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Purpose: To develop a tool for the automatic contouring of clinical treatment volumes (CTVs) and
normal tissues for radiotherapy treatment planning in cervical cancer patients.
Methods: An auto-contouring tool based on convolutional neural networks (CNN) was developed to
delineate three cervical CTVs and 11 normal structures (seven OARs, four bony structures) in cervi-
cal cancer treatment for use with the Radiation Planning Assistant, a web-based automatic plan gen-
eration system. A total of 2254 retrospective clinical computed tomography (CT) scans from a single
cancer center and 210 CT scans from a segmentation challenge were used to train and validate the
CNN-based auto-contouring tool. The accuracy of the tool was evaluated by calculating the
Sørensen-dice similarity coefficient (DSC) and mean surface and Hausdorff distances between the
automatically generated contours and physician-drawn contours on 140 internal CT scans. A radiation
oncologist scored the automatically generated contours on 30 external CT scans from three South
African hospitals.
Results: The average DSC, mean surface distance, and Hausdorff distance of our CNN-based tool
were 0.86/0.19 cm/2.02 cm for the primary CTV, 0.81/0.21 cm/2.09 cm for the nodal CTV, 0.76/
0.27 cm/2.00 cm for the PAN CTV, 0.89/0.11 cm/1.07 cm for the bladder, 0.81/0.18 cm/1.66 cm for
the rectum, 0.90/0.06 cm/0.65 cm for the spinal cord, 0.94/0.06 cm/0.60 cm for the left femur, 0.93/
0.07 cm/0.66 cm for the right femur, 0.94/0.08 cm/0.76 cm for the left kidney, 0.95/0.07 cm/
0.84 cm for the right kidney, 0.93/0.05 cm/1.06 cm for the pelvic bone, 0.91/0.07 cm/1.25 cm for
the sacrum, 0.91/0.07 cm/0.53 cm for the L4 vertebral body, and 0.90/0.08 cm/0.68 cm for the L5
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vertebral bodies. On average, 80% of the CTVs, 97% of the organ at risk, and 98% of the bony struc-
ture contours in the external test dataset were clinically acceptable based on physician review.
Conclusions: Our CNN-based auto-contouring tool performed well on both internal and external
datasets and had a high rate of clinical acceptability. © 2020 The Authors. Medical Physics published
by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine [https://
doi.org/10.1002/mp.14467]
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1. INTRODUCTION

Manual contouring of tumors and normal structures is a very
labor-intensive and time-consuming part of the radiation
treatment planning process.1,2 “Wrong or inaccurate” con-
tours drawn by physicians and dosimetrists constitute the
highest and seventh-highest risk factors for failure of photon/
electron external beam radiation treatment, respectively.3

Most of these errors could be avoided if an accurate and reli-
able auto-contouring tool were available. In the past, various
algorithms have been evaluated for the development of auto-
contouring tools, with mixed success.4–6 With the advent of
deep learning, more specifically, convolutional neural net-
works (CNNs), this movement has been accelerated as CNNs
outperformed most of the other algorithms in various seg-
mentation tasks.7 As a result, CNN-based auto-contouring
systems for computed tomography (CT) images have been
developed for various body sites, such as the head and
neck,8–12 thoracic region,13–16 abdomen,17–19 and pelvis.20–32

Although these approaches have generally been very suc-
cessful, they are not yet accessible to cancer treatment centers
where they would be most useful — those with limited
resources that see a large number of cervical cancer patients,
such as in South Africa and other low- and middle-income
countries (LMICs). In fact, cervical cancer is the second most
common cancer in women in Africa,33,34 and the most cost-ef-
fective treatment that increases the survival rate of cervical can-
cer patients in LMICs is radiation treatment.35 To fill this gap,
the Radiation Planning Assistant (RPA; rpa.mdander-
son.org),36 a web-based, fully automated radiotherapy contour-
ing and planning generation system, is being developed to
address the shortage of treatment planning staff and subse-
quently increase the survival rate for cancer patients in LMICs.

