$1 on
fibronectin deposition (Figure 5E). Pre-incubation of the cells
with Bosentan reduced the synergistic effect of ET-1 on
fibronectin deposition; however, the inhibitory efficacy was not
as strong as observed for collagen type-l (Figure 5F). We also
assessed the effect of ET-1 alone and in combination of TGF-
B1 on the deposition of collagen type-IV, which was not
significantly affected by ET-1 (Figure 6A).

The reducing effect of Bosentan on collagen type-I
deposition occurs on the transcription level as shown in Figure
6B. Pre-incubation of the cells with either TGF-B1 or CTGF
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neutralizing antibodies over 24 hours significantly reduced the
ET-1 stimulatory effect on collagen type-l and fibronectin. In
figure 6C, we provide evidence that the ET-1 induced
deposition of collagen type-l was mediated through TGF-B1
alone, while its effect on fibronectin involves both TGF-31 and
CTGF.

Discussion and Conclusions

PASMC play a key role in the pathology of vascular
remodeling in PAH. Antagonism of ET-1 receptors is
established as one of the most effective PAH therapies [13].
Our study shows that ET-1 has no mitogenic effect on human
PASMC. However, in the presence of inflammatory stimuli such
as serum, ET-1 increases cell proliferation. Bosentan reduces
this ET-1 effect through up-regulation of p27KeD, ET-1
increased the de novo synthesis and deposition of collagen
type-l involving TGF-B1 and for fibronectin also CTGF. The
increase of both ECM components by ET-1 was inhibited by
Bosentan. The hypothesis that arterial wall remodeling in PAH
results from the supportive effect of ET-1 signaling on that of
other mitogens [11] and on TGF-f1 induced collagen
deposition via ERK1/2 MAPK is summarized in Figure 7.

Our data show that ET-1 up-regulates PASMC proliferation
only in the presence of other mitogens such as serum, which
could be used as a model for inflammatory conditions [22,23].
The intracellular signaling pathway that mediates synergistic
pro-proliferative effects of ET-1 involves ERK1/2 MAPK, which
has been reported earlier to contribute to the remodeling of the
neo-intima in different diseases including PAH [11,16,19].
Interestingly, the activation of ERK1/2 MAPK by ET-1 does not
occur within minutes, but only becomes significant after 1 hour
and lasts over the next 5 hours. The proliferative effect as well
as the activation of ERK1/2 MAPK is dependent on ET-1
receptor activity since pre-incubation with Bosentan blocked
both effects, which is in line with other studies [11]. Moreover,
the activation of ERK1/2 MAPK in vascular smooth muscle
cells in particular, was linked to p27® activation and specific
cellular compartmental accumulation [27,28]. In lung tissue, the
over-expression of p27KP was associated with attenuated
systemic arterial smooth muscle cell proliferation [29]. Our
observation that Bosentan inhibits ERK1/2 MAPK activity and
increases p27KP expression may explain the observed
reduction of vessel wall thickening, which has been
documented in clinical studies [30].

As mentioned above, vessel wall remodeling in PAH consists
of two major components, proliferation of tissue forming cells
and increase deposition of ECM [17,18,31]. In our experiments,
ET-1 increased the de novo synthesis and secretion of both
factors, with TGF-B1 preceding that of CTGF, similar to the
sequence reported in dermal fibroblasts [32]. In rat vascular
smooth muscle cells, though, ET-1 up-regulates CTGF
independent of TGF-B1 [33]. Our data indicate that ET-1 alone
is insufficient to increase total ECM deposition significantly, but
it clearly supported TGF-B1 dependent ECM deposition.
However, when combined, ET-1 further enhanced TGF-1
induced collagen type-l and fibronectin deposition, a similar
effect has been reported in fibroblasts where the effect of the
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Figure 2. ET-1 activates and Bosentan prevents Erk1/2 MAPK activation. (A) Representative immune-blot of Erk1/2 MAPK
phosphorylation (phos-Erk1, phos-Erk2). ET-1 and 5% FCS activate phosphorylation of Erk1/2 MAPK, and Bosentan prevents the
additive effect of ET-1 dependent Erk1 and Erk2 phosphorylation, while the Erk172 inhibitor U0126 prevents all Erk1/2

phosphorylation. Similar experiments were performed in three additional experiments, and the result of all four experiments are

presented as bar chart (mean £ SEM) in panel B. (C) The ET-1 supportive effect on serum induced nuclear accumulation of

Erk1/2MAPK (representative microscopy of 5 different experiments).
doi: 10.1371/journal.pone.0073399.g002
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Figure 3. ET-1 stimulates de novo synthesis and secretion of TGF-B1 and CTGF. (A) TGF-B1 secretion by PASMC stimulated
with ET-1 (1 pM) over 72 hours (n = 3; mean = SEM). (B) The effect of ET-1 with and without 5% FCS and the inhibitory effect of
Bosentan on TGF-B1 mRNA synthesis over 24 hours (n = 4; mean = SEM). (C) Erk1/2 but not p38 MAPK, mediates ET-1 induced
mRNA synthesis of TGF-B1 by PASMC over 24 hours (n = 4; mean = SEM). (D) ET-1 induced CTGF secretion over 72 hours (n = 3;
mean + SEM).

doi: 10.1371/journal.pone.0073399.g003
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combined stimuli was additive [32]. Importantly, the supportive
effect of ET-1 on TGF-B1 that we observed on collagen type-|
and fibronectin deposition was prevented by Bosentan, which
might further explain the reduced vessel remodeling in PAH
animal models [31]. We did not observe any supportive effect
of ET-1 on TGF-B1-induced collagen type-Ill nor type-IV
deposition. The discrepancy of the stimulatory effect of ET-1
alone on total ECM versus collagen type-l and fibronectin
deposition that we observed may be explained by the different
methods used. Total ECM deposition was determined by
proline incorporation over the last 24 hours of 48 hours
stimulation, while the deposition of specific ECM compounds
was determined by in house developed ELISAs after 48 hours.
Similar to fibroblasts, the stimulatory effect of ET-1 alone on
collagen type-| deposition involved TGF-f1, but not CTGF [33].
In other smooth muscle cell types and different culture
conditions, TGF-B1 and CTGF were necessary to up-regulate
collagen type-l deposition [34]. In vascular smooth muscle
cells, ET-1 induced collagen type-l synthesis was independent
of TGF-B1 but dependent on CTGF [35]. The second ECM
compound that was up-regulated by ET-1 through TGF-31 and
CTGF was fibronectin, which has recently been reported to be
modified in pulmonary hypertension [36]. On the basis of other
reports, it can be speculated that an increase of fibronectin in
PAH vessels cells may lead to modified interactions between
tissue forming cells and immune reactive cells as well as it
altered the response of PASMC to neuronal stimuli [37,38]. The
importance of the ECM composition in pulmonary arteries to
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