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Abstract. Quantitative Systems Toxicology (QST) models, recapitulating pharmacokinet-
ics and mechanism of action together with the organic response at multiple levels of
biological organization, can provide predictions on the magnitude of injury and recovery
dynamics to support study design and decision-making during drug development. Here, we
highlight the application of QST models to predict toxicities of cancer treatments, such as
cytopenia(s) and gastrointestinal adverse effects, where narrow therapeutic indexes need to
be actively managed. The importance of bifurcation analysis is demonstrated in QST models
of hematologic toxicity to understand how different regions of the parameter space generate
different behaviors following cancer treatment, which results in asymptotically stable
predictions, yet highly irregular for specific schedules, or oscillating predictions of blood cell
levels. In addition, an agent-based model of the intestinal crypt was used to simulate how the
spatial location of the injury within the crypt affects the villus disruption severity. We discuss
the value of QST modeling approaches to support drug development and how they align with
technological advances impacting trial design including patient selection, dose/regimen
selection, and ultimately patient safety.

KEYWORDS: agent-based modeling; bifurcation analysis; quantitative systems pharmacology;
quantitative systems toxicology; systems modeling.

INTRODUCTION

Quantitative methods are well established across many
therapeutic areas to evaluate the safety and efficacy of an
investigational drug during development (1). In the past 10
years, this field has seen an unprecedented development with
the emergence of Quantitative Systems Pharmacology/
Toxicology (QSP/T) models. QSP/T models have arisen from
the integration of pharmacokinetics (PK) with systems
biology approaches to enable the quantification of dynamic
interactions between drug(s) and biological processes,
intended or unintended, in the organism as a whole (2). In a
similar fashion to physiologically based pharmacokinetics
(PBPK) modeling, which is now widely accepted as a tool

for regulatory decision-making, QSP/T modeling is growing in
use for regulatory submissions and responses (3).

QSP/T modeling aims at merging the drug disposition
kinetics in plasma, tissues, and cells with the multiscale nature
of interplaying organic systems and thus lead to a paradigm
shift from scale-specific reductionistic approaches to
multiscale models (4,5). This paradigm shift is further
endorsed by the increasingly available wealth of information
within complex data of multiscale nature that spans levels of
organization from cells to whole organisms. Multiscale
models can provide predictions of the system’s behavior
under pharmacological and toxicological challenges at each
structural level as well as a whole and, through scale bridging
methods, transfer information between scales (6).

Importantly, QSP/T modeling facilitates the increasing
integration of complex experimental in vitro techniques,
including organoids and microphysiological systems, into the
pharmaceutical testing strategy (7–14). QSP/T models and
in vitro systems are entangled in a mutually supportive
relationship. The information derived from in vitro systems
may not have a straightforward interpretation without a
mathematical framework that can account for differences in
exposure profiles and physiological changes over time (15).
In vitro systems provide a variety of dynamic, high-resolution
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measurements of multiscale nature and can be enhanced with
cell lineage tracing techniques, live imaging, genetic engi-
neering, multi-drug screening, and co-culture methods, which
all together advance our understanding of pharmacological
and toxicological systems. As a result, the opportunity
emerges to leverage mechanistic models able to bridge
in vitro endpoints with clinical responses in preclinical stages
during drug development.

One of the main applications of QSP/T models lies at the
translational interface between the identification of a candi-
date drug and its use in clinical trials to address, in particular,
safety risks mediated by on-target mechanisms. On-target
toxicities cannot be simply screened out because of their
intrinsic relationship with efficacy while their evaluation and
management during clinical studies can be extremely costly.
In such instances, therapeutic margins can be rationally
predicted by applying QST modeling approaches in preclin-
ical stages, thereby increasing the clinical probability of
success. QST models enable the quantification of the
dynamics of toxicity and recovery of drug-affected organs
and, thus, they can facilitate decisions of effective and
tolerated dose schedules.

