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a b s t r a c t 

Network analysis finds natural applications in geospatial information systems for a range of applications, notably 

for thermal grids, which are important for decarbonising thermal energy supply. These analyses are required 

to operate over a large range of geographic scales. This is a challenge for existing approaches, which face 

computational scaling challenges with the large datasets now available, such as building and road network data 

for an entire country. 

This work presents a system for geospatial modelling of thermal networks including their routing through 

the existing road network and calculation of flows through the network. This is in contrast to previous thermal 

network analysis work which could only work with simplified aggregated data. 

• We apply multi-level spatial clustering which enables parallelisation of work sets. 
• We develop algorithms and data processing pipelines for calculating network routing. 
• We use cluster-level caching to enable rapid evaluation of model variants. 
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Specifications Table 

Subject Area Energy 

More specific subject area: Geospatial analysis for thermal grids 

Method name: Geospatial multi-level clustering and graph theoretical analysis 

Resource availability Software 

Numpy: numpy.org 

Scipy: scipy.org 

Pandas: pandas.pydata.org 

Xarray: xarray.pydata.org 

Matplotlib: matplotlib.org 

Cartopy: scitools.org.uk/cartopy/ 

Numba: numba.pydata.org 

Postgres: postgresql.org 

PostGIS: postgis.net 

PgRouting: pgrouting.org 

Data 

Swisstopo: https://www.swisstopo.admin.ch/en/maps-data-online 

Method details 

Background 

Geospatial analysis is being increasingly used for analysis and planning of cities and districts, in

particular use of network routing algorithms for a range of applications. Thermal grids for heating

and/or cooling have been promoted as an approach to decarbonising heat supply for building [1] . To-

date, analysis of thermal grids has mainly focused on local studies of either thermal grids alone or

as a part of a multi-energy system. These generally follow an energy-system optimisation approach,

where a solver is used to optimise the energy sources and flows at all points in time [2 , 3] . While

optimisation approaches are powerful, their computational intensity limits their application to small 

datasets covering generally only a town or city district. Similarly, it has been noted that thermal grids

follow existing roads [4 , 6] . In the past, this has been applied in limited areas such as city districts and

small towns [2] . However, there is no fundamental barrier to performing this calculation at national

scale using road data and routing algorithms. 

This work presents a system for detailed geospatial analysis of thermal grids including aspects

such as location, selection of buildings to connected, and network routing. The system makes 

use of state-of-the-art data processing software methods to enable country-scale analysis with 

building-scale spatial resolution. By applying optimisations and data pipeline caching strategies, the 

method presented allows a level of performance that enables interactive analysis, i.e. different model

parameters (such as building selection strategies or network costs) can be set and the results produced

‘on-the-fly’. 

This approach enables much high spatial resolution as well as detailed network layout analysis,

while previous thermal network work instead worked with raster aggregates such as sums of heat

demand by hectare as a method for simplifying the calculations and approximating the areas where

thermal networks may be built [5 , 7 , 8] . A further advantage of our method to make exploration of

large scenario/parameter spaces feasible. 

A nation-wide dataset of potential thermal grid routing through the existing road network was

developed through the creation of a topologically correct road routes database. From this, a road

distance network for the connection between neighbouring buildings was derived. Multi-level spatial 

clustering was applied to enable subdivision of the national datasets into subsets that can be

processed using a massively parallel computing architecture. Within spatial clusters, dynamic filtering 

and re-processing of the spatial datasets was performed to study various connection and routing 

strategies. 

While the method presented was applied with the concrete example of thermal networks, it should

be readily adaptable to many kinds of network infrastructure such as electricity grids, gas networks,

fresh water and wastewater lines, communication lines, etc. 
2 
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The method is implemented in Python 3.7, the follow scientific software packages with academic

eferences used were: Numpy 1.17 [9] , Scipy 1.4 [10] , Pandas 1.0 [11] , Xarray 0.15 [12] , Numba 0.49

13] , Matplotlib 3.2 [14] . Cartopy 0.17 [15] . 

Data was stored and processed using the Postgres 10 SQL database, with the Postgis 2.5 extension

or geospatial computation and the pgRouting 2.6 extension to provide geospatial routing, topology,

nd network functionality. 