Although the potential of deep learning-based auto-con-
touring systems for pelvic structures has been explored in
several previous studies, most of them were focused on pros-
tate cancer,21–24,31,32 and only a few papers have published
results for the female pelvis.25,26 In this study, we developed
an auto-contouring system that can contour the clinical treat-
ment volumes (CTVs) and normal structures that are neces-
sary for various cervical cancer radiation treatment planning
techniques. The auto-contouring system in this work will be
implemented with RPA to automatically generate high-qual-
ity radiation treatment for cervical cancer patients in LMICs.

To the best of our knowledge, this study is the first CT-
based auto-contouring study that includes pelvic lymph node
CTV (nodal CTV) and para-aortic lymph node CTV (PAN
CTV) for cervical cancer radiotherapy using deep learning.

This addition is important, as these are the primary targets for
radiotherapy treatments of cervical cancer and will facilitate
fully automated treatment planning for cervical cancer.

2. MATERIALS AND METHODS

Our CNN-based auto-contouring tool was developed to
generate contours for three CTVs and 11 normal structures in
the female pelvis: primary CTV, nodal CTV, PAN CTV, blad-
der, rectum, spinal cord, left and right femurs, left and right
kidneys, sacrum, pelvic bone, L4 vertebral body, and L5 ver-
tebral body. These structures were categorized into three
groups: bony structures, organs at risk (OARs), and CTVs.
These are the structures required to automate 4-field box, 3D
conformal, IMRT, and VMAT plans for cervical cancer.37–39

First, the Inception-ResNet-V240 classification architecture
was trained to identify the extent of the structure in the cra-
nial-caudal direction, as shown in Figs. 1(a) and 1(b). This
approach was taken to address the GPU memory limitation
issue as well as to improve the accuracy of the automatically
generated contours by allowing the subsequent segmentation
model to process a restricted field of view.9 Second, the seg-
mentation models were applied to the CT slices that were
classified to contain the organ of interest, as shown in
Fig. 1(c). Both the classification and the segmentation mod-
els were trained independently for each structure.

2.A. Training parameters

For the training and validation data, 2254 female pelvic
CT scans from cancer patients who received radiation treat-
ment from September 2004 to June 2018 at The University of
Texas MD Anderson Cancer Center were used. Furthermore,
210 CT scans with kidney contours from the 2019 Kidney
Tumor Segmentation Challenge (KiTS19) were added to our
training data. The CT scans had pixel sizes in the transverse
plane that ranged from 0.754 to 1.367 mm and slice thick-
nesses from 2.0 to 3.0 mm, except for 8 CT scans (3 were
5 mm, 3 were 4 mm, 1 was 1.5 mm, and 1 was 1.0 mm
thick). All data were resampled to have the same voxel size of
1.17 mm 9 1.17 mm 9 2.5 mm. The CT numbers lower
than �1000 HU and higher than 3000 HU were clipped and
then linearly shifted to have a 0 to 4000 pixel intensity range.

An NVIDIA DGX Station with four V100 GPUs (16 GB
RAM) was used to train our models. The loss function for
the segmentation models was the Sørensen-Dice similarity
coefficient (DSC),41,42 as this was our metric to determine the
accuracy of the segmentation model. A weighted cross-
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entropy was used as a loss function for the classification
model to compensate for the data imbalance between the
number of slices with and without the organ of interest. The
weight was determined to be the ratio of the number of
absences to the number of presences. The Adam optimizer43

was used as an optimization algorithm. The Adam opti-
mizer’s parameters, beta1, beta2, and epsilon, were set to 0.9,
0.999, and 10�8, respectively.