In the following sections, we examine the application of
QST models in the development of drugs exhibiting hemato-
logical and gastrointestinal adverse effects (AEs). Such
compounds include chemotherapy, antibody-drug conjugates
(ADCs) with cytotoxic payloads and immunotherapy, and
targeted therapies involving the cell cycle and DNA damage
response and repair mechanisms. We explore two QST
modeling approaches used to quantitively assess these
toxicities and conduct simulations to reveal particular phe-
nomena which may need attention during drug development.

MODELING HEMATOLOGICAL TOXICITY OF
ONCOLOGY THERAPIES

The most common cause of blood cytopenias in the
industrialized world today is myelosuppression occurring as
an adverse effect of cytotoxic chemotherapy for malignant
neoplastic disease. Drugs in this category typically produce
dose-dependent myelosuppression, which reverts after treat-
ment discontinuity (16). The production of all mature blood
cell types results from the concerted action of hematopoietic
stem cells (HSC) and progenitor cells in the bone marrow.
Cell proliferation and differentiation are tightly regulated to
give rise to specific numbers of all blood cell types (17).
Furthermore, hematopoietic homeostasis is maintained by the
complex interplay between extrinsic cues and intrinsic
regulatory pathways, including cytokine-mediated feedback
loops between mature cells and progenitors (18,19).

Since 2000s, the area of chemotherapy-induced
hematotoxicity has seen QST modeling approaches, integrat-
ing PK profiles with cell dynamics models (see (20) and (21)
for reviews on this topic). A well-known approach is the
model of chemotherapy-induced myelosuppression published
by Friberg and co-workers in 2002, which comprises a system
of nonlinear ODEs to account for a pool of proliferating cells,
a set of transit nonproliferating cell compartments, a pool of
circulating mature cells, and a negative feedback loop
between mature cells and their progenitors (22). Modified

versions of this model with increased granularity of the
feedback regulatory mechanisms have been proposed to
improve predictive performance (23,24). These models are
frequently applied to quantify hematotoxicity of complex
dose schedules in patients (25–27) as well as in preclinical
settings (28).

Considering a single chain of compartments to describe
toxicity affecting one of the several blood cell types may not
be always sufficient to describe observed behaviors. For
instance, erythropoietin increases in response to low red
blood cell counts and stimulates, in turn, erythroid progenitor
proliferation but also impacts on platelet production (29).
Describing such cross-lineage feedback regulation requires
more complex network structures. An example of a QST
model considering the hematopoietic tree with interacting
multiple lineages and common progenitors responding to
feedback loops has been developed to quantify the dynamics
of several cytopenias associated with carboplatin treatment in
preclinical settings (30). This model highlights the complexity
of the feedback mechanisms acting upon both proliferation
and differentiation and the relevance of common feedback
regulation of different cell progenitors to understand the
dynamics of the hematopoietic system as a whole during
toxicity and recovery (30). Similarly, a recent study focused
on the development of a QST model of in vitro
hematotoxicity data from a high-throughput novel multi-
lineage toxicity assay has been used to characterize the
hematological profile of several multi-class anti-cancer agents
and to investigate the mechanisms of toxicity (31). The spatial
organization of the bone marrow has also been considered by
a multiscale in silico model, which incorporates three distinct
spatial scales—cell, hematopoietic subunit, and bone marrow
(32). This model has provided a plausible explanation for the
emergence of the fractal-like spatial organization of bone
marrow trabeculae and sinuses as the result of maximizing
mature cell production within the volumetric restrictions of
the bone marrow.

