
MethodsX 7 (2020) 101072

Contents lists available at ScienceDirect

MethodsX

j o u r n a l h o m e p a g e: w w w . e l s e v i e r . c o m / l o c a t e / m e x

Method Article

Computationally scalable geospatial network and

routing analysis through multi-level spatial

clustering.

Jonathan Chambers

University of Geneva, Switzerland

a b s t r a c t

Network analysis finds natural applications in geospatial information systems for a range of applications, notably

for thermal grids, which are important for decarbonising thermal energy supply. These analyses are required

to operate over a large range of geographic scales. This is a challenge for existing approaches, which face

computational scaling challenges with the large datasets now available, such as building and road network data

for an entire country.

This work presents a system for geospatial modelling of thermal networks including their routing through

the existing road network and calculation of flows through the network. This is in contrast to previous thermal

network analysis work which could only work with simplified aggregated data.

• We apply multi-level spatial clustering which enables parallelisation of work sets.
• We develop algorithms and data processing pipelines for calculating network routing.
• We use cluster-level caching to enable rapid evaluation of model variants.

© 2020 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

a r t i c l e i n f o

Method name: Geospatial multi-level clustering and graph theoretical analysis

Keywords: Energy, Thermal networks, Geospatial, Graph theory, Data science

Article history: Received 22 June 2020; Accepted 17 September 2020; Available online 21 September 2020

h

2

(

E-mail address: jonathan.chambers@unige.ch

ttps://doi.org/10.1016/j.mex.2020.101072

215-0161/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

 http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.mex.2020.101072
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2020.101072&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jonathan.chambers@unige.ch
https://doi.org/10.1016/j.mex.2020.101072
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Chambers MethodsX 7 (2020) 101072

Specifications Table

Subject Area Energy

More specific subject area: Geospatial analysis for thermal grids

Method name: Geospatial multi-level clustering and graph theoretical analysis

Resource availability Software

Numpy: numpy.org

Scipy: scipy.org

Pandas: pandas.pydata.org

Xarray: xarray.pydata.org

Matplotlib: matplotlib.org

Cartopy: scitools.org.uk/cartopy/

Numba: numba.pydata.org

Postgres: postgresql.org

PostGIS: postgis.net

PgRouting: pgrouting.org

Data

Swisstopo: https://www.swisstopo.admin.ch/en/maps-data-online

Method details

Background

Geospatial analysis is being increasingly used for analysis and planning of cities and districts, in

particular use of network routing algorithms for a range of applications. Thermal grids for heating

and/or cooling have been promoted as an approach to decarbonising heat supply for building [1] . To-

date, analysis of thermal grids has mainly focused on local studies of either thermal grids alone or

as a part of a multi-energy system. These generally follow an energy-system optimisation approach,

where a solver is used to optimise the energy sources and flows at all points in time [2 , 3] . While

optimisation approaches are powerful, their computational intensity limits their application to small

datasets covering generally only a town or city district. Similarly, it has been noted that thermal grids

follow existing roads [4 , 6] . In the past, this has been applied in limited areas such as city districts and

small towns [2] . However, there is no fundamental barrier to performing this calculation at national

scale using road data and routing algorithms.

This work presents a system for detailed geospatial analysis of thermal grids including aspects

such as location, selection of buildings to connected, and network routing. The system makes

use of state-of-the-art data processing software methods to enable country-scale analysis with

building-scale spatial resolution. By applying optimisations and data pipeline caching strategies, the

method presented allows a level of performance that enables interactive analysis, i.e. different model

parameters (such as building selection strategies or network costs) can be set and the results produced

‘on-the-fly’.

This approach enables much high spatial resolution as well as detailed network layout analysis,

while previous thermal network work instead worked with raster aggregates such as sums of heat

demand by hectare as a method for simplifying the calculations and approximating the areas where

thermal networks may be built [5 , 7 , 8] . A further advantage of our method to make exploration of

large scenario/parameter spaces feasible.

