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Abstract: A novel tandem catalysis system consisted of salicylaldiminato binuclear/mononuclear
titanium and 2,6-bis(imino)pyridyl iron complexes was developed to catalyze ethylene in-situ
copolymerization. Linear low-density polyethylene (LLDPE) with varying molecular weight
and branching degree was successfully prepared with ethylene as the sole monomer feed.
The polymerization conditions, including the reaction temperature, the Fi/Ti molar ratio, and
the structures of bi- or mononuclear Ti complexes were found to greatly influence the catalytic
performances and the properties of obtained polymers. The polymers were characterized by
differential scanning calorimetry (DSC), high temperature gel permeation chromatography (GPC)
and high temperature 13C NMR spectroscopy, and found to contain ethyl, butyl, as well as some
longer branches. The binuclear titanium complexes demonstrated excellent catalytic activity (up
to 8.95 × 106 g/molTi·h·atm) and showed a strong positive comonomer effect when combined with
the bisiminopyridyl Fe complex. The branching degree can be tuned from 2.53 to 22.89/1000C by
changing the reaction conditions or using different copolymerization pre-catalysts. The melting points,
crystallinity and molecular weights of the products can also be modified accordingly. The binuclear
complex Ti2L1 with methylthio sidearm showed higher capability for comonomer incorporation and
produced polymers with higher branching degree and much higher molecular weight compared with
the mononuclear analogue.

Keywords: tandem catalysis; in-situ copolymerization; linear low-density polyethylene;
non-metallocene; binuclear titanium complex

1. Introduction

Polyethylene contributes to about 50% of the global polyolefin consumption, and one of the
fastest growing types of polyethylene is linear low density polyethylene (LLDPE), which is widely
applied in film production for the packaging industry because of its high tear and impact strength.
LLDPEs are generally made by a two-step method from the copolymerization of ethylene and α-olefin
comonomers such as 1-butene, 1-hexene and 1-octene catalyzed by conventional heterogeneous
Ziegler-Natta or metallocene catalysts, where the comonomer α-olefins were commonly generated
from ethylene oligomerization (Figure 1A). An alternative approach to the synthesis of LLDPE is the use
of tandem catalysis, where one catalyst oligomerizes ethylene to α-olefin and the other simultaneously
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copolymerizes excessive ethylene with the in situ produced α-olefin (Figure 1B). Such single-step
process has obvious advantages over traditionally used two-stage process in terms of the costs of plant
investment, α-olefin purification, storage, and transport.
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Figure 1. The diagrammatic sketch of two different methods to product LLDPE. (A) two-step method;
(B) tandem catalysis.

Tandem catalysis is also called in-situ copolymerization and involves the cooperative action of
oligomerization and copolymerization catalyst precursors in one reactor. Since it was first reported by
Beach and Kissin in the 1980s [1,2], a wide variety of promising tandem catalytic systems involving
two different Ziegler-Natta catalysts [1–4], Ziegler-Natta catalyst combined with metallocene [5] or
nonmetallocene catalyst [6,7], and one [8,9] or two [10–12] metallocene catalysts have been developed to
prepare branched polyethylene in situ. Moreover, numerous investigations were carried out on tandem
catalytic systems comprising metallocene and non-metallocene catalysts [13–29]. Nevertheless, the
copolymerization catalysts in these tandem systems were almost Ziegler-Natta or metallocene catalysts.

In the last twenty years, group 4 non-metallocene catalysts have attracted a great deal of
attention due to their excellent performances not only for ethylene polymerization but also for the
copolymerization of ethylene with other olefins [30–35]. Lately, binuclear and multinuclear complexes
have also been researched for olefin polymerization, which showed that the cooperative action of two
or more nearby metal centers could significantly increase catalytic activity, modify molecular weight
and branching degree, and enhance comonomer incorporation selectivity [36–48]. Among these, early
transition non-metallocene binuclear complexes have rarely been reported. Our lab has been focused
on developing novel non-metallocene catalysts through modification of the coordination environment
of the central metals by using the steric/electronic effect of the substituents [49–56]. Recently we
have successfully prepared LLDPE from ethylene in a single reactor using non-metallocene titanium
complex as the copolymerization catalyst of a tandem dual-functional catalyst systems [57,58]. We
have also designed and synthesized a number of non-metallocene binuclear titanium complexes
which demonstrated excellent activity for ethylene (co)polymerization [59–62]. Here we used the
non-metallocene binuclear titanium complexes for the first time as copolymerization catalysts of
a tandem catalyst system and described the direct synthesis of LLDPE from ethylene in a single
reactor though [Fe]/[Ti] tandem catalysis, which was shown in Scheme 1. Compared with other
reported tandem catalysts, this [Fe]/[Ti] tandem system showed superior synergistic catalysis, strong
positive comonomer effect, high catalytic activity, and good structural adjustability of copolymers. The
copolymerization activities demonstrated by our binuclear Ti/bisiminopyridyl Fe system were among
the highest reported.
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Scheme 1. Tandem catalytic system.