Most of the models of the hematopoietic system include
feedback regulatory loops, which greatly influence the
qualitative or topological structure of the models. Several
studies have highlighted the importance of performing
stability and bifurcation analysis to understand the model
behavior and its dependence on parameter values (33,34).
These studies have reported a Hopf bifurcation, which is a
change in model behavior from non-oscillatory to oscillatory,
associated with the parameter(s) regulating the feedback
between mature cells and bone marrow progenitors in the
classical and modified Friberg models (33,34). In the classical
model (22), changes in the qualitative behavior are deter-
mined by the values of the parameter γ, which describes the
strength of the feedback regulation between mature cells and
progenitors (34). With γ values smaller than approximately
0.5685, the homeostatic blood cell concentration represents
an asymptotically stable equilibrium in the classical Friberg
model (34). Thus, after perturbations, such as cytotoxic drug
challenges, the predicted cell concentration eventually re-
covers to the basal/homeostatic value. With larger values of γ,
the predicted concentration does not return to a constant
value but keeps oscillating around the basal value with cycles
of stable magnitude (34). The latter behavior is not repre-
sentative of reversible chemotherapy-induced cytopenia, and
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hence, values of the parameter γ should be restricted to
values smaller than 0.5685 when modeling this scenario.
However, even values of γ ensuring the return to constant,
non-cyclic, homeostatic blood counts can result in non-
physiological predictions due to the magnitude of oscillations
and/or time to return to equilibrium.

To investigate the model behavior in more depth, we
have simulated neutrophil dynamics during a theoretical
treatment that kills 95% of proliferative progenitors and the
subsequent recovery for various values of γ which all ensured
stable non-cycling neutrophil blood counts in homeostasis (γ
< 0.5685). Injuries affecting 95% of bone marrow cells have
been previously reported in in vivo experiments with
oncotherapeutics (30). We used the previously parametrized
classical Friberg model for human myelosuppression (22)
with the published value γ = 0.17 and tested two values of
greater magnitude, 0.3 and 0.5. We observed that for γ = 0.17
and γ = 0.3, neutrophil homeostasis is recovered in less than a
month after a single treatment. However, γ = 0.5 leads to
oscillating concentrations of neutrophils in blood with pro-
gressively smaller cycles and it requires months to recover the
constant basal value after a single treatment (Fig. 1a). On a
different scenario, we simulated repeated treatments every 21
days and observed that values of 0.17 and 0.3 result in
consistent decreases of neutrophils in response to treatment
administrations (Fig. 1b). However, for values of 0.5, we
observed highly irregular neutrophil profiles in which varia-
tions associated with repeated administrations were masked
by large feedback-driven oscillations of mature cells and
progenitors (Fig. 1b). With our simulations, we have demon-
strated the usefulness of bifurcation analysis to reveal changes
in the model qualitative behavior associated with changes in
the value of γ. From a practical perspective, while data
quality and resolution are often sufficient to prevent esti-
mated values of γ that result in physiologically implausible
oscillations, it is important to acquire a full understanding of
the relationship between the parameter space and the model
qualitative behavior.

As highlighted above, the classical and modified versions
of the Friberg model can describe cyclic oscillations or stable
blood cell counts depending on the value of the parameter
governing the feedback regulation between mature cells and
progenitors (33,34). Models including a mechanistic descrip-
tion of this feedback regulation (35,36) could result in easier
interpretation of parameters and detection of non-
physiological behaviors. However, the complexity derived
from the implementation of this feedback regulation, either in
empirical or in more mechanistic approaches, results in
nonlinear terms in the system of differential equations that
require the assessment of the model qualitative behavior to
ensure that it agrees with our understanding of the process.
While sensitivity analysis reveals the impact of input param-
eters on the modeled output quantities and may facilitate the
identification of bifurcation parameters, it does not provide
any information on the topological structure of the model and
how this changes across the parameter space. Despite the
difficulty to compute stability boundaries of equilibria, find
limit cycles, or predict qualitative changes in the system
behavior, bifurcation analysis can enhance the development
and use of mechanistic models to describe nonlinear effects,
which are frequently encountered in pharmacological process.