A nation-wide dataset of potential thermal grid routing through the existing road network was

developed through the creation of a topologically correct road routes database. From this, a road

distance network for the connection between neighbouring buildings was derived. Multi-level spatial

clustering was applied to enable subdivision of the national datasets into subsets that can be

processed using a massively parallel computing architecture. Within spatial clusters, dynamic filtering

and re-processing of the spatial datasets was performed to study various connection and routing

strategies.

While the method presented was applied with the concrete example of thermal networks, it should

be readily adaptable to many kinds of network infrastructure such as electricity grids, gas networks,

fresh water and wastewater lines, communication lines, etc.
2

J. Chambers MethodsX 7 (2020) 101072

M

r

[

f

a

1

b

a

A

P

e

R

w

n

a

a

i

f

l

‘

t

n

a

p

l

t

p

1

W

b

b

e

t

o

D

g

p
aterials

The method is implemented in Python 3.7, the follow scientific software packages with academic

eferences used were: Numpy 1.17 [9] , Scipy 1.4 [10] , Pandas 1.0 [11] , Xarray 0.15 [12] , Numba 0.49

13] , Matplotlib 3.2 [14] . Cartopy 0.17 [15] .

Data was stored and processed using the Postgres 10 SQL database, with the Postgis 2.5 extension

or geospatial computation and the pgRouting 2.6 extension to provide geospatial routing, topology,

nd network functionality.

Computer resources consisted of an HP Z8 workstation with a 28 core CPU (Xeon Gold 6132),

28GB RAM, and 512GB SSD.

Datasets used in this work were drawn primarily from Swiss national geospatial datasets provided

y Swisstopo [16] . These included road data from the SwissTLM3D dataset and building location data

nd metadata from the Swiss building registry (Registre de Batiments et Logements (RegBL)) dataset.

dditional data on energy demand in buildings was derived from previous work [5 , 7 , 17 , 18] .

rocess overview

The flowchart in Fig. 1 gives an overview of the method. Subsequent sections will describe

lements of this in more detail.

oad network topology and routing

Calculating the shortest path through the road network is a computationally intensive task, if it

as necessary to re-calculate the road-based distances between sets of buildings for every potential

etwork configuration, performing the operation at scale would not be feasible. We therefore present

n algorithm that allows more efficient calculations (Fig. 2). For this section, the location points of

ll buildings in Switzerland as given by the RegBL dataset was used together with the road network

nformation provided by Swisstopo.

First, the building and road data was pre-processed in order to generate points on the roads

or corresponding to building, because the routing algorithm in pgRouting operates between points

ocated directly on the road geometry while building locations are not directly on the street. Therefore,

routing points’ for each building were generated by finding the closest point on the closest road using

he PostGIS ‘st_closestpoint‘ function.

In order to calculate routing distances for a network connecting buildings, we must define a road

etwork topology and routing distances between buildings through the road network. The routing

lgorithm in pgRouting requires the he geospatial line objects that form the road network data are

rocessed to form a topology, in this case a network graph in which each point is a node and

ines from road segments make up the graph edges. pgRouting validates this graph to ensure it is

opologically correct by ensuring e.g. that roads lines which cross have corresponding intersection

oints. This is handled by the ‘pgr_createtopology()‘ function, which was run in parallel on batches of

0 0 0 0 0 road segments and completed in under 15 min.

eighted Delaunay graph using road routing

The spatial connectivity (i.e. nearest neighbourhood) of buildings was modelled as a graph defined

y the Delaunay triangulation of building locations. Delaunay triangulation builds network edges

etween nodes and their neighbours without generating any overlapping or intersecting edges. This

nables efficient calculation as only road routing distances between buildings that are neighbours in

he graph need to be calculated. The Delaunay graph was stored in the Postgres database as a table

f source and target building IDs.

For each edge in the Delaunay graph, we calculate the distance through the road network using

ijkstra’s algorithm through the function ‘pgr_dijkstraCost’ and store this as an edge weight in the

raph. To calculate the total distance between an arbitrary pair of buildings, we calculate the shortest

ath through the Delaunay graph using the pre-calculated distance weights. As the Delaunay graph is
3

J. Chambers MethodsX 7 (2020) 101072

Fig. 1. Flowchart of re-clustering method. Box (1) encompasses the whole process including the pre-processing stages and the

generation of the first level clusters. Box (2) is repeated for each cluster and includes the second-level clustering. Box (3) is

repeated for each sub-cluster within each cluster.