To select the two-dimensional (2D) and three-dimensional
(3D) CNN segmentation architectures, we did a preliminary
study on the spinal cord for 2D and the left kidney for 3D.
The vanilla DeepLabv3+44 and the FCN-8s45 with additional
batch normalization layers at the end of every convolutional
layer were trained to segment the spinal cord in 2D. The
mean � standard deviation DSC were 0.87 � 0.03 and
0.90 � 0.02, for the vanilla DeepLabv3+ and the modified
FCN8-s, respectively, so the modified FCN-8s was chosen
for our model. Similarly, the 3D U-Net46 and the 3D V-Net21

segmentation architectures were trained to segment the left
kidney on CT images resized to have a 256 9 256 9 60
dimension. We added batch normalization layers at the end of
every convolutional layer for both architectures. The
mean � standard deviation DSC were 0.93 � 0.04 and
0.93 � 0.04, for the U-Net and the V-Net, respectively. As
there was no significant difference between the two architec-
tures, we chose the V-Net, which has residual connections in
each stage.

2.B. Bony structures

The contours of the four bony structures (pelvic bone,
sacrum, L4 vertebral body, and L5 vertebral body) were gener-
ated on 370 CT scans to train and validate the auto-contouring
model. The pelvic bone was defined to be the traditional pelvic
bonewithout the sacrum, as the sacrumwas contoured as a sep-
arate structure. All the bony structure contours were automati-
cally generated with a multi-atlas-based auto-contouring
system (MACS)4,5,47 first, and the automatically generated con-
tours were manually reviewed and revised if necessary.

V-Net,21 a CNN-based 3D segmentation architecture, was
used to segment the four bony structures. The input image for
the segmentation architecture was resized to
Nslice 9 256 9 256. A single segmentation model was used
to contour the adjacent L4 and L5 vertebral bodies simultane-
ously. For data augmentation purposes, horizontal flip and
rotation with random angles between �30° and 30° along the
axial axis were applied for these structures.

2.C. Clinical treatment volumes

2.C.1. Primary clinical treatment volume

The primary CTV for cervical cancer patients is defined
to include the uterus and the cervix. To train the model, 406
contours were either curated from clinical contours or manu-
ally generated from scratch by 4 physicians at MD Anderson
Cancer Center.

V-Net was used to segment the primary CTV. Although
the classification model restricted the field of view of the
input images, the GPU memory was not sufficient to train the
full-resolution CT images. To overcome this problem, we
resized the input image to 256 9 256 pixels in the transverse
plane, segmented the primary CTV, and estimated the center
of mass of the primary CTV. Then, we cropped the box that
fully enclosed the primary CTV and centered it on the center
of mass of the prediction on the original CT scan with a
512 9 512 pixel image size. Finally, we applied the V-Net
segmentation model to the cropped 3D image, as shown in
Fig. 2. This way, the final contour is predicted on the limited
CT field of view with the original spatial resolution. This
approach was inspired by the method proposed by Feng
et al.13 and applied to the rest of the CTVs and OARs that
were segmented with the 3D segmentation model.

Although the cropped images were supposed to be cen-
tered at the center of mass of the organ in the prediction, the
center was randomly chosen while training the model in each
epoch for the data augmentation purpose. Furthermore, the
random rotation between �30° and 30° along the axial axis

FIG. 1. Application of the convolutional neural network-based classification and segmentation models to a computed tomography (CT) scan. (a) The presence or
absence of the organ of interest (in this case, femurs) was evaluated on each CT slice, (b) the cranial-caudal extent of the organ of interest was determined with
postprocessing, and (c) the slices that were classified to contain the organ of interest were used in the segmentation model to generate contours. [Color figure can
be viewed at wileyonlinelibrary.com]
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and the horizontal flip were also used for data augmentation.
The same data augmentation techniques were applied to train
the segmentation models for other CTVs and OARs.