MODELING GASTROINTESTINAL TOXICITY OF
ONCOLOGY THERAPIES

Gastrointestinal (GI) side-effects of chemotherapy pres-
ent a constant challenge in the efficient and tolerable
treatment of cancer and are among the primary reasons for
dose reductions, delays, and cessation of treatment. The
incidence of chemotherapy-induced diarrhea has been esti-
mated to be as high as 80% (37). It is widely believed that
chemotherapy-induced GI dysfunction revolves mainly
around mucosal damage and ulceration, which is initiated by
the direct or indirect effects of cytotoxic chemotherapeutics
on the rapidly dividing epithelial cells in the GI tract (37).

The intestinal epithelium comprises a cellular monolayer
folded to form invaginations or crypts and protrusions or villi
in the small intestine. The epithelium undergoes continuous
cell renewal driven by stem cells located at the base of the
crypts (38). Stem cells proliferate and their progeny migrate
upwards while proliferating and differentiating into one of
several epithelial functional types (39). The equilibrium of
this dynamical system is maintained by compensatory cell
shedding into the gut lumen (39). Several modeling ap-
proaches have been proposed to describe the complexity and
dynamical nature of the epithelium. Compartment models
with variable granularity have been used to quantify the
temporal dynamics of epithelial cell types (40–45). A
complete description of epithelial dynamics is required to
capture the well-understood spatial cell dynamics within
crypts and villi. The spatial dimension has been considered
in cell population models using partial differential equations
(46) as well as in agent-based models that are computational
models implementing individual cell behaviors and interac-
tions using two- or three-dimensional spatial representations
of the crypt-villus structure (47–50).

QSP/T models integrating PK profiles with epithelial
dynamics are instrumental to precisely quantify the disruption
in cell proliferation and recovery following anti-cancer
therapies. Most of the analytical and computational models
developed to answer basic epithelial biology questions are
applicable to understand the disturbance of the epithelium
when exposed to dynamical drug concentration profiles. An
example of an analytical model has been developed to
describe the disturbance of epithelial homeostasis during
irinotecan exposure and its recovery after drug clearance
(51). This model describes the temporal dynamics of stem
cells, daughter cells, and enterocytes using a system of
ordinary differential equations. It is calibrated for humans
and rats to enable translation of toxicity and provides a
meaningful relationship between enterocyte loss and GI AE
in patients.

The high performance of computational models has been
demonstrated in spatiotemporal simulations of colon cancer
initiation and treatment (52) and intestinal tumorigenesis
triggered by Wnt-activating mutations (53). Computational
models are amenable to develop multiscale approaches that
integrate processes spanning multiple temporal and structural
levels of organization (e.g., molecules, cells, organ, organism).
For instance, computational models comprising molecular
processes governing individual cell fate have been applied to
simulate cell dynamics in aging crypts (54) and to understand
the spatial relationship of molecular signals and growth
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patterns (55). The development of these models is greatly
facilitated by novel microphysiological systems, which enable
experimental designs unfeasible in other experimental

platforms, and hence can help reveal unknown aspects of GI
biology and toxicity (8).

It is noteworthy that computational models can describe
single cell dynamics within the three-dimensional spatial

Fig. 1. Impact of the parameter γ, i.e., strength of the feedback between mature cells and proliferative progenitors, on the qualitative behavior
of the classical Friberg model (22) of neutrophil dynamics following drug insult. We used several values of γ and previously published values for
the other model parameters (22). The chosen values of γ ensured stable non-cyclic neutrophil blood counts in homeostasis and return to
baseline value after drug treatment discontinuity (γ < 0.5685). a Simulation results of neutrophil and progenitor recovery after a single
treatment killing 95% of proliferative progenitors indicated that high values of γ resulted in long periods of non-physiological large oscillations
of neutrophils and progenitors before returning to constant homeostatic levels. b Multiple treatments killing 95% of proliferative progenitors
every 21 days resulted in large feedback-driven oscillations of neutrophils and progenitors with highly irregular profiles and no return to
homeostatic values in between treatments for the largest value of γ. Dashed lines represent limit values defining the common terminology
criteria for adverse effects (grade 1, 2, or 3 neutropenia)
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configuration of the crypt. In this regard, proliferation-driven
forces, which determine cell migration across crypts and villi,
leading to epithelial turnover, vary according to the cell
position within the crypt geometry (43,46,56). In addition,
computational models enable the simulation of biological
events that are not tractable or straightforward to describe
analytically. For instance, crypt extinction, crypt fission
(57,58), cell plasticity, and dedifferentiation (59) are all well-
described phenomena observed during epithelium disruption
and regeneration, which can be implemented in computa-
tional models we used below in our simulations. Agent-based
modeling enables the exploration of dynamics that are out of
the reach of analytical approaches by relying on computing
power.