4

J. Chambers MethodsX 7 (2020) 101072

Fig. 2. Flowchart of method for calculating road distances for building Delaunay triangulation.

Fig. 3. Postgres SQL query to generate a table of Delaunay graph node pairs and search radius geometry.

m

u

o

w

t

T

t

T

t

M

f

b

T

p

uch simpler than the road network, this latter operation is much faster than calculating distances

sing the original road network. This made subsequent network analysis was considerably faster.

Assigning road distances to Delaunay graph edges was the slowest operation of this process, but

nly needed to be performed once. To improve performance, we supply the pgr_dijkstraCost function

ith a subquery that first selects only road network data within a set distance (in our case 1100 m),

his reduces the amount of data that is processed for each edge – this is query is presented in Fig. 3 .

he search zone is stored as a Well Known Text (WKT) standard string, which is then injected into

he distance calculation query using a string templating engine (e.g. Python format strings).

For each row in the Delaunay edge table, the weight field was assigned using the query in Fig. 4 .

he row queries were run as 48 parallel jobs and completed in approximately 72 h. Fig. 5 illustrates

he output of this process.

ulti-level clustering approach

We observe that buildings are very unevenly spatially distributed into dense clusters, and

urthermore that network analysis only requires buildings that are close by. This allows us to split the

uilding stock into spatially distinct and disconnected clusters that can be analysed independently.

he much smaller analysis units significantly reduce the computational complexity and enable

arallelism over the clusters.
5

J. Chambers MethodsX 7 (2020) 101072

Fig. 4. Postgres SQL query for each row in the Delaunay edge table to assign the road distance between the two edge nodes

as the edge weight. Note that while some query parameters may be supplied using standard Postgres query parameter syntax

(variables with the ‘:’ prefix), the search zone data indicated by the placeholder {search_zone_wkt} must be inserted using an

external string templating engine.

For each cluster generated by the top-level clustering, we apply processing and filtering followed

by a second stage of clustering – making this a ‘multi-level’ clustering approach. It must be noted that

this is not the same as a hierarchical clustering, because we apply further processing on each cluster

which changes the dataset for the second level of clustering (e.g. by selecting a subset of buildings).

This introduces a data discontinuity which invalidates the sub-level clusters that would be produced

by hierarchical clustering.

To perform spatial clustering, DBSCAN is a well-established algorithm particularly suitable for

geospatial applications, as it is able to generate non-convex clusters, unlike other common algorithms

such as Euclidean distance K-means or K-medoids [19] . Generating non-convex clusters is an essential

requirement for this work and precludes the application of many existing algorithms. DBSCAN builds

clusters from ‘core’ points defined as having at least a minimum number of points within a given

distance. ‘Peripheral’ points added to the core based on an allowable distance term. The Euclidean

distance is used as the distance metric between points.

HDBSCAN [20] is a further enhancement of the DBSCAN approach that allows the generation of

variable density clusters. This characteristic is useful when clustering buildings at the national scale,

as urban areas display a lot of variety. The implementation was also selected because of its high

performance relative to other implementations and support for multi-threaded processing. While

HDBSCAN also allows for hierarchical clustering, this functionality was not used for the reasons

outlined above.

It should be noted that other spatial clustering algorithms could be used for the spatial clustering

[21] , including OPTICS [22] and FSDP [23] . As the spatial clustering is low-dimensional (2D), it is

not expected that the different algorithms would produce significantly different cluster patterns.

Comparison of the relative merits of different clustering algorithms is beyond the scope of this

work, algorithm choice is instead based on the availability of a well-tested and high-performance

implementation in Python.

Coarse spatial clustering

Using HDBSCAN, a dataset of 2 million building locations we clustered into 16,900 clusters in

approximately 6 min. The cluster ID, building ID pairs were stored for each building in the database.