Computer resources consisted of an HP Z8 workstation with a 28 core CPU (Xeon Gold 6132),

28GB RAM, and 512GB SSD. 

Datasets used in this work were drawn primarily from Swiss national geospatial datasets provided

y Swisstopo [16] . These included road data from the SwissTLM3D dataset and building location data

nd metadata from the Swiss building registry (Registre de Batiments et Logements (RegBL)) dataset.

dditional data on energy demand in buildings was derived from previous work [5 , 7 , 17 , 18] . 

rocess overview 

The flowchart in Fig. 1 gives an overview of the method. Subsequent sections will describe

lements of this in more detail. 

oad network topology and routing 

Calculating the shortest path through the road network is a computationally intensive task, if it

as necessary to re-calculate the road-based distances between sets of buildings for every potential

etwork configuration, performing the operation at scale would not be feasible. We therefore present

n algorithm that allows more efficient calculations ( Fig. 2 ). For this section, the location points of

ll buildings in Switzerland as given by the RegBL dataset was used together with the road network

nformation provided by Swisstopo. 

First, the building and road data was pre-processed in order to generate points on the roads

or corresponding to building, because the routing algorithm in pgRouting operates between points

ocated directly on the road geometry while building locations are not directly on the street. Therefore,

routing points’ for each building were generated by finding the closest point on the closest road using

he PostGIS ‘st_closestpoint‘ function. 

In order to calculate routing distances for a network connecting buildings, we must define a road

etwork topology and routing distances between buildings through the road network. The routing

lgorithm in pgRouting requires the he geospatial line objects that form the road network data are

rocessed to form a topology, in this case a network graph in which each point is a node and

ines from road segments make up the graph edges. pgRouting validates this graph to ensure it is

opologically correct by ensuring e.g. that roads lines which cross have corresponding intersection

oints. This is handled by the ‘pgr_createtopology()‘ function, which was run in parallel on batches of

0 0 0 0 0 road segments and completed in under 15 min. 

eighted Delaunay graph using road routing 

The spatial connectivity (i.e. nearest neighbourhood) of buildings was modelled as a graph defined

y the Delaunay triangulation of building locations. Delaunay triangulation builds network edges

etween nodes and their neighbours without generating any overlapping or intersecting edges. This

nables efficient calculation as only road routing distances between buildings that are neighbours in

he graph need to be calculated. The Delaunay graph was stored in the Postgres database as a table

f source and target building IDs. 

For each edge in the Delaunay graph, we calculate the distance through the road network using

ijkstra’s algorithm through the function ‘pgr_dijkstraCost’ and store this as an edge weight in the

raph. To calculate the total distance between an arbitrary pair of buildings, we calculate the shortest

ath through the Delaunay graph using the pre-calculated distance weights. As the Delaunay graph is
3 
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Fig. 1. Flowchart of re-clustering method. Box (1) encompasses the whole process including the pre-processing stages and the 

generation of the first level clusters. Box (2) is repeated for each cluster and includes the second-level clustering. Box (3) is 

repeated for each sub-cluster within each cluster. 

4 
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Fig. 2. Flowchart of method for calculating road distances for building Delaunay triangulation. 

Fig. 3. Postgres SQL query to generate a table of Delaunay graph node pairs and search radius geometry. 
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uch simpler than the road network, this latter operation is much faster than calculating distances

sing the original road network. This made subsequent network analysis was considerably faster. 

Assigning road distances to Delaunay graph edges was the slowest operation of this process, but

nly needed to be performed once. To improve performance, we supply the pgr_dijkstraCost function

ith a subquery that first selects only road network data within a set distance (in our case 1100 m),

his reduces the amount of data that is processed for each edge – this is query is presented in Fig. 3 .

he search zone is stored as a Well Known Text (WKT) standard string, which is then injected into

he distance calculation query using a string templating engine (e.g. Python format strings). 