To demonstrate the usefulness of agent-based models,
we performed a simulation exercise with hypothetical
scenarios in which spatial cell dynamics within the crypt
geometry to describe epithelial injury and recovery was
accounted for. Using the previously developed agent-based
model of the mouse small intestinal crypt (50), we simulated
the induction of cell cycle arrest in approximately 85% of
proliferative cells located at low or high positions of the
crypt transit amplifying compartment (Fig. 2a) and followed
post-perturbation cell dynamics in the crypt and villus.
In vivo experiments show reductions equal to or larger
than 85% of the crypt proliferative activity associated with
cancer treatments (60,61). The transit amplifying compart-
ment comprises a relatively large number of proliferative
cells located above the stem cell niche (Fig. 2a). We
assumed that the simulated cycle arrest process was
irreversible and the time to senescence of arrested cells
was similar to that of absorptive epithelial cells. The
recovery of the crypt was based on the remaining unaf-
fected proliferative cells, which divided and replaced
arrested cells while forcing their migration upwards and
onto the villi. Our simulation results showed that the
recovery of the proliferative compartment within the crypt
was faster when arrested cells were located at the higher
position in the crypt (Fig. 2a, b, and c left plot). This is
explained by the collective dynamics, which emerges from
cell proliferation within the crypt geometry and results in
faster cell migration velocity driven by greater proliferation-
derived forces at the higher crypt region (50,62). Thus,
while higher position crypt injuries were relatively quickly
resolved and did not impact on the villus structure, lower
position crypt injuries resulted in reduced proliferation for
longer periods, which led to decreased migration of cells
into the villus and compromised the villus integrity (Fig. 2c
right plot). These simulations show how a relatively simple
agent-based model can predict complex behavior involving
different outcomes on epithelial integrity of the villus
associated with the same injury occurring at different
positions in the crypt.

A well-understood injury with a complex spatial pattern
in the crypt-villus axis is caused by LPS, which induces rapid
TNF-mediated epithelial cell apoptosis exclusively at the
villus tip (44,63). The reasons why oncology therapies may
or may not be associated with GI AEs are not well
understood yet. Our modeling results show that the spatial
location of the injury in the crypt could be a factor
determining the emergence of clinical AE. Proving this

hypothesis is challenging because measurements with suitable
spatial and temporal resolution are rarely available. However,
given the spatial complexity in cell composition and signaling
pathways across the crypt-villus axis, there is a credible
possibility that drug interventions could affect only specific
spatial regions where responsive cells or molecules are
located. For such cases, models capturing the spatiotemporal
dynamics of single cells and molecules are instrumental to
quantify the response, test hypotheses, and unravel details of
the toxicological process not always feasible to assess
experimentally.

The highly dynamic nature of cell behaviors and
interactions in the 3D crypt-villus architecture makes the
epithelium a suitable system to develop agent-based models
with the capacity to describe molecular processes, single cell
behavior, and the emergence of collective cell dynamics. In
the field of GI drug safety, where patient data acquisition is
challenging and often reduced to symptom description (e.g.,
presence and/or severity of diarrhea), agent-based models can
emulate biological mechanisms at multiple scales and may
allow unanticipated behaviors to emerge and provide precise
quantitative information on AEs based on the compound
mechanism of action in early stages of drug development.