2.C.2. Pelvic lymph node clinical treatment volume

The nodal CTV covers the common iliac, external iliac,
internal iliac, obturator, and presacral nodal regions as
described in the GEC-ESTRO II guideline48 for intermediate-
risk nodal CTV. To provide data for the training process, 250
nodal CTV contours were contoured by the same four physi-
cians who contoured the primary CTV and later peer-reviewed
to ensure high accuracy and consistency. As the lymph nodes
and vessels are small and have CT numbers similar to those of
muscles, a 3D segmentation model can sometimes miss a
small part of the lymph nodes. To prevent this, FCN-8s,45 a
2D segmentation architecture, was also trained to auto-contour
the nodal CTVs. The CT slices that were predicted to contain
the nodal CTV contours by the 3D segmentation model were
given to the 2D segmentation model for slice by slice predic-
tion. In prediction, the sum of the nodal CTV contours from
the 2D and 3D models was used as a final contour.

The superior border of the intermediate nodal CTV was
determined at one slice below the bifurcation of the common
iliac artery. To locate the superior border more accurately, a
segmentation model for the aorta near the bifurcation region
was trained with 296 CT scans. The segmentation model was
applied to a cropped region around the automatically gener-
ated L4 vertebral body contour to limit the field of view.

2.C.3. Para-aortic lymph node (PAN) clinical
treatment volume

The PAN CTV covers the para-aortic lymph nodes from
the level of the renal veins to the aorta above the aortic bifur-
cation (i.e., one slice above the superior slice of the nodal
CTV). In order to gather data sufficient for the PAN CTV
segmentation model, we used 146 clinical contours, and all
the contours were manually curated and revised if necessary.
FCN-8s was used to auto-contour the PAN CTVs.

2.D. Organs at risk

OARs for cervical cancer radiation treatment include the
bladder, rectum, spinal cord, left and right femurs, and left
and right kidneys. The training and validation data for the
OARs were acquired from clinical contours of the 2254 CT
scans. Contours for each structure were considered to maxi-
mize the amount of data, and thus, the number of available
structures in a single patient’s data varied from 1 to 7. The
total number of CT scans used for training and validation for
each structure is shown in Table I. Of these scans, 80% were
used for training, and 20% were used for validation. Since
the classification and the segmentation models were trained
independently for each structure to avoid the class imbalance
problem,49 the imbalance in the number of training data for
each structure did not influence the model accuracy. As the
contours were collected solely on the basis of their labels,
review of these contours was required to confirm their accu-
racy. Owing to the substantial number of contours, we pro-
posed a semi-automatic data curation method instead of
manual review, as described in Fig. 3. First, “unreviewed”

FIG. 2. Segmentation using cropped three-dimensional images for better accuracy. (a) Resize the computed tomography (CT) from 512 9 512 to 256 9 256 pix-
els and then segment the organ of interest and find the center of mass, (b) crop the region around the segmented organ on the original 512 9 512 CT scan, and
(c) resegment the organ of interest on the cropped image. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. The number of computed tomography (CT) scans used for training
and validation for each structure.

Structure Number of training and validation datasets

Primary CTV 406

Nodal CTV 250

PAN CTV 146

Bladder 1678

Rectum 1514

Spinal cord 655

Femurs (left, right) 962, 983

Kidneys (left, right) 907, 943

Pelvic bone 370

Sacrum
L4/L5 vertebral bodies

370

370

CTV: clinical treatment volume; PAN: para-aortic lymph node.
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contours and the corresponding scans were divided in half.
Two CNN-based segmentation models, one for each half,
were trained, and the contours were predicted on the other
half of the dataset. If the DSC between the clinical contours
and the predicted contours was lower than an arbitrarily
determined threshold value (DSC = 0.7 for the rectum, 0.8
for the remaining OARs), the original contour was manually
reviewed, and any incorrect clinical contours were removed
from the training dataset. Once the entire set of training data
was reviewed, we repeated the process with the “refined”
dataset from the beginning three times.

The left and right kidney contours from the KiTS19 data-
set50 were added to the training dataset. Abnormal kidneys
with large tumors were excluded from the dataset, so 172 con-
tours and 186 contours, respectively, for left and right kidneys
were added from the total of 210 CT scans.