2. Materials and Methods

2.1. Materials

All manipulation involving air- and/or moisture-sensitive compounds was carried out under
purified nitrogen using standard vacuum-line. Toluene purified through distillation with sodium
benzophenone ketyl under nitrogen. MMAO (7% aluminum in a heptane solution) was acquired from
Akzo Nobel Chemical, Inc. (Amersfoort, The Netherlands). All other chemicals are used as received
from commercial sources. Fe complex FeLa and binuclear Ti complexes Ti2L1, Ti2L2 and Ti2L3 were
prepared according to our previous works [58,59].

The mononuclear Ti complex TiL was synthesized with a similar procedure as for the binuclear
analogue. Yield 91%. 1H NMR (400 MHz, CDCl3): δ 8.74 (d, J = 32.9 Hz, 1H, CH=N), 7.66 (t, J = 8.0 Hz,
1H, ArH), 7.59–7.35 (m, 5H, ArH), 3.09 (d, J = 23.8 Hz, 3H, SCH3), 2.43 (d, J = 8.5 Hz, 3H, CH3), 1.53
(d, J = 3.6 Hz, 9H, C(CH3)3). 13C NMR (101 MHz, CDCl3): δ 163.32 (CH=N), 160.91, 150.44, 137.27,
136.62, 134.62, 134.28, 133.01, 131.13, 130.83, 130.43, 127.76, 119.10, 35.18 (C(CH3)3), 29.81 (C(CH3)3),
27.53 (CH3), 20.99 (SCH3). IR(KBr, cm−1): 3356, 2959, 1591, 1545, 1379, 1327, 1259, 863, 757, 634, 604.
Anal. Calcd for C19H22Cl3NOSTi: C, 48.90; H, 4.75; N, 3.00%. Found: C, 49.21; H, 4.58; N, 3.32%.

2.2. Characterization

The 1H NMR spectra of ligands and complexes were measured on a Bruker Avance III 400 MHz
spectrometer (Karlsruhe, Germany). Elemental analyses were performed with Vario EL 111 elemental
analyzer. The 13C NMR data of the ethylene/α-olefin copolymers were obtained on a Varian XL
300 MHz spectrometer at 120 ◦C with o-C6D4Cl2 as the solvent. Differential scanning calorimetry (DSC)
measurements were performed on a Netzsch DSC200 F3 instrument (Bavaria, Germany). Each sample
was heated from 30 to 200 ◦C at a heating rate of 10 ◦C/min and reheated at the same rate. The Mn and
Mw/Mn of the polymers were determined at 150 ◦C with a Viscotek 350A HT-GPC System (San Jose,
CA, USA) using a polystyrene calibration. 1,2,4-Trichlorobenzene was employed as the solvent at a
flow rate of 1.0 mL/min.

2.3. Ethylene In-Situ Copolymerization

A flame-dried Schlenk flask purged with N2 was filled with ethylene gas. 40 mL of freshly distilled
toluene was added and raised to the reaction temperature for 10 min. MMAO was then injected using
a syringe and the mixture was stirred for 5min. Copolymerization was initiated by injection of the
solutions of [Fe] and [Ti] catalysts at the same time. The polymerization was quenched with 100 mL
acidified ethanol (10 vol.% HCl) after a desired time. The product was precipitated, filtered, then
washed with ethanol, and dried at 50 ◦C to constant weight under vacuum.