CONCLUDING REMARKS

The modeling approaches we have used in our exam-
ples focus on the quantification of cell dynamics in the bone
marrow and intestinal epithelium during anti-cancer treat-
ment and recovery. Understanding how to improve safety
by optimizing dose and regimen can bring in significant
therapeutic benefit for oncology patients. We demonstrated
the importance of bifurcation analysis in QST models of
hematologic toxicity to understand how the parameter
space determines different model qualitative behaviors,
which may not be representat ive of revers ible
chemotherapy-induced cytopenia. In addition, using a
systems model for the intestinal crypt, we simulate the
effect of the spatial location of the injury within the crypt on
the severity of the disruption of villus integrity. These
models are readily amenable to be integrated with other
relevant features spanning levels of physiological organiza-
tion from molecular drivers of pharmacological efficacy to
clinical adverse effects.

QSP/T models offer a framework where PK is connected
to dynamical processes of efficacy and safety, with the
opportunity of utilizing various inputs/outputs in therapeutic
index calculations via exploration of different dose schedules.
The development of novel modeling solutions is critically
important in the oncology space with the focus on combina-
tion therapy and new treatment-delivery modalities (e.g.,
expansion of cell therapy, antisense oligonucleotides,
nanopeptides, and ADCs) in development. For example, the
application of ADCs delivering cytotoxic warheads in the
treatment of cancers can be enhanced by the use of tailored
QST models able to uncover critical determinants of thera-
peutic index including disposition, warhead’s cell entry
pathway, and susceptibility mechanisms in on- or off- target
cells (64), which will enable future selection of ADC
properties. Similarly, adoptive cellular therapy is now
enjoying unprecedented bench-to-bedside clinical success in
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the fight against cancer (65,66). Successful immunotherapy
requires understanding of the dynamic interactions among
intrinsic immunity, tumor environment, and the immune
agent driving the therapeutic response and how this can lead
to immunological adverse effects such as cytokine release
syndrome. Understanding these processes will be greatly
facilitated by modeling approaches specifically designed to
handle such complexities (67).

QSP/T models are increasingly consolidated in the field
and currently co-exist with empirical PKPD pharmacometrics
approaches. The application of simple, empirical models or
more complex, mechanistic approaches to drug development
has been comparatively discussed by several authors (68–71).
The practical choice of modeling technique is likely made by
balancing the investment required to develop or apply QSP/T
models and the importance of those questions that cannot be

Fig. 2. Impact of the crypt spatial configuration on simulated dynamics of epithelial injury and recovery. a Cartoon representing snapshots of
an agent based model of a mouse small intestinal crypt recovering after induction of cell cycle arrest in 85% proliferative cells located at low
and high positions (from the base) of the transit amplifying (TA) compartment. Recovery is achieved by proliferation of non-injured cells.
Boxes mark affected crypt areas. b The spatiotemporal simulation of the percentage of proliferative cells in the crypt shows that cells located between
approximate positions 5 and 20 in the crypt axis are mostly proliferative progenitors forming the TA compartment in healthy intestine. Simulation of the
injuries described in a showed that the recovery of the TA compartment requiredmore than 2 days following the arrest of 85%cells at lower positions but
shorter time if the same injury was located at the higher position of the TA compartment. c The simulated number of cells over time after the injuries
described in a indicated that the total number of cells in the crypt is not affected in these scenarios because arrested cells are replaced by newly generated
cells within the crypt before the onset of cell senescence. However, the number of cells in the simulated villus is compromised for a relatively long period
following the injury at lower position but not affected when the same injury was located at higher position in the crypt
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addressed by empirical approaches. The ability to combine
modeling approaches to optimize therapeutic index will be
of utmost importance moving forward to gain a mecha-
nistic understanding of determinants of safety and efficacy
in various patient populations.