All the OARs, except for the spinal cord, used 3D V-Net
segmentation models and followed the steps described in
Fig. 2. For the spinal cord segmentation, a 2D FCN-8s model
was used to generate the contour on each slice. The overall
flowchart of the developed auto-contouring system is demon-
strated in Fig. 4.

2.E. Test dataset

For quantitative analysis of the auto-contouring system,
CT scans and corresponding clinical contouring data from
140 female pelvic cancer patients who received radiation
treatment at MD Anderson were used as the test dataset. All
of the test CT scans were independent from the training and
validation CT scans.

The contours of the CTVs were manually generated by
physicians, and the contours of the bony structures and OARs
were manually generated by medical physics researchers and
reviewed by physicians. Some of the CT scans did not show
all of the OARs, owing to the limited cranial-caudal extent.
As the superior border of the PAN CTV can be slightly

different, depending on the location of pathological nodes
and physician judgment, we modified the superior borders of
the automatically generated PAN CTV on the basis of the
manually generated ground truth contour. We did the same
for the inferior borders of the rectum and the spinal cord for
similar reasons. The accuracy of the model was measured by
the DSC, mean surface distance (MSD), and Hausdorff dis-
tance (HD)47 between the automatically generated contours
and the ground truth contours.

For qualitative analysis, contours were automatically gen-
erated using the auto-contouring system (Fig. 4) for CT scans
from 30 cervical cancer patients from three South African
hospitals. This dataset was completely independent from the
training dataset and the potential population target for the
RPA system. The automatically generated contours were eval-
uated by an experienced radiation oncologist at MD Ander-
son and scored as needing no edits, minor edits, or major
edits. For the contours scored as needing minor edits, revi-
sions were preferred but not mandatory for the contours to be
considered clinically acceptable.

3. RESULTS

3.A. Model accuracy

The DSC, MSD, and HD between the automatically gener-
ated contours and the internal test dataset for 140 CT scans
are given in Table II. Owing to the limited cranial-caudal
extent, only 132, 129, and 127 contours were evaluated for the
PAN, L4/L5 vertebral bodies, and kidneys, respectively; two
patients did not have nodal CTV and one patient did not have
spinal cord contours. All the CTVs had mean DSC > 0.76,
mean MSD < 0.27 cm, and mean HD < 2.09 cm. All the
normal structures had mean DSC > 0.81, mean
MSD < 0.18 cm, and mean HD < 1.66 cm. All the bony
structures had mean DSC > 0.90, mean MSD < 0.08 cm,
and mean HD < 1.25 cm.

FIG. 3. Flowchart of the semi-automated data curation method to identify incorrect clinical contours. Data were randomly split into two groups, and two auto-
segmentation models were trained with each dataset. Then, each segmentation model was applied to the other group of data to create contours. If the Sørensen-
Dice similarity coefficient was lower than the threshold value, the original contour was manually reviewed and deleted if incorrect. [Color figure can be viewed
at wileyonlinelibrary.com]
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The overall boxplots of DSC for each structure are given
in Fig. 5. Although most of the automatically generated con-
tours had DSC distribution within a certain range, low DSC

outliers existed in the box plots, and some of these contours
are shown in Fig. 6. The failures in generating accurate con-
tours often occurred when the CTVs and OARs were located
near high-density material in the bowel, as shown in
Fig. 6(a). Contouring of the bladder occasionally failed when
the border between the bladder and the uterus was vague, as
shown in Fig. 6(b). Contouring of L4 and L5 vertebral bodies
sometimes failed when the segmentation model predicted L3
to be L4 and L4 to be L5, as shown in Fig. 6(c). The auto-
matically generated PAN CTV contours had low DSC values
when the interface between the nodal CTV and the PAN CTV
was incorrectly determined, as shown in Fig. 6(d).