3. Results and Discussion

The methylene-bridged tridentate salicylaldiminato binuclear titanium complexes displayed
extremely high activities for ethylene polymerization and ethylene/α-olefins copolymerization
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at atmospheric pressure in our previous research [59], thus may be excellent candidates as
copolymerization catalysts of dual-function catalytic systems for ethylene in-situ copolymerization.
Here we investigated the tandem catalytic behaviors of non-metallocene binuclear titanium complexes
(Ti2L1-Ti2L3) and bisiminopyridyl iron complex (FeLa) with ethylene as the only feed, and the results
were listed in Table 1.

Table 1. Preparation of LLDPE by tandem catalysis of Fe and Ti complexes a.

Entry Ti
Complex [Fe]/[Ti] T (◦C) Act.b

Tm
c

(◦C) Xc
c (%) Branch d

(1000 C)
Mw

e Mw/Mn

1 f Ti2L1 1:0 50 0.78
2 Ti2L1 0:1 50 0.73 136.4 60.3 0 n.d. n.d.
3 Ti2L1 1:1 50 0.72 126.3 46.1 3.91 5.41 4.18
4 Ti2L1 2:1 30 0.75 115.7 2.8 22.89 3.37 2.95
5 Ti2L1 2:1 40 0.95 123.9 37.5 n.d. n.d. n.d.
6 Ti2L1 2:1 50 1.18 124.2 40.1 9.01 2.57 3.08
7 Ti2L1 2:1 60 1.20 126.4 47.5 n.d. n.d. n.d.
8 Ti2L1 2:1 70 0.69 128.7 53.6 2.53 1.30 2.62
9 Ti2L1 3:1 50 1.43 123.3 14.0 n.d. n.d. n.d.
10 Ti2L1 4:1 50 3.22 122.3 10.7 n.d. n.d. n.d.
11 Ti2L1 5:1 50 8.95 119.5 7.3 16.20 2.34 2.78
12 Ti2L2 2:1 50 1.16 124.4 40.7 8.75 2.54 3.44
13 Ti2L3 2:1 50 0.97 124.7 42.8 8.05 2.50 3.26

14 g TiL 2:1 50 1.84 125.2 44.4 7.28 1.42 3.01
a 40 mL toluene, 10 min reaction time, 0.1 MPa ethylene pressure, 1 µmol Ti complexes, [Al]/[Fe+Ti] = 2000:1.
b Activity, calculated with Ti complex, 106 g/mol(Ti)·h·atm. c Measured by DSC, Xc is degree of crystallinity.
d Calculated by high temperature 13C NMR. e 104 g/mol, determined by GPC using polystyrene standard. f 4 µmol
Fe complex(FeLa), Activity, 106 g/mol(Fe)·h·atm. g 2 µmol.

The Ti complex Ti2L1 and Fe complex FeLa exhibited high catalytic activity for ethylene
polymerization or oligomerization when used separately (Entries 1 and 2 of Table 1), which has
been detailedly investigated in our previous works [58,59], and the binuclear titanium complexes
still displayed very high activity when combined with bisiminopyridyl Fe complex in this tandem
catalytic system. The effects of the reaction temperature, [Fe]/[Ti] molar ratios and catalyst structures
upon the copolymerization activities and properties of the copolymers were investigated. The melting
temperatures, branching degrees and molecular weights were measured by DSC, 13C NMR and
GPC, respectively.

Compared with the catalysis by Ti/MMAO, the tandem catalysis system (Fe/Ti/MMAO) produced
polyethylene with much reduced melting temperature (Tm) and crystallinity (Xc), which implied
that the polymer contained considerable amount of branched chain that must come from the in-situ
copolymerization of ethylene with α-olefins produced by Fe complex. The branching structures were
further confirmed by high temperature 13C NMR spectrum as shown in Figure 2. Various types of
branches, including ethyl branches (δ 11.19, 26.87, 39.86 ppm), butyl branches (δ 23.36, 29.57 ppm) and
some longer branches with six or more carbons (δ 13.98, 22.83, 32.17, 38.35 ppm) were found, and the
branching degrees were calculated according to ref. [63].
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3.1. Influence of Reaction Temperature