We are witnessing a very rapid technological advance-
ment of data science and artificial intelligence (AI) ap-
proaches in the pharmaceutical sector. These are empirical
approaches that offer a range of complementary tools, which
enable the identification of relationships among genes,
proteins, drugs, and phenotypes using large and complex
datasets (72,73). Recent AI advancements in image analysis
algorithms allow training to perform tasks such as nuclear or
cellular segmentation and tissue classification, and with the
digital pathology image data, an agent-based modeling could
be developed to characterize T cell clustering and spatial
intra-tumoral heterogeneity (74). AI tools are currently
regarded valuable in informing the development of advanced
mechanistic QSP/T models, and we expect many reports on
successful applications in the near future.

Currently, there is a growing need to interpret the
increasing wealth of information that is now available in
clinical trials under increasingly short timelines to impact
drug development decisions. QSP/T modeling can reveal
unexpected useful target pathways for drug development
(75), which may be overlooked without quantitative under-
standing of physiology, pathology, and drug mechanism of
action. However, QSP/T model development can take
several months or years; therefore, the decision to apply
these models must be made early with rational intention to
explain empirical study results. Strategic investment in QSP/
T models must be taken as a partnership between modelers,
experimental scientists, clinicians, drug development project
teams, and leadership from early drug development, as the
ability to differentiate compounds at lead selection and in
early development has the potential to decrease candidate
attrition and shorten drug development cycle time.

CONTRIBUTION AS FEMALE SCIENTISTS

Carmen Pin: Academics and professionals are actively
collaborating within the pharmaceutical sector to develop
novel modelling solutions for the quantitative assessment of
drug safety and efficacy. Common interests are giving rise to
highly exciting and multidisciplinary working spaces, such as
TransQST consortium, where advanced modelling techniques
are being developed and put to the test in realistic toxicology
scenarios. I feel fortunate of working in such a rewarding
environment.
Teresa Collins: Working in a large pharmaceutical company
for the last 17 years has taught me that there are a wealth of
opportunities to address drug project issues using modelling
and simulation, and the key issue is how best to support these
from a range of modelling approaches. In particular, under-
standing when, what and how to invest time and effort in
developing a QSP/T model. From the outset it is important to
have initial conversations with potential collaborators, and
decide if there is (1) sufficient data, (2) biological under-
standing/hypothesis, (3) clear aims, and (4) scope to impact a
range of programs. If your intuition suggests you can fulfill
these four criteria then you are in a strong position to turn a

great idea into a valuable decision making tool within drug
development.
Megan Gibbs: For the past 20 years a focus on the expansion
of quantitative methods in Biopharma has enabled virtual
trials, virtual patients and virtual systems to inform drug
development decision making. Initially the development of
mechanistic PKPD models to understand pharmacologic
effect, modeling of safety biomarkers to determine therapeu-
tic index, and model based meta-analysis to understand
competitive advantage has now taken us to the interface of
AI, systems modeling and digitization to further enhance our
scientific understanding. I am humbled by the talented
scientists of which I have the privilege to interact and their
continued focus on impacting patients.
Holly Kimko: Dr. Crusher scans an injured sentinel with a
medical tricorder in her sickbay to predict when he would
become conscious to report to Captain Picard. More than 30
years ago, this scene of Star Trek sparked my interest in the
development of such a device, which must include an
algorithm able to predict changes in physiology based on
the simultaneous detection of multiple biomarkers. I became
a pharmacometrician, supporting mainly phase 2/3/4 clinical
drug development by pharmacokinetic/dynamic modeling &
simulation to characterize clinical responses that reflect, only
at a high-level generality, enormous complexity intertwined
among biomarkers at molecular, cellular, tissue/organ-level
changes. Extending the modeling approach, systems model-
ling connects biomarkers spanning multiple scales to predict
non-clinical and clinical responses to candidate drug inter-
ventions, and it has advanced rapidly during the last decade
to enable a more efficient exploration of the drug develop-
ment universe. Now, I know that I am inching towards the
realization of the scene in the sci-fi movie. Engage!
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