It has been noted that there is no formal way to set spatial clustering parameters (distance for

DBSCAN and OPTICS, density threshold for FSDP) [21] . In this case, clustering distance parameter was

set to 100 m following empirical observations of the feature scale for urban centres, as well as the

common practise of analysis urban spaces at hectare (100 m × 100 m) resolution.
6

J.
 C

h
a

m
b

ers

M
eth

o
d

sX
 7
 (2

0
2

0
)
 10

10
7

2

Fig. 5. Illustration of road-distance weighted Delaunay graph of buildings overlaid on building locations and a base map (base map source: OpenStreetMap).

7

J. Chambers MethodsX 7 (2020) 101072

Fig. 6. Illustration of a building cluster processing. 1. The road network for the cluster is retrieved. 2. A Delaunay triangulation

of the buildings in the cluster is performed. 3. Weights are calculated for Delaunay edges as the road network distance between

the buildings for the corresponding edge. 4. A full distance matrix for the shortest difference between every pair of buildings

is calculated by calculating the shortest path through the weighted Delaunay graph.

Changing the cluster distance parameter does impact the cluster output. A simple assessment was

performed by clustering with a range of values ±40% relative to the 100 m basis, resulting in a change

in the number of clusters by ±20%.

Cluster processing

The road distances between every building pair in a cluster is pre-calculated so that arbitrary

subsets of buildings and the corresponding distances between them can be extracted without re-

calculation. Each cluster generated by the coarse clustering algorithm can be processed in parallel.

This is performed efficiently using the pre-calculated Delaunay triangulation mesh and road

distances. The Delaunay graph connects each building with its neighbours and has edge weights set to

the road distances as calculated by routing through the real streets network. Therefore, a path through

the Delaunay graph (which is much simpler than the road network) can be found between any two

buildings and the path length is the sum of the edge weights (i.e. road distances).

The shortest distance via roads for every pair of buildings in a cluster is calculated using Dijkstra’s

algorithm subject to the road distance edge weights. This produces a dense N by N matrix where N

is the number of buildings in the cluster and the value at index [i, j] is the distance via road between

buildings i and j . The distance matrix is along with node metadata is stored for use in later processing

as a netCDF file, one for each cluster, allowing rapid retrieval of results for further processing.

The process is illustrated in Fig. 6 . A cluster of 276 buildings is shown with the road network

(6.1). The Delaunay triangulation produces 809 edges (6.2). The distances through the road network

are calculated for each edge (3). The full distance matrix is calculated by from the shortest distance

between every building pair, for a median inter-building distance of 74 m.

Sub-clustering

Experimental work on thermal networks general involves studying different networks that result

from including different sub-sets of buildings in the networks. Selecting different subsets of buildings
8

J. Chambers MethodsX 7 (2020) 101072

Fig. 7. Illustration of different subsets of buildings (Filter A, B, & C) generated by filtering buildings from an arbitrary cluster.

r

f

s

b

5

h

d

r

s

i

p

s

s

a

v

a

N

g

t

w

t

b

c

d

a
esults in new layouts which invalidates the original Delaunay graph generated in previous steps and

urther changes the spatial density with respect to clustering.

An illustrative example is given in Fig. 7 . Three building filters are applied for this example to

imulate different building connection strategies. Filter A and C select 10% and 30% of the largest

uildings respectively, while filter B selects 20% of buildings at random, resulting in subsets of 27,

4, and 81 buildings for A, B, and C. The change in spatial density clearly illustrates why a single step

ierarchical clustering would not be appropriate, since new building density patterns vary significantly

epending on the sub-cluster processing and filtering.

Therefore, after the building filtering/selection process – which may be arbitrary depending on the

equirements of a specific study - the DBSCAN spatial clustering algorithm is applied to the building

ubset, which usually generates more than one new sub-cluster per ‘macro’ cluster. This is illustrated

n Fig. 8 using the 81 buildings selected by Filter C (Fig. 7). 4 new clusters are found that can be

rocessed in parallel.