The influence of temperature upon the catalytic activities and the structure of polymers were
shown in Entries 4–8 of Table 1. The reaction temperature exerted great influence on the catalytic
activities as well as the properties of obtained copolymers. When the reaction temperature increased
from 30 to 70 ◦C, the copolymerization activities increased gradually, reached maximum at 60 ◦C,
and then decreased. The trend was in good accordance with the results when catalyzed only by the
binuclear Ti complex Ti2L1. However, the branching degree of the obtained copolymers reduced
monotonously from 22.89 to 2.53/1000C with the temperature increase from 30 to 70 ◦C (Figure 3a),
presumably due to the decrease of the amount of the α-olefins produced by the bisiminopyridyl iron
complex FeLa. The branches were classified into ethyl, butyl and longer branches according to the
13C NMR spectra, and the percentage of different branches among total branches could be separately
calculated. The proportion of ethyl branches were more than 50% in all cases, while the percentage of
longer branches were generally lower than 20% (Table 2). Short chain 1-butene generally had higher
reactivity than the longer chain α-olefins and was much easier to insert into the main chain, moreover,
Fe catalyst produced higher proportion of 1-butene at higher temperatures [58], thus higher proportion
of ethyl branches were formed.

Table 2. Amount of branching in the branched polyethylene.

Entry
Branching with Respect to Total Branching with Respect to Total [E] Units Branch/

1000CNE’(%) NB’(%) NL’(%) NE”(%) NB”(%) NL”(%) R (%)

4 55.45 27.84 16.71 2.54 1.27 0.76 4.58 22.89
6 30.03 12.87 1.03 0.54 0.23 1.80 9.01
8 80.12 15.66 4.22 0.41 0.08 0.02 0.51 2.53
3 72.15 21.94 5.91 0.56 0.17 0.05 0.78 3.91

11 57.87 30.96 11.17 1.87 1.00 0.36 3.24 16.20
12 51.61 26.73 21.66 0.90 0.47 0.38 1.75 8.75
13 62.35 19.14 18.52 1.00 0.31 0.30 1.61 8.05
14 62.38 29.47 8.15 0.91 0.43 0.12 1.46 7.28
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(b) [Fe]/[Ti] molar ratio, (c) different Ti complexes.

As reaction temperature increased from 30 to 70 ◦C, the melting temperature Tm of the obtained
copolymers increased from 115.7 to 128.7 ◦C, and the crystallinity Xc increased from 2.8 to 53.6%
(Figure 4a), further implied that less α-olefins were produced and inserted into the main chain.
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Figure 4. DSC thermograms for LLDPE under different conditions, (a) effect of reaction temperature,
(b) effect of [Fe]/[Ti] molar ratio.

The GPC curves of copolymers at different polymerization temperatures were shown in Figure 5a.
Increasing the temperatures from 30 to 70 ◦C decreased the Mw rapidly from 3.37 × 104 g/mol to
1.30 × 104 g/mol, which was due to faster chain transfer from the titanium species to aluminum and
chain termination at higher temperature. The molecular weight distribution remained at a narrow
level of 2~3.
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3.2. Influence of Fe/Ti Molar Ratio

The Fe/Ti molar ratio also influenced appreciably the catalytic behaviors of the tandem catalytic
system. Firstly, the catalytic activity increased more than one order of magnitude (0.72 to 8.95 × 106

g/molTi·h·atm) as the amount of Fe catalyst increased fivefold (Fe/Ti molar ratio increased from 1:1
to 5:1). More α-olefins were produced with more Fe complex added, which led to higher calculated
activities for Ti complex. These results also fully agreed with the copolymerization behaviors of
ethylene and α-olefin catalyzed solely by Ti complex [59].

Secondly, it could be reasonably speculated that since more α-olefins was produced with the
addition of more Fe catalyst, more comonomers would be incorporated into the polymer backbone,
resulting in the increase of branching degree. Indeed, the DSC data in Figure 4b showed that the
melting temperature and crystallinity simultaneously decreased from 126.3 to 119.5 ◦C and from 46.1
to 7.3%, respectively, as Fe/Ti molar ratio increased from 1:1 to 5:1, indicating the continuous increase
of branching degrees. The high temperature 13C NMR spectra of obtained polymers with different
catalyst ratios further confirmed that the branching degrees increased to 16.20/1000C at 5:1 of Fe/Ti
ratio, which was almost four times of that at 1:1 Fe/Ti ratio (3.91/1000C), as shown in Figure 3b. The
rate of the increase of the branching degree was slightly less than that of the Fe oligomerization catalyst
(5 times), but much less than that of copolymerization activity (10 times), which may be a result of the
strong positive comonomer effect, i.e., the activity of Ti complex increased faster than the quantity of
α-olefins produced by Fe catalyst. Similar phenomenon was also observed in tandem catalysis system
consisted of mononuclear nonmetallocene Ti complex and Fe complex [58].