For each row in the Delaunay edge table, the weight field was assigned using the query in Fig. 4 .

he row queries were run as 48 parallel jobs and completed in approximately 72 h. Fig. 5 illustrates

he output of this process. 

ulti-level clustering approach 

We observe that buildings are very unevenly spatially distributed into dense clusters, and

urthermore that network analysis only requires buildings that are close by. This allows us to split the

uilding stock into spatially distinct and disconnected clusters that can be analysed independently.

he much smaller analysis units significantly reduce the computational complexity and enable

arallelism over the clusters. 
5 
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Fig. 4. Postgres SQL query for each row in the Delaunay edge table to assign the road distance between the two edge nodes 

as the edge weight. Note that while some query parameters may be supplied using standard Postgres query parameter syntax 

(variables with the ‘:’ prefix), the search zone data indicated by the placeholder {search_zone_wkt} must be inserted using an 

external string templating engine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For each cluster generated by the top-level clustering, we apply processing and filtering followed

by a second stage of clustering – making this a ‘multi-level’ clustering approach. It must be noted that

this is not the same as a hierarchical clustering, because we apply further processing on each cluster

which changes the dataset for the second level of clustering (e.g. by selecting a subset of buildings).

This introduces a data discontinuity which invalidates the sub-level clusters that would be produced

by hierarchical clustering. 

To perform spatial clustering, DBSCAN is a well-established algorithm particularly suitable for 

geospatial applications, as it is able to generate non-convex clusters, unlike other common algorithms

such as Euclidean distance K-means or K-medoids [19] . Generating non-convex clusters is an essential

requirement for this work and precludes the application of many existing algorithms. DBSCAN builds

clusters from ‘core’ points defined as having at least a minimum number of points within a given

distance. ‘Peripheral’ points added to the core based on an allowable distance term. The Euclidean

distance is used as the distance metric between points. 

HDBSCAN [20] is a further enhancement of the DBSCAN approach that allows the generation of

variable density clusters. This characteristic is useful when clustering buildings at the national scale, 

as urban areas display a lot of variety. The implementation was also selected because of its high

performance relative to other implementations and support for multi-threaded processing. While 

HDBSCAN also allows for hierarchical clustering, this functionality was not used for the reasons

outlined above. 

It should be noted that other spatial clustering algorithms could be used for the spatial clustering

[21] , including OPTICS [22] and FSDP [23] . As the spatial clustering is low-dimensional (2D), it is

not expected that the different algorithms would produce significantly different cluster patterns. 

Comparison of the relative merits of different clustering algorithms is beyond the scope of this

work, algorithm choice is instead based on the availability of a well-tested and high-performance

implementation in Python. 

Coarse spatial clustering 

Using HDBSCAN, a dataset of 2 million building locations we clustered into 16,900 clusters in

approximately 6 min. The cluster ID, building ID pairs were stored for each building in the database. 

It has been noted that there is no formal way to set spatial clustering parameters (distance for

DBSCAN and OPTICS, density threshold for FSDP) [21] . In this case, clustering distance parameter was

set to 100 m following empirical observations of the feature scale for urban centres, as well as the

common practise of analysis urban spaces at hectare (100 m × 100 m) resolution. 
6 
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Fig. 5. Illustration of road-distance weighted Delaunay graph of buildings overlaid on building locations and a base map (base map source: OpenStreetMap). 
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Fig. 6. Illustration of a building cluster processing. 1. The road network for the cluster is retrieved. 2. A Delaunay triangulation 

of the buildings in the cluster is performed. 3. Weights are calculated for Delaunay edges as the road network distance between 

the buildings for the corresponding edge. 4. A full distance matrix for the shortest difference between every pair of buildings 

is calculated by calculating the shortest path through the weighted Delaunay graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Changing the cluster distance parameter does impact the cluster output. A simple assessment was

performed by clustering with a range of values ±40% relative to the 100 m basis, resulting in a change

in the number of clusters by ±20%. 

Cluster processing 

The road distances between every building pair in a cluster is pre-calculated so that arbitrary

subsets of buildings and the corresponding distances between them can be extracted without re-

calculation. Each cluster generated by the coarse clustering algorithm can be processed in parallel. 

This is performed efficiently using the pre-calculated Delaunay triangulation mesh and road 

distances. The Delaunay graph connects each building with its neighbours and has edge weights set to

the road distances as calculated by routing through the real streets network. Therefore, a path through

the Delaunay graph (which is much simpler than the road network) can be found between any two

buildings and the path length is the sum of the edge weights (i.e. road distances). 

The shortest distance via roads for every pair of buildings in a cluster is calculated using Dijkstra’s

algorithm subject to the road distance edge weights. This produces a dense N by N matrix where N

is the number of buildings in the cluster and the value at index [i, j] is the distance via road between

buildings i and j . The distance matrix is along with node metadata is stored for use in later processing

as a netCDF file, one for each cluster, allowing rapid retrieval of results for further processing. 

The process is illustrated in Fig. 6 . A cluster of 276 buildings is shown with the road network

(6.1). The Delaunay triangulation produces 809 edges (6.2). The distances through the road network 

are calculated for each edge (3). The full distance matrix is calculated by from the shortest distance

between every building pair, for a median inter-building distance of 74 m. 

Sub-clustering 

Experimental work on thermal networks general involves studying different networks that result 

from including different sub-sets of buildings in the networks. Selecting different subsets of buildings
8 
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Fig. 7. Illustration of different subsets of buildings (Filter A, B, & C) generated by filtering buildings from an arbitrary cluster. 
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esults in new layouts which invalidates the original Delaunay graph generated in previous steps and

urther changes the spatial density with respect to clustering. 

An illustrative example is given in Fig. 7 . Three building filters are applied for this example to

imulate different building connection strategies. Filter A and C select 10% and 30% of the largest

uildings respectively, while filter B selects 20% of buildings at random, resulting in subsets of 27,

4, and 81 buildings for A, B, and C. The change in spatial density clearly illustrates why a single step

ierarchical clustering would not be appropriate, since new building density patterns vary significantly

epending on the sub-cluster processing and filtering. 

Therefore, after the building filtering/selection process – which may be arbitrary depending on the

equirements of a specific study - the DBSCAN spatial clustering algorithm is applied to the building

ubset, which usually generates more than one new sub-cluster per ‘macro’ cluster. This is illustrated

n Fig. 8 using the 81 buildings selected by Filter C ( Fig. 7 ). 4 new clusters are found that can be

rocessed in parallel. 

Note that if desired, the clustering criteria (e.g. cluster distance threshold) can be altered in this

tep. In this work, we maintain the threshold of 100 m as this is a) representative of the typical

cale of urban area features and b) a good approximation for the maximum extension distance for

 thermal network (i.e. the distance to the most isolated building in a thermal network). In general,

alues should be chosen based on domain knowledge of the real spatial data used and the desired

pplication. 

etwork definition 

Each new sub-cluster contains a number M of buildings, and we require a weighted Delaunay

raph for these buildings. Generating a Delaunay graph is straightforward, however re-calculating

he road distances for the edge weights would be prohibitively computationally expensive. Therefore,

e use the distance values extracted from the full distance matrix for the first level cluster and set

he edges weights of the Delaunay graph to these values. Since this matrix contains the full distance

etween any pair of buildings in the original cluster, these distances are pre-computed once per

luster, so operation takes only ~10 ms. This also makes it trivial to generate weighted graphs for

ifferent building subsets. 

Within each sub-cluster, we define the simplest heat network as one the minimal network that is

ble to reach all buildings. This is the Minimum Spanning Tree (MST) graph, which is derived from the
9 
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Fig. 8. Illustration of steps for processing of sub-cluster. For a given selected subset of buildings (1), DBSCAN is applied to 

generate new clusters (2). The Delaunay triangulation is applied to each new sub-cluster (3) and the MST generated for each 

sub-cluster (4). 

Fig. 9. Illustration of total flow through edges E1, E2, E3 from source S to demand sites D1, D2, & D3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sub-cluster Delanuay graph using the Kruskal algorithm and the road network distances as weights.

The implementation of Kruskal’s algorithm in Scipy was used. 