Note that if desired, the clustering criteria (e.g. cluster distance threshold) can be altered in this

tep. In this work, we maintain the threshold of 100 m as this is a) representative of the typical

cale of urban area features and b) a good approximation for the maximum extension distance for

 thermal network (i.e. the distance to the most isolated building in a thermal network). In general,

alues should be chosen based on domain knowledge of the real spatial data used and the desired

pplication.

etwork definition

Each new sub-cluster contains a number M of buildings, and we require a weighted Delaunay

raph for these buildings. Generating a Delaunay graph is straightforward, however re-calculating

he road distances for the edge weights would be prohibitively computationally expensive. Therefore,

e use the distance values extracted from the full distance matrix for the first level cluster and set

he edges weights of the Delaunay graph to these values. Since this matrix contains the full distance

etween any pair of buildings in the original cluster, these distances are pre-computed once per

luster, so operation takes only ~10 ms. This also makes it trivial to generate weighted graphs for

ifferent building subsets.

Within each sub-cluster, we define the simplest heat network as one the minimal network that is

ble to reach all buildings. This is the Minimum Spanning Tree (MST) graph, which is derived from the
9

J. Chambers MethodsX 7 (2020) 101072

Fig. 8. Illustration of steps for processing of sub-cluster. For a given selected subset of buildings (1), DBSCAN is applied to

generate new clusters (2). The Delaunay triangulation is applied to each new sub-cluster (3) and the MST generated for each

sub-cluster (4).

Fig. 9. Illustration of total flow through edges E1, E2, E3 from source S to demand sites D1, D2, & D3.

sub-cluster Delanuay graph using the Kruskal algorithm and the road network distances as weights.

The implementation of Kruskal’s algorithm in Scipy was used.

Flow analysis

It is useful for a range of analysis (e.g. connection sizing) to estimate the thermal flow through

the MST graph for the sub-cluster of size M. For this, a simplifying approximation is made that all

flows are from a given graph node (building) out to each building. Therefore, flows through any graph

edge are the sum of the flow to the graph node (building) at the end of the edge and any further

downstream nodes (Fig. 9). The flow to a given node in this case is set by the heat demand of the

building, which is part of the building data table.

In order to calculate these flows, we required the path through the MST from each node to the root

node in terms of the actual sequence of nodes that must be visited to reach the root. This information

is provided by SciPy the “shortest_path” function which implements Dijkstra’s algorithm. This function

generates a vector of predecessors of length M. Each element of the vector (predecessors[j]) gives the

index of the previous node in the path from the root node to point j . If no path exists between i and

the root node, the value is set to −9999.

The implementation, illustrated in a simplified form in Fig. 10 , is as follows. We initialise a square

(M x M) graph matrix to store the flows as edge weights, and set all the initial weights to zero. For

each graph node we traverse the path back to the route node and accumulate the demand flows as

the edge weights in the graph matrix.

For example, if we are starting with node j , we start by fetching the node data D j (in our case,

energy demand data) from a vector of node data. We fetch the predecessor of node j from the
10

J.
 C

h
a

m
b

ers

M
eth

o
d

sX
 7
 (2

0
2

0
)
 10

10
7

2

Fig. 10. Simplified Python code of the flow calculation algorithm.

11

J. Chambers MethodsX 7 (2020) 101072

Fig. 11. Simplified graph of inter-building road distances. Note that the displayed edges indicate Delaunay triangulation

connectivity rather than physical routes through the road network.

Fig. 12. Simplified graph of heat flow calculation through the graph edges from the root node to all other nodes. Flow amount

is indicated by edges colour and width. Note that the displayed edges indicate Delaunay triangulation connectivity rather than

physical routes through the road network.

predecessors vector, predecessors[j] , which gives a new node ID k . The node ID k is the next node

on the path back to the root node. We add the data value D j to the edge between the node and its

predecessor (j,k) in the flow matrix. We then get the next node ID on the path using predecessors[k] ,

and add the end node demand D j to that edge. This is repeated until we reach the root node.

This is process is repeated for each node. Since we accumulate the data values D by summation

for each path, the resulting flow graph will contain the sum of the flow through each root- > node

path, and each graph edge weight will be the sum of the downstream node of that edge and all other

nodes further downstream from that node.