3.B. Physician review

Physician scoring of the automatically generated contours
on the 30 external CT scans is shown in Table III. Owing to
the limited cranial-caudal extent, 28 contours were evaluated
for the left and right kidneys. For the primary, nodal, and
PAN CTVs, 83%, 70%, and 87% of the contours were clini-
cally acceptable, respectively. For the bladder, rectum, and
right kidney, 90%, 93%, and 96% were clinically acceptable,
respectively, and the other OARs were 100% clinically
acceptable. For the bony structures, 93% and 97% of the L4
and L5 vertebral bodies were clinically acceptable, respec-
tively, and the pelvic bone and sacrum were 100% clinically

FIG. 4. Overall flowchart of the developed auto-contouring system for cervical cancer. (a) The slice by slice classification was conducted to identify computed
tomography (CT) slices that contain a target structure, and the process is visually demonstrated in Fig. 1. (b) Bony structures were contoured as described in Sec-
tion 2.B. (c) Spinal cord and PAN clinical treatment volume (CTV) were contoured with the 2D FCN-8s segmentation architecture. (d) Other structures (the
organs-at-risk and the primary and the nodal CTVs) were contoured as demonstrated in Fig. 2. (e) Extra steps were required for the nodal CTV contours as
described in Section 2.C.2. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. Sørensen-Dice similarity coefficients (in percentage), mean sur-
face distance (in cm), and Hausdorff distance (in cm) between our CNN-
based model and clinical contours from 140 internal test CT scans.

Structure
DSC

(mean � SD)
MSD

(mean � SD)
Hausdorff Distance

(mean � SD)

Primary CTV 0.86 � 0.08 0.19 � 0.12 2.02 � 1.17

Nodal CTV 0.81 � 0.03 0.21 � 0.05 2.09 � 0.56

PAN CTV 0.76 � 0.09 0.27 � 0.16 2.00 � 1.00

Bladder 0.89 � 0.09 0.11 � 0.13 1.07 � 0.89

Rectum 0.81 � 0.09 0.18 � 0.14 1.66 � 1.17

Spinal cord 0.90 � 0.02 0.06 � 0.01 0.65 � 0.18

Femur, left 0.94 � 0.03 0.06 � 0.03 0.60 � 0.41

Femur, right 0.93 � 0.04 0.07 � 0.04 0.66 � 0.43

Kidney, left 0.94 � 0.02 0.08 � 0.03 0.76 � 0.28

Kidney, right 0.95 � 0.02 0.07 � 0.03 0.84 � 0.37

Pelvic bone 0.93 � 0.02 0.05 � 0.02 1.06 � 0.53

Sacrum 0.91 � 0.02 0.07 � 0.05 1.25 � 1.12

L4 vertebral body 0.91 � 0.15 0.07 � 0.15 0.53 � 0.36

L5 vertebral body 0.90 � 0.15 0.08 � 0.23 0.68 � 0.81

CNN: convolutional neural network; CT: computed tomography; DSC: Sørensen-
Dice similarity coefficient; MSD: mean surface distance; SD: standard deviation.
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acceptable. Some of the minor edits and major edits are
demonstrated in Fig. 7.

4. DISCUSSION

We have developed a CNN-based auto-contouring tool for
three CTVs and 11 normal structures in cervical cancer CTs
that can be used for fully automated radiation treatment plan-
ning. The number of training, validation, and test CT scans
we used to train and evaluate this model is the largest to date
among deep learning-based female pelvis auto-contouring
studies.25,26 We successfully acquired this high volume of
data by using a semi-automatic data curation method. Also,
to the best of our knowledge, we are the first to auto-contour
nodal and PAN CTVs in the female pelvic region using deep

learning. We have demonstrated that our CNN-based auto-
contouring system can accurately generate clinically accept-
able contours for both CTVs and normal structures in multi-
ple patient cohorts.