Thirdly, the weight-average molecular weights of the copolymers decreased appreciably from 5.41
to 2.34 × 104 g/mol when increasing Fe/Ti ratios from 1:1 to 5:1, due apparently to the incorporation of
α-olefins, as shown in Figure 5b.

3.3. Influence of the Structure of Ti Complexes

We have also researched the influence of the structures of Ti complexes, including the binuclear
Ti complexes bearing different alkylthio sidearms and the mononuclear Ti complex with methylthio
sidearm, which were shown in Entries 6 and 12–14 of Tables 1 and 2.

For binuclear Ti complexes bearing different alkylthio sidearms (Entries 6, 12 and 13 of Table 1),
complex Ti2L1 with methylthio sidearm exhibited the highest activity and comonomer incorporation
ratio, while the Ti complexes with longer alkylthio sidearms (Ti2L2 and Ti2L3) exhibited lower ethylene
in-situ copolymerization activity and produced polymers with lower branching degrees. The result
was fully in agreement with that of ethylene/α-olefins copolymerization catalyzed by the binuclear Ti
complexes alone [59], and may similarly be attributed to the steric hindrance of longer alkylthio groups.

The catalytic performances of bi- and mono-nuclear Ti complexes with the same methylthio sidearm
were also compared. Both the bi- and mono-nuclear Ti complexes showed excellent performances
towards ethylene in-situ copolymerization when combined with Fe complex and activated by MMAO.
However, as shown in Figure 3c, the binuclear complex Ti2L1 with methylthio sidearm had higher
capability for comonomer incorporation and produced copolymers with higher branching degree
compared with that by mononuclear analogue (9.01/1000C vs. 7.28/1000C). Furthermore, the molecular
weight of copolymers produced by the binuclear Ti complexes was higher than that by the mononuclear
complex (2.57 vs. 1.42 × 104g/mol), as shown in Figure 5c. The binuclear Ti complexes had two
metal active sites, which would produce two growing carbon chains simultaneously and give rise to
larger steric hindrance, reduce the interaction between the complexes and the cocatalyst and inhibit
β-Hydrogen elimination and chain transfer reaction; therefore improved comonomer incorporation
ratio and increased the molecular weight of copolymers are resulted [59].
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4. Conclusions

Methylene-bridged tridentate salicylaldiminato binuclear titanium complexes were used in
tandem with oligomerization catalyst 2,6-bis(imino)pyridyl Fe complex to produce linear low-density
polyethylene (LLDPE) with various branches, including ethyl, butyl and some longer branches by the
in-situ copolymerization of ethylene. The binuclear titanium complexes maintained high catalytic
activity (over 106 g/molTi·h·atm) and excellent copolymerization capacity when worked together with
the Fe complex. The catalytic behaviors and the structures of the obtained polymers were influenced not
only by the polymerization conditions such as reaction temperature and Fi/Ti molar ratios but also by
the structure of binuclear Ti complexes bearing different alkylthio sidearms. The Ti complexes showed
a strong positive comonomer effect and achieved extremely high activity (8.95 × 106 g/molTi·h·atm)
with certain Fe/Ti molar ratio. The branching degrees can be adjusted in a wide range from 2.53
to 22.89/1000C by decreasing reaction temperature from 70 to 30 ◦C, while increasing Fe/Ti molar
ratios from 1:1 to 5:1 can increase the branching degrees from 3.91 to 16.20/1000C. The melting points,
crystallinity and molecular weights of the products can also be modified accordingly. The binuclear
complex Ti2L1 with methylthio sidearm exhibited higher capability for comonomer incorporation and
produced copolymers with higher branching degree and molecular weight compared with that of
mononuclear analogue, as a result of the larger steric hindrance of the binuclear Ti complex.
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