Note that to achieve desired performance, we implemented the algorithm using the Numba

Python compiler (which can greatly increase the performance of a subset of numeric Python code).

An example is given of the input road length graph in Fig. 11 and an arbitrarily selected source

(root) node, while Fig. 12 Illustrates the flow amount per graph edge from the chosen root node. It

demonstrates the large differences in flow in different sections, with a range of 65–3700 MWh/year.

This would have significant implications for the sizing of flow elements in this network (pipe size).

Implementation notes

This work made extensive use of graph theory concepts and graph data structures. Two main

representation of graph structures were used. The original Delaunay triangulation graph that covered

the whole map was stored as building ID pairs (source, target) in an SQL table. When processing
12

J. Chambers MethodsX 7 (2020) 101072

i

g

t

a

p

C

l

r

p

a

d

o

i

d

D

o

A

t

&

T

R

[

ndividual clusters and performing the second-level Delaunay triangulation and graph processing, the

raphs were represented using sparse matrices from the ‘scipy.sparse’ module. This made it simple

o also use Scipy’s implementations of graph algorithms (such as Kruskal’s minimum spanning tree

lgorithm). Using sparse graphs guaranteed low memory usage, which furthermore simplified parallel

rocessing as it allowed more processes to run in parallel without exhausting system memory.

onclusion

The method presented allows the generation of district thermal network routings through multi-

evel clustering of buildings. The method has been demonstrated to be readily parallelizable, enabling

apid re-calculation under different conditions, such as different building selections.

The method was demonstrated using datasets provided by the swiss geospatial data agency. These

resent advantages in terms of high quality and internal consistence. The same methods could be

pplied using a range of datasets, including national datasets similar to the Swiss ones or using open

atasets such as Open Street Map [24] .

While the work presented focused on thermal networks, the principals used are valid for any kind

f urban resource distribution network that would be expected to be installed under existing roads

ncluding water, electricity, telecoms etc. It could also be adapted to apply to transportation flows (e.g.

istribution from a warehouse).

eclaration of Competing Interest

None of the authors of this paper has a financial or personal relationship with other people or

rganizations that could inappropriately influence or bias the content of the paper.

cknowledgements

This research project is financially supported by the Swiss Innovation Agency Innosuisse as part of

he Swiss Competence Centre for Energy Research SCCER FEEB&D (Future Energy Efficient Buildings

 Districts) as well as of SCCER CREST (Competence Centre for Research in Energy, Society and

ransition).

eferences

[1] D. Connolly , et al. , Heat roadmap Europe: combining district heating with heat savings to decarbonise the EU energy

system, Energy Policy 65 (Feb. 2014) 475–489 .

[2] L. Girardin , F. Marechal , M. Dubuis , N. Calame-Darbellay , D. Favrat , EnerGis: a geographical information based system for
the evaluation of integrated energy conversion systems in urban areas, Energy 35 (2) (Feb. 2010) 830–840 .

[3] M. Mohammadi , Y. Noorollahi , B. Mohammadi-ivatloo , H. Yousefi, Energy hub: from a model to a concept – A review,
Renew. Sustain. Energy Rev. 80 (Dec. 2017) 1512–1527 .

[4] J. Unternährer , S. Moret , S. Joost , F. Maréchal , Spatial clustering for district heating integration in urban energy systems:
application to geothermal energy, Appl. Energy 190 (2017) 749–763 .

[5] J. Chambers , K. Narula , M. Sulzer , M.K. Patel , Mapping district heating potential under evolving thermal demand scenarios

and technologies: a case study for Switzerland, Energy 176 (Jun. 2019) 682–692 .
[6] K.N. Finney , V.N. Sharifi, J. Swithenbank , A. Nolan , S. White , S. Ogden , Developments to an existing city-wide district

energy network – Part I: identification of potential expansions using heat mapping, Energy Convers. Manag. 62 (Oct. 2012)
165–175 .

[7] J. Chambers , et al. , Spatiotemporal analysis of industrial excess heat supply for district heat networks in Switzerland,
Energy 192 (Feb. 2019) 116705 .