4.A. Quantitative results

For the bony structures, 3.5% (5/140 from the quantitative
analysis) of the L4 and L5 vertebral body contours were not
clinically acceptable (i.e. outliers in the boxplot in Fig. 5).
Similarly, 6.7% (2/30 from the qualitative analysis) of the L4
and L5 vertebral body contours were not clinically acceptable
(Table III). Therefore, the overall failure rate for the bony
structures was about 4%. This is a noticeable improvement
compared to a previous study where the failure rate for the

FIG. 5. The distributions of Sørensen-Dice similarity coefficients between the ground truth and the automatically generated contours of 14 structures. [Color fig-
ure can be viewed at wileyonlinelibrary.com]

(a)

(b)

(c) (d)

FIG. 6. The outlier contours from the internal test dataset. The ground truth contours (green) and outliers (red) are given for (a) primary clinical treatment volume
(CTV) (Sørensen-Dice similarity coefficient [DSC] = 0.43), (b) bladder (DSC = 0.21), (c) L4 and L5 vertebral bodies (DSC = 0.0 each), and (d) PAN CTV
(DSC = 0.43). [Color figure can be viewed at wileyonlinelibrary.com]
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automatically generated contours in a multi-atlas-based auto-
contouring system was about 10%.39

The performances of deep learning-based auto-contouring
systems for OARs in the female pelvis from other published
literature are presented in Table IV. As there is only one pub-
lished paper on a deep learning-based auto-contouring sys-
tem for cervical cancer, we have also included the state-of-
the-art auto-contouring models for rectal and prostate can-
cers. Overall, the performance of our system is equivalent to
or better than the auto-contouring system for cervical cancer
developed by Liu et al.26 for most of the structures.

Our quantitative test CT scans were randomly chosen from
CTs of any female patient with an intact uterus, so the shape
and volume of the bladder in the CT scans varied

significantly. When we retrospectively tested our bladder seg-
mentation model on 510 prostate patients with full bladders,
the mean DSC was much improved at 0.95 � 0.04. Com-
pared with the state-of-the-art rectal and prostate models, our
model performed at least as well in all structures except for
the rectum. However, the direct comparison of auto-contour-
ing models for different sites is not straightforward because
the homogeneity of the structures in the test CT scans sub-
stantially changes the DSC, as shown in the accuracy of our
two bladder models.

4.B. Failure cases from physician’s review

The overall clinical acceptance rates were higher than
70% for the CTVs and 90% for the OARs and bony struc-
tures. When high-density materials were located in the bowel,
the auto-contouring system had a higher chance of creating
inaccurate contours of the CTVs or OARs near the region, as
shown in Figs. 5 and 6. These high-density materials were
fecal matter resulting from a high-carb diet with minimal pro-
tein, fat, and fibers, which likely causes compacted slow-
moving feces. This diet is more common in South Africa, the
patient population for the external test dataset, than in the
U.S, the patient population for the training and internal test
datasets. As we acquire more CT data from such patients
through the RPA system, we will be able to upgrade the auto-
contouring system to achieve more robust results in these
patients.

For the nodal CTVs, 9/30 were scored as needing major
edits; one was due to high-density fecal matter in the bowel
and three were due to failure to detect the superior border.
The three cases did not have clear borders for vessels, as
shown in Fig. 8(b), and therefore, the bifurcation segmenta-
tion model did not perform appropriately. All three patients
seemed to be underweight, based on their CT scans, so we
believe that the poor contrast resolution was due to incorrect

TABLE III. Qualitative scores of the automatically generated contours on 30
external CT scans.