Flow analysis 

It is useful for a range of analysis (e.g. connection sizing) to estimate the thermal flow through

the MST graph for the sub-cluster of size M. For this, a simplifying approximation is made that all

flows are from a given graph node (building) out to each building. Therefore, flows through any graph

edge are the sum of the flow to the graph node (building) at the end of the edge and any further

downstream nodes ( Fig. 9 ). The flow to a given node in this case is set by the heat demand of the

building, which is part of the building data table. 

In order to calculate these flows, we required the path through the MST from each node to the root

node in terms of the actual sequence of nodes that must be visited to reach the root. This information

is provided by SciPy the “shortest_path” function which implements Dijkstra’s algorithm. This function 

generates a vector of predecessors of length M. Each element of the vector ( predecessors[j] ) gives the

index of the previous node in the path from the root node to point j . If no path exists between i and

the root node, the value is set to −9999. 

The implementation, illustrated in a simplified form in Fig. 10 , is as follows. We initialise a square

( M x M ) graph matrix to store the flows as edge weights, and set all the initial weights to zero. For

each graph node we traverse the path back to the route node and accumulate the demand flows as

the edge weights in the graph matrix. 

For example, if we are starting with node j , we start by fetching the node data D j (in our case,

energy demand data) from a vector of node data. We fetch the predecessor of node j from the
10 
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Fig. 10. Simplified Python code of the flow calculation algorithm. 

11
 



J. Chambers MethodsX 7 (2020) 101072 

Fig. 11. Simplified graph of inter-building road distances. Note that the displayed edges indicate Delaunay triangulation 

connectivity rather than physical routes through the road network. 

Fig. 12. Simplified graph of heat flow calculation through the graph edges from the root node to all other nodes. Flow amount 

is indicated by edges colour and width. Note that the displayed edges indicate Delaunay triangulation connectivity rather than 

physical routes through the road network. 

 

 

 

 

 

 

 

 

 

 

 

 

predecessors vector, predecessors[j] , which gives a new node ID k . The node ID k is the next node

on the path back to the root node. We add the data value D j to the edge between the node and its

predecessor (j,k) in the flow matrix. We then get the next node ID on the path using predecessors[k] ,

and add the end node demand D j to that edge. This is repeated until we reach the root node. 

This is process is repeated for each node. Since we accumulate the data values D by summation

for each path, the resulting flow graph will contain the sum of the flow through each root- > node

path, and each graph edge weight will be the sum of the downstream node of that edge and all other

nodes further downstream from that node. 

Note that to achieve desired performance, we implemented the algorithm using the Numba 

Python compiler (which can greatly increase the performance of a subset of numeric Python code).

An example is given of the input road length graph in Fig. 11 and an arbitrarily selected source

(root) node, while Fig. 12 Illustrates the flow amount per graph edge from the chosen root node. It

demonstrates the large differences in flow in different sections, with a range of 65–3700 MWh/year.

This would have significant implications for the sizing of flow elements in this network (pipe size). 

Implementation notes 

This work made extensive use of graph theory concepts and graph data structures. Two main

representation of graph structures were used. The original Delaunay triangulation graph that covered 

the whole map was stored as building ID pairs (source, target) in an SQL table. When processing
12 
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ndividual clusters and performing the second-level Delaunay triangulation and graph processing, the

raphs were represented using sparse matrices from the ‘scipy.sparse’ module. This made it simple

o also use Scipy’s implementations of graph algorithms (such as Kruskal’s minimum spanning tree

lgorithm). Using sparse graphs guaranteed low memory usage, which furthermore simplified parallel

rocessing as it allowed more processes to run in parallel without exhausting system memory. 

onclusion 

The method presented allows the generation of district thermal network routings through multi-

evel clustering of buildings. The method has been demonstrated to be readily parallelizable, enabling

apid re-calculation under different conditions, such as different building selections. 

The method was demonstrated using datasets provided by the swiss geospatial data agency. These

resent advantages in terms of high quality and internal consistence. The same methods could be

pplied using a range of datasets, including national datasets similar to the Swiss ones or using open

atasets such as Open Street Map [24] . 

While the work presented focused on thermal networks, the principals used are valid for any kind

f urban resource distribution network that would be expected to be installed under existing roads

ncluding water, electricity, telecoms etc. It could also be adapted to apply to transportation flows (e.g.

istribution from a warehouse). 
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