[8] J.D. Chambers , S. Cozza , M.K. Patel , Applications of graph theory in district heat network analysis at national scale, in:

Proceedings of CISBAT 2019, 2019 .
[9] S. van der Walt , S.C. Colbert , G. Varoquaux , The NumPy array: a structure for efficient numerical computation, Comput.

Sci. Eng. 13 (2) (. 2011) 22–30 .
[10] E. Jones, T. Oliphant, P. Peterson, and others, SciPy: open source scientific tools for Python. 2015.

[11] W. McKinney, Pandas: a foundational python library for data analysis and statistics.
12] S. Hoyer, J. Hamman, xarray: N-D labeled arrays and datasets in Python, J. Open Res. Softw. 5 (1) (2017) p. 10, doi: 10.5334/

jors.148 .

[13] S.K. Lam , A. Pitrou , S. Seibert , Numba: a LLVM-based Python JIT compiler, in: Proceedings of the Second Workshop on the
LLVM Compiler Infrastructure in HPC, 2015 .

[14] J.D. Hunter , Matplotlib: a 2D graphics environment, Comput. Sci. Eng. 9 (3) (2007) 90–95 .
13

http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0001
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0001
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0001
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0002
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0002
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0002
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0002
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0002
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0002
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0003
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0004
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0004
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0004
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0004
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0004
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0005
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0005
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0005
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0005
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0005
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0006
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0007
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0007
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0007
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0008
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0008
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0008
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0008
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0009
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0009
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0009
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0009
https://doi.org/10.5334/jors.148
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0013
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0013
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0013
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0013
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0014
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0014

J. Chambers MethodsX 7 (2020) 101072

[15] Met Office, Cartopy: a cartographic python library with a matplotlib interface. Exeter, Devon, 2016.

[16] Federal Office of Topgraphy, “Swisstopo homepage,” 2018. [Online]. Available: https://www.swisstopo.admin.ch/ . [Accessed:
29-Jan-2018].

[17] S. Schneider , P. Hollmuller , J. Chambers , M. Patel , A heat demand load curve model of the swiss national territory, IOP
Conf. Ser. Earth Environ. Sci. 290 (1) (2019) 12107 .

[18] K.N. Streicher , M. Berger , J. Chambers , S. Schneider , M.K. Patel , Combined geospatial and techno-economic analysis of deep
building envelope retrofit, J. Phys.: Conf. Ser. 1343 (1) (2019) 12028 .

[19] M. Ester , H.-.P. Kriegel , J. Sander , X. Xu , A density-based algorithm for discovering clusters, in: Proceedings of the Second

International Conference on Knowledge Discovery and Data Mining, 1996 .
[20] C. Malzer and M. Baum, A hybrid approach to hierarchical density-based cluster selection, Nov. 2019.

[21] G. Schoier , C. Gregorio , Clustering algorithms for spatial big data, in: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10407, Springer, 2017, pp. 571–583.

LNCS .
[22] M. Ankerst , M.M. Breunig , H.P. Kriegel , J. Sander , Optics: ordering points to identify the clustering structure, in: SIGMOD

Record (ACM Special Interest Group on Management of Data), 28, Jun. 1999, pp. 49–60 .

[23] A . Rodriguez , A . Laio , Clustering by fast search and find of density peaks, Science (80-.). 344 (6191) (Jun. 2014) 1492–1496 .
[24] OpenStreetMap contributors, “OpenSteetMap data.” 2017.
14

https://www.swisstopo.admin.ch/
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0017
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0017
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0017
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0017
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0017
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0018
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0018
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0018
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0018
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0018
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0018
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0019
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0019
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0019
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0019
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0019
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0021
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0021
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0021
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0022
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0023
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0023
http://refhub.elsevier.com/S2215-0161(20)30292-2/sbref0023

	Computationally scalable geospatial network and routing analysis through multi-level spatial clustering.
	Method details
	Background

	Materials
	Process overview
	Road network topology and routing
	Weighted Delaunay graph using road routing
	Multi-level clustering approach
	Coarse spatial clustering
	Cluster processing
	Sub-clustering
	Network definition
	Flow analysis
	Implementation notes
	Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References