Structure No edits (%) Minor edits (%) Major edits (%)

Primary CTV 8 (27%) 17 (57%) 5 (17%)

Nodal CTV 9 (30%) 12 (40%) 9 (30%)

PAN CTV 18 (60%) 8 (27%) 4 (13%)

Bladder 22 (73%) 5 (17%) 3 (10%)

Rectum 20 (67%) 8 (27%) 2 (7%)

Spinal cord 30 (100%) 0 (0%) 0 (0%)

Femur, left 27 (90%) 3 (10%) 0 (0%)

Femur, right 27 (90%) 3 (10%) 0 (0%)

Kidney, left 23 (82%) 5 (18%) 0 (0%)

Kidney, right 23 (82%) 4 (14%) 1 (4%)

Pelvic bone 24 (80%) 6 (20%) 0 (0%)

Sacrum 23 (77%) 7 (23%) 0 (0%)

L4 vertebral body 27 (90%) 1 (3%) 2 (7%)

L5 vertebral body 26 (87%) 3 (10%) 1 (3%)

CT: computed tomography; CTV: clinical treatment volume.

FIG. 7. Examples of automatically generated contours (red) vs ground truth (green) from physician’s manual review of contours for the primary clinical treatment
volume, bladder, and rectum. [Color figure can be viewed at wileyonlinelibrary.com]
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use of image acquisition parameters or the lack of fat in
between the vessels. We need to further investigate our auto-
contouring system in underweight patients and may need to
adjust the CT acquisition parameters for these patients in the
future.

We trained our model using a consistent, well-curated
dataset from a single hospital and the publicly available kid-
ney contours. Final physician review used images from three

other hospitals, with different patient populations from the
training dataset. Thus, the review results gave us some confi-
dence in the ability of our model to successfully contour
patients from a different patient population, as well as various
CT scanners and imaging protocols. In this study, we did not
examine the impact of inter-user variations on the physician
assessment of these contours. Based on our experience with
other sites,51 it is likely that an increased fraction of patients

TABLE IV. Summary of CNN-based auto-contouring results for normal structures in pelvic CTs from other groups.

Author Sites # test CTs Structures DSC results

Men et al. (2017)29 Rectal 60 Bladder 0.93

Colon 0.62

Intestine 0.65

Femur_L 0.92

Femur_R 0.92

Rectal CTV 0.88

Kazemifar et al. (2018)23 Prostate ~26 Prostate 0.88

(30% of 85) Bladder 0.95

Rectum 0.92

Balagopal et al. (2018)24 Prostate ~27 Prostate 0.90

(Leave-one-out Bladder 0.95

cross-validation, Rectum 0.84

20% of 135) Femur_L 0.96

Femur_R 0.95

Liu et al. (2020)26 Cervix 14 Bladder 0.92

Bone marrow 0.85

Rectum 0.79

Small intestine 0.83

Spinal cord 0.83

Femur_L 0.91

Femur_R 0.90

Our method Cervix 140 Primary CTV (UteroCervix) 0.85

Bladder (cervical cancer) 0.89

Bladder (prostate cancer) 0.95

Rectum 0.80

Spinal cord 0.90

Pelvic bone 0.93

Sacrum 0.91

Femur_L 0.94

Femur_R 0.93

CNN: convolutional neural network; CT: computed tomography; DSC: Sørensen-Dice similarity coefficient; CTV: clinical treatment volume.

(a) (b)

FIG. 8. The aortic bifurcation is clearly defined in the red box in (a), whereas the aortic bifurcation is barely identifiable in the red box in (b). The adjustment of
the window level did not improve the visual inspection. [Color figure can be viewed at wileyonlinelibrary.com]
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will be considered ‘minor edits’ instead of ‘no edits’ as we
deploy the auto-contouring system to more hospitals. We will
further assess and quantify the inter-user variability as we
begin to deploy this system clinically.

5. CONCLUSION

We have demonstrated through both quantitative and qual-
itative studies that a CNN-based, auto-contouring tool can
achieve clinically acceptable contours for most of the CTVs
and normal structures in cervical cancer patients. We will
implement our auto-contouring system to the Radiation Plan-
ning Assistant, accelerating the radiation treatment planning
process in hospitals in low- and middle-income countries